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The flow phenomena appearing in different cases of flow of nonhomo-
geneous fluids differ very often essentially from the corresponding phenomena
of flow of homogeneous fluids. The phenomena appearing at small forced
oscillations of a body in an inviscid nonhomogeneous fluid represent a typical
example. It is shown by simple analysis of the type of differential equations
describing this flow, that the equations can be of elliptic or hyperbolic type
in dependence of it, if the frequency of forced oscillations is greater or less
than the Brunt-Viisild frequency, which depends on a certain way on the law
of stratification [1]. In the hyperbolic case the disturbances caused by oscilla-
tions of the body propagate along the characteristics through the whole fluid.
This phenomenon, which can not occur at flow of a homogeneous fluid at
all, was the subject of experimental and theoretical research in papers of a
number of authors. It was in an earlier paper [2] shown that the governing
equations for this flow can be at a specific law of stratification reduced to
the equations with constant coefficients, with what their integration was made
easier to a great extent. This law of stratification will be used here in case of
oscillations in vertical direction of a horizontal half-infinite plate, in order to
show the existence of an interesting and unexpected phenomenon of total ab-
sence of any tlow in a region of fluid.

The following equation in nondimensional form represents the starting
point in investigation of the problem of small forced oscillations of a body
in a nonhomogeneous fluid:
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I+ can be derived from the Euler equation, the condition of incompressibility
of individual particles of fluid and the continuity equation under the following
assumptions:

a) perturbations of the density are much less than the density in the
state of stable equilibrium, so that the Boussinesq approximation can be used,
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b) amplitudes of oscillations are small, so that the linearization of the
governing equations can be carried out and

c) the flow is two dimensional.

It is remarkable that in connection with the law of stratification none
assumption was made during the deriving of the equation (1), i.e. it can be
quite arbitrary. The nondimensional quantities introduced by means of the

following scales for length, time, velocity, density and pressure: hys t,= V@g, U, Po

and p,=p,u, l/gTzO (g-acceleration due to gravity) are marked with capital
letters. X and Z are Cartesian coordinates, from which Z points vertically

upwards, Q,(Z) is the density in the state of stable equilibrium, B=8, l/ho/g,

where B, represents the frequency of forced oscillations and ¢ is the steady-
-state solution connected with the stream-function ¢ in the following way:

$=exp(iBT) D (T-time).
By the transformation of the coordinate Z:

z
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under the assumption that the cited integral converges, the equation (1) redu-
ces to the form:
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This equation becomes an equation with constant coefficients if:
03+2% _,p
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where a is an arbitrary constant, whereby it will be obviously of the elliptic
type in case of upper sign, and of the hyperbolic type in case of lower sign.
With Q,(0)=1 we obtain:

A3) Q3(Z)=(1F a2 exp(—2B*Z) £ a2,

Such a law of stratification is very specific one and artificial too, because it
contains the frequence B, from which it naturally does not depend. In an
eventual experiment, however, it could be realized relatively easily. Besides, the
flow phenomena appearing in a nonhomogeneous fluid probably does not de-
pend qualitatively on the law of stratification, thus we will adopt it here. It
must be a<1 in the elliptic case, because the stability condition: 0, <0 would
not be fulfilled otherwise. In the hyperbolic case the density becomes zero on
a height H. Consequently, the fluid must be bounded in the direction of the
axis Z on a height Hy<H. The scale A, for length can be chosen to be
H;=1. The coordinate { will be in the hyperbolic case, to which we will res-
trict ourselves here:

(4) _.1_ arctg ‘i(l__@ .
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We will consider the flow following the Fig. 1. The half-infinite plate
z—0, x>0 oscillates in vertical direcction with the frequency B,, while the
half — infinite plate z=0, x<O and the infinite plate z=#h, stay fixed. The
boundary conditions will be:

z~-0(c:0):-‘)i:{_1’ x>0 t
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¢, and ¢, can be easily calculated from (4). In order Fig. 1

to solve the equation (2) at the cpecific law of
stratification (3) and with the cited boundary conditions, we will use the com-
plex Fourier integral transform [3]:

<

= frlue”‘XdX, k=c+ir, 1>0.
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Under the assumptions that: e*¥{ | =0 and e’kx—d—i— =0, for which one
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can later show, using the solution that will be obtained, that they are satisfied,
it will be obtained from the equation (2) in the hyperbolic case:

3 "1 a?k? $ =0
with the boundary conditions:

3(0):;12« J(¢)=0 and §(—%)=0.

The solution of this equation in the region {>0(Z>0) is:
= §in ak (&,— %)
k?sinakQ,

Hence, by means of the inverse formula for the
complex Fourier transform we obtain:

iT+oo
(5) 2m} - f we—ikxdk_
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The integrand has a double pole for k=0 and
simple poles for k= +nxnfal, n=1,2,3,...,
We will choose the contour of integration accor-
ding to the Fig. 2.

It can be shown on the usual way that the
integral (5) tends to zero for X< co when R—oco0 on the part BCE of the
contour. It is the same case on the part DEF for X>0. On the parts BD and
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FA the integrand tends to zero for X>0 when R— co, thus the integral tends
to zero too, because the arc remains finite. It can be shown too, that the
integral tends to zero in the neighbourhood of the points D and F, because
the contour intersects the axis ¢ between the poles. So we will obtain ¢ =0
for X< 0! The calculation of the residua in the poles yields:

® ® (=1 . .

= —X(l — C)—ZaCO > ——%smnn(l — £)smnTCX, X>0.

% i1 nP 0 at

Taking into consideration that this expression is a real one, it will be: ¢ =JcosBT,
that means that the fluid oscillates everywhere in the same phase with the
plate. Making use of the known formula [4]:
(_ 1)n x2 TCZ
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P oo how that § can b a
p, AN 7 one can show tha can be expresse
i - X ,/VT),_A - very simply in the separate parts of the
: fluid, which are bounded with the cha-
! racteristic starting from the edge of the
Fig. 3 plate and whith its reflexions and marked
with 0,1, 2, ... on the Fig. 3.

X¥

It will be namely:
Jom=2mal,C—1) and §,,,,, —al(@m+1)C—X], m=0,1,2, ...
where: E=§/C0 and }:X/a {,, with the velocity components:
I/~V2m=0, I/~V2m+1:1 and ﬁmzma/Qo.

The stream-lines in the moment when the plate is moving upwards with the
maximal velocity are drawn on the Fig. 3. In accordance with this arrangement
of stream-lines we can conclude the following. The region of the total absence
of the flow occupies the whole half-plane X< 0 and the part of the half-plane

¥*
X >0 above the characteristic sz\f. In the regions, marked with 1,3,5,...,
which are leant on the oscillating plate, the vertical velocity is the same in all
points and equal to the velocity of the plate, i.e. the fluid oscillates here in
vertical direction as if it constitutes a solid body with the plate. In
the regions, marked with 2, 4,6, ..., which are leant on the fixed plate,
the vertical velocity is everywhere zero. The flow performs here only in
horizontal “direction. The horizontal velocity is present in all regions 1, 2,
3, ..., whereby increases in all of them in vertical direction, as well as

*
by crossing from one region into the other in direction of the axis X.
This increase can be so great that the linear theory, applied here, stops
to be valid. The increase of the horizontal velocity can be observed on the

*
Fig. 3 after the concentration of the stream-lines in direction of the axis X, as
well. The stream function is everywhere continuous. The velocity components
are, however, discontinuous on the characteristics and its reflexions.
In the region {<<0(Z<0) one can obtain a fully symmetrical arrangement

*
of stream-lines in reference to the axis X, whereby only ¥, is present instead
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of ¢, With regard to the velocity components the difference is only in the
behaviour of the horizontal velocity in the separate regions. This velocity
decreases to zero when {— —{ , because Q, increases infinitely at the same time.

The corresponding arrangement of stream-lines in the plane (X, Z) has
been given on the Fig. 3 for a=0, 2 and f=1. The characteristics starting from

,A.(2)

the edge of the plate, their reflexions from the plate Z—1 and from the infinity
Z= — oo and the stream-lines become curved in this plane. The corresponding
law of stratification has been drawn on the left.
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