A CERTAIN CLASS OF MAPS AND FIXED POINT THEOREMS

Ljubomir Ćirić

(Communicated September 1, 1975)

Introduction. In recent years a number of generalizations of Banach contraction principle have appeared, where the authors have discovered new classes of contractive type maps which have fixed points.

In this note we introduce a class of selfmaps on a metric space M which satisfy the following condition

(1)
$$d(Tx, Ty) < q \cdot \max \{d(x, y), (d(x, y))^{-1} d(x, Tx) d(y, Ty),$$

$$a(x, y) d(x, Ty) d(y, Tx) \}$$

for all $x, y \in M$, $x \neq y$, and q < 1 or q = 1, where a(x, y) is a non-negative real function. These maps may have infinitely many or be without fixed points, even when M is compact. This is shown in § 1, where single-valued maps are investigated. In § 2 multi-valued maps on a generalized metric space which satisfy the condition of the type (1) are discussed.

1. Single-valued maps

Let (M, d) be a metric space and T a selfmapping of M. The following example shows that (1) with q < 1 does not imply the existence of a fixed point of T, even if M is compact and a(x, y) = 0.

Example. Let $M = [-1, 2] \cup \{8\}$ be a subset of reals with usual metric and let a function T of M into itself be defined by $Tx = -\frac{x}{2}$, if $x \neq 0$ and $x \neq 8$; T(0) = 8 and T(8) = 2. Then $x, y \in [-1, 2]$ and $x \cdot y \neq 0$ imply $d(Tx, Ty) = \frac{1}{2}d(x, y)$; y = 0 and $x \neq 8$ imply

$$d(Tx, To) = 8 + \frac{x}{2} \le 9 = \frac{3}{4} \cdot \frac{\frac{3}{2} |x| \cdot 8}{|x|} = \frac{3}{4} \cdot \frac{d(x, Tx) d(0, To)}{d(x, 0)}$$

and y=8 and $x \in M$ imply $d(Tx, T8) \le \frac{1}{2} d(x, 8)$. Therefore, T satisfies (1) with $q=\frac{3}{4}$ and a(x, y)=0, but T has not a fixed point. Note that here T is not orbitally continuous.

If T satisfies (1) and has a fixed point, then it need not be unique. For example, the identity mapping satisfies (1) for any q>0 and $a(x, y)>>(qd(x, y))^{-1}$.

Now we are going to prove some fixed point theorems for maps which satisfy (1). Recall that T is said to be orbitally continuous if $\lim_{i\to\infty} T^{n_i}x = u \in M$ implies $Tu = \lim_{i\to\infty} TT^{n_i}x$ and that M is said to be T-orbitally complete iff every Cauchy sequence of the form $\{T^{n_i}x\}_{i=1}^{\infty}$ converges in M ([1], [2], [3]).

Now we will prove the following result.

Theorem 1. Let (M,d) be a metric space and $T:M\to M$ a selfmapping of M. If M is T-orbitally complete and T is an orbitally continuous map which satisfies (1), then for each $x\in M$ $\lim_{n\to\infty} T^nx=u_x\in M$ and $Tu_x=u_x$. If in addition $a(x,y)\leqslant (d(x,y))^{-1}$, then T has a unique fixed point.

Proof. Let $x \in M$ be arbitrary and assume that $Tx \neq x$. Then by (1) $d(Tx, T^2x) < q \max \{d(x, Tx), (d(x, Tx))^{-1}d(x, Tx), d(Tx, T^2x), 0\} = q \max \{d(x, Tx), d(Tx, T^2x)\}$

and hence

$$d(Tx, T^2x) < qd(x, Tx).$$

Since $d(Tx, T^2x) = 0 \leqslant qd(x, Tx)$ for the case Tx = x, we have

$$(2) d(Tx, T^2x) \leqslant q \cdot d(x, Tx).$$

By the usual procedure from (2) it follows that for any $p \in N$:

$$d(T^n x, T^{n+p} x) \leqslant \frac{q^n}{1-q} d(x Tx).$$

Since q < 1, it follows that $\{x, Tx, T^2, x, ..., T^n x, ...\}$ is a Cauchy sequence. By orbital completeness of M there exists some $u_x \in M$ such that

$$\lim_{n\to\infty} T^n x = u_x.$$

Since T is orbitally continuous, we have

$$Tu_x = \lim_{n \to \infty} T^{n+1} x = u_x.$$

Therefore, we proved the first part of Theorem.

Let now be $a(x, y) \le \frac{1}{d(x, y)}$ and suppose that u = Tu, v = Tv and $v \ne u$. Then

 $d(u, v) = d(Tu, Tv) < q \cdot \max \{d(u, v), 0, (d(u, v))^{-1} d(u, Tv) d(v, Tu)\} = qd(u, v)$ which is a contradiction with q < 1. The proof of Theorem is complete.

For maps which satisfy (1) with q = 1 we have the following result.

Theorem 2. Let T be an orbitally continuous selfmapping of a metric space M. If T satisfies (1) with q=1 and for some $x_0 \in M$ the sequence $\{T^nx_0\}_{n=1}^\infty$ has a cluster point $u \in M$, then u is a fixed point of T and $\lim_{n\to\infty} T^nx_0 = u$.

Proof. If $T^nx_0 = T^{n-1}x_0$ for some $n \in \mathbb{N}$, then $u = T^{n-1}x_0$ and assertion follows. Assume now that $T^{n-1}x_0 \neq T^nx_0$ for all $n = 1, 2, \ldots$, and let $\lim_{i \to \infty} T^{n_i}x_0 = u$. Then by (1) (with q = 1) for $x = T^{n-1}x_0$ and $y = T^nx_0$ we have

$$d(TT^{n-1}x_0, TT^nx_0) < \max\{d(T^{n-1}x_0, T^nx_0),$$

$$\begin{aligned} & (d(T^{n-1}x_0, T^nx_0))^{-1}d(T^{n-1}x_0, T^nx_0) \, d(T^nx_0, T^{n+1}x_0), \, 0 \} = \\ & = \max \big\{ d(T^{n-1}x_0, T^nx_0), \, d(T^nx_0, T^{n+1}x_0) \big\}. \end{aligned}$$

Hence

$$d(T^n x_0, T^{n+1} x_0) < d(T^{n-1} x_0, T^n x_0),$$

as $d(T^n x_0, T^{n+1} x_0) < d(T^n x_0, T^{n+1} x_0)$ is impossible. Therefore, the sequence $\{d(T^n x_0, T^{n+1} x_0)\}_{n=1}^{\infty}$

of positive reals is decreasing and hence convergent. Since $\lim_{i\to\infty} T^{n_i}x_0 = u$ and T is orbitally continuous, it follows that $Tu = \lim_{i\to\infty} T^{n_i+1}x_0$, $T^2u = \lim_{i\to\infty} T^{n_i+2}x_0$ and

(3)
$$\lim_{i \to \infty} d(T^{n_i} x_0, T^{n_i+1} x_0) = d(u, Tu),$$

(4)
$$\lim_{n \to \infty} d(T^{n_i+1}x_0, T^{n_i+2}x_0) = d(Tu, T^2u).$$

As $\{d(T^nx_0, T^{n+1}x_0)\}_{n=1}^{\infty}$ is a convergent sequence and

$${d(T^{n_i}x_0, T^{n_i+1}x_0)}_{n=1}^{\infty}$$
 and ${d(T^{n_i+1}x_0, T^{n_i+2}x_0)}_{n=1}^{\infty}$

are its subsequences, it follows from (3) and (4) that

$$\lim_{n\to\infty} d(T^n x_0, T^{n+1} x_0) = d(u, Tu) = d(Tu, T^2 u).$$

Therefore, we have

(5)
$$d(Tu, T^2u) = d(u, Tu).$$

Assume that $u \neq Tu$. Then by (1) (with q = 1) we obtain

$$d(Tu, T^2u) < d(u, Tu)$$

which contradicts (5). This proves Tu = u.

Corollary. Let M be a compact metric space and $T: M \to M$ an orbitally continuous map of M into M. If T satisfies (1) with q=1, then for each $x \in M$ $\lim_{n \to \infty} T^n x = u_x$ for some $u_x \in M$ and $Tu_x = u_x$. If in addition $a(x, y) \leq (d(x, y))^{-1}$, then T has a unique fixed point.

Before going into the following theorem, we state the following definitions:

Definition 1. (Kuratowski [6]). Let S be a bounded subset of a metric space M. We denote by $\alpha(S)$, the infimum of all $\varepsilon > 0$ such that S admits a finite covering consisting of subsets with diameter less than ε .

Definition 2. (Furi and Vignoli [5]). A continuous mapping $T: M \to M$ of a metric space M into itself is called *densifying* if for every bounded subset S of M such that $\alpha(S) > 0$, we have $\alpha(T(S)) < \alpha(S)$.

Theorem 3. Let M be a metric space and $T: M \to M$ be densifying and satisfying (1) with q=1. If M is T-orbitally complete and for some $x_0 \in M$ the sequence of iterates $\{x_0, Tx_0, T^2x_0, \ldots, T^nx_0, \ldots\}$ is bounded, then T has a fixed point.

Proof. Let
$$S = \bigcup_{n=0}^{\infty} T^n x_0 (T^0 x_0 = x_0)$$
. Then $T(S) = \bigcup_{n=1}^{\infty} T^n x_0 \subseteq S$. Also since

T is continuous we have $T(\overline{S}) \subset \overline{T(S)} \subset \overline{S}$.

We shall show that \overline{S} is compact. Suppose that $\alpha(S) > 0$. Since T is densifying we have $\alpha(T(S)) < \alpha(S)$. But $\alpha(S) = \alpha(T(S) \cup \{x_0\}) = \alpha(T(S))$. Therefore, $\alpha(S) = 0$ and this implies $\alpha(\overline{S}) = 0$. Hence \overline{S} is totally bounded. By orbitally completeness of M it follows that \overline{S} is compact. Now we may use the Theorem 2.

2. Multi-valued maps

Let (M,d) be a generalized metric space (i.e. a pair (M,d) where M is a set and $d: M \times M \to [0, \infty]$ satisfies all the properties of being a metric for M exept that d may have "infinite values"). A multi-valued function $F: M \to M$ is a point-to-set correspondence. Recall that an orbit of F at the point $x \in M$ is a sequence $\{x_n: x_n \in Fx_{n-1}\}_{n=1}^{\infty}$, where $x_0 = x$; F is orbitally upper-semicontinuous if $x_n \to u \in M$ implies $u \in Fu$ whenever $\{x_n\}$ is an orbit of F at some $x \in M$ and that M is F-orbitally complete if every orbit of F at each $x \in M$ which is a Cauchy sequence converges in M ([3], [4]). Let A and B be nonempty subsets of M. Denote

$$D(A, B) = \begin{cases} \inf \{d(a, b) : a \in A, b \in B\}, & \text{if the infimum exists,} \\ \infty, & \text{otherwise} \end{cases}$$

$$N(\varepsilon, A) = \{x \in M : d(x, a) < \varepsilon \text{ for some } a \in A\}, \varepsilon > 0,$$

$$H(A,B) = \begin{cases} \inf \{ \varepsilon > 0 : A \subseteq N(\varepsilon, B) \text{ and } B \subseteq N(\varepsilon, A) \}, & \text{if the infimum exists,} \\ \infty, & \text{otherwise} \end{cases}$$

We now state the following result.

Theorem 4. Let (M, d) be a generalized metric space and let Fx be a closed subset of M for each $x \in M$. If M is F-orbitally complete and F is orbitally upper-semicontinuous and satisfies the following condition

(6)
$$H(Fx, Fy) < q \cdot \max \{d(x, y), (d(x, y))^{-1} D(x, Fx) D(y, Fy), \\ a(x, y) D(x, Fy) D(y, Fx)\}$$

for some $q \in (0, 1)$ and all $x, y \in M$, $x \neq y$ and $a(x, y) \in (0, \infty)$, then F has a fixed point.

Proof. Let $t \in (0, 1)$ be arbitrary. We shall define a single-valued function $T: M \to M$ by letting Tx to be a point $y \in Fx$ that satisfies $d(x, y) \le q^{-t} D(x, Fx)$.

Let now x be an arbitrary point in M and let us consider the following orbit of F at x:

(7)
$$x_0 = x, x_1 = Tx_0, x_2 = Tx_1, \dots, x_n = Tx_{n-1}, \dots$$

We may assume that $D(x_n, Fx_n) > 0$ for each n = 1, 2, ... since otherwise the assertion of the Theorem follows immediately. Since $x_n \in Fx_{n-1}$ implies $D(x_n, Fx_n) \le A(Fx_{n-1}, Fx_n)$ and $D(x_n, Fx_{n-1}) = 0$ we have by (6)

$$D(x_n, Fx_n) \leq H(Fx_{n-1}, Fx_n) <$$

$$< q \cdot \max \{ d(x_{n-1}, x_n), (d(x_{n-1}, x_n))^{-1} D(x_{n-1}, Fx_{n-1}) D(x_n, Fx_n), 0 \}$$

$$\leq q \cdot \max \{ d(x_{n-1}, x_n), (d(x_{n-1}, x_n))^{-1} d(x_{n-1}, x_n) D(x_n, Fx_n) \}$$

$$= q \cdot \max \{ d(x_{n-1}, x_n), D(x_n, Fx_n) \}$$

and hence

(8)
$$D(x_n, Fx_n) < q \cdot d(x_{n-1}, x_n).$$

Then by definition of the function T and the sequence (7) it follows from (8) that

$$d(x_n, Tx_n) \leq q^{-t}D(x_n, Fx_n) \leq q^{-t}qd(x_{n-1}, x_n)$$

and hence

$$d(x_n, x_{n+1}) \leq q^{1-t} d(x_{n-1}, x_n).$$

Then, as $q^{1-t} \in (0, 1)$, by routine calculation it may be shown that the orbit (7) of F at x is a Cauchy sequence. As M is F-orbitally complete, there exists some u in M such that

$$\lim_{n\to\infty}x_n=u.$$

Then the orbital upper-semicontinuity of F implies $u \in Fu$, which completes the proof of the Theorem.

REFERENCES

- [1] Čirić Lj., On contraction type mappings, Math. Balkanica 1, (1971), 52-57.
- [2] Čirić Lj., Fixed and periodic points of almost contractive operators, Math. Balkanica 3 (1973), 33-44.
- [3] Čirić Lj., Fixed points for generalized multi-valued contractions, Mat. vesnik 9 (24), 1972, 265—272.
- [4] Ćirić Lj., On some maps with a nonunique fixed point, Publ. Inst. Math., 17 (31), 1974, 52—58.
- [5] Furi M. and Vignoli A., A fixed-point theorem in complete metric space, Boll. U. M. I. (4) 2 (1969), 505-509.
 - [6] Kuratowski C., Topologie, Warsaw, 1952, Vol. I.
 - [7] Kurera Dj., Some fixed point theorems, Math. Balkanica 2 (1972), 101-108.