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In [3] the following theorem is proved:

Let (M, d) be a complete metric space and let T be a selfmapping of M
into itself such that ‘

d(Tx, Ty)<gmax {d(x, . dix, %), d, T),
(1) 1
STy +d0, Tx))]

for some g<1 and all x, y &M. Then T has a unique fixed point 4 in M and
for each x& M the sequence {7T"x} converges to u.

In subsequent papers [3—7] we studied mappings which satisfy condi-
tions of the type (1).

R. Kannan [10—12] has investigated mappings defined on a bounded

closed and convex subset K of a Banach space B and sati<fying the following
conditions:

@) HTx—TyLK%(H%TxH+Hy—TyH>, % yEK
and
3) sup ||z — Tz H<8_(2),

z&D 2

where D is any convex subset of K which is mapped into itself by T (3 (D) —the
diameter of D). In [10] Kannan has proved the following:

(0.1) If B is reflexive and T:K—K satisfies (2) and (3), then T has a
unique fixed point in Kj

(0.2) If B is a uniformly convex space and 7:K— K satisfies (2) and (3),

then the sequence {XLJ;&”—],XOE K, converges to the fixed point in K.
In [9] and [14] are proved fixed point theorems for continuous mappings

which satisfy certain conditions of generalized nonexpansivity. A fixed point for
such mappings need not be unique.
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In the present note we consider mappings, unnecessarily continuous, which
map a bounded closed and convex subset K of a Banach space B into itself and
satisfy the following conditions:

@ T Tyl<man{lx=Tx [y-Tyl, S(x=Ty]+ly-Tx]),

3 Ux=yl+1x=Tel+lp-TyiD), = vex

and

(5) supl|z— Tz || <>,
zeD 2

where D is any nonempty closed convex subset of X which is mapped into
itself by 7. Results here presented are extensions of the cited results of
R. Kannan.

1. Before proving theorems, we state one definition and some results.
A Banach space B is said to be uniformly convex if given €>0 there exists
3(e) such that |[x—y||>¢ for ||x||<l and | y|[<1 implies that

%Hx+y“<l—8(e).

(L.1). Let B be a uniformly convex Banach space and let ¢, Q be posi-
tive constants. Then there exists a constant g with 0<<g<<1 such that

[x<Q [I2[<Q llx=yl>e imply ||x+p|[<2gmax{|x], ||y}

(1.2) Every uniformly convex Banach space is norm-reflexive.

(1.3) A necessary and sufficient condition that a Banach space B be
reflexive is that every bounded sequence of nonempty closed convex subsets of
B has a nonempty intersection.

Theorem 1. Let B be a reflexive Banach space, K a nonempty boun-
ded closed and convex subset of B and T:K—>K a mapping satisfying (4) and
(5). Then T has a unique fixed point in K '

Proof. Let ¥ denote the family of all nonempty closed and convex
subsets of K, which 7" maps into itself. By Zorn’s lemma and the result of
Smulian [14] it follows that . has a minimal element, say C.

Define
r.(C)=sup||x—y|, xEC,
yec
r(C)= infr, (C)
xeC

and
C.={x&C:r,(C)=r(C)}.

The set C, is nonempty closed and convex.Indeed, if for each nEN we put
C (x, n)=[y€C:HX~yH<r(C)+L} and F,= N C(x, n), then it follows that
n xcC

{F,} is a decreasing sequence of nonempty bounded closed and convex sets
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Since B is reflexive, it follows (by Theorem (1.3)) that C,= N F, is nonempty
n=1

closed and convex.
For x&C, and y&C we have

|JTx~Ty||<max{nx—Txn, Iy =Ty,

L (lx =Tyl +l =Tl eyl =Tl +ly =7 ]))

<max{8‘2—c), S Ux=Tyl+ 2=y +]x=Tx]p, §—<nx—yn+s<c»}

<sup || x=y||=r (C)=r(C).
yecC

Therefore, T(C) is contained in a closed spherical ball S[Tx, r(C)] and
hence T(CNS)CCNS (as T(C)CC). Then by the minimality of C, we get
CCS. Hence || Tx—y||<r(C) for each ycC. So,

(6) sup|| Tx —y || <r (C).
yel

Hence
r7x (C) =yS}GIIC> | Tx -y ||<r(C),

which implies that
re (C)=r(C), ie., TxcC.

Therefore, we proved that
(M T(CHCC..

We claim that, if C contains more than one element, then C, is a proper
subset of C. Suppose not, i.e., C,=C. Then for x, y&C

r,(C)=r,(C)=r(C).
Therefore, supl]x z]]—sup |y—z| for x, y&C. This clearly implies that
supHx z||—r(C), a consetant for all x&C. Hence S(C)— sup lx—z|l=rC)
Th1s implies that for x&C=C, (and Tx&C)
(®) sup . ]~B{C).

Now by condition (4) we have for x, y&C=C,
1
| 7=y <max (| x=Tx | =Tyl 5 (=Tl +]=Ts])

S Ux=yll+]x=Tel+1y =Ty}

2 1 2
<max[—~, 30, —3-(8(C)+3(C))]<?8(C).
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Proceeding in the same manner as in (6) we now get sup || Tx — y | lg%b‘(C),
rel )

which contradicts (8) because C contains more than one element. ,
Thus we conclude that if C contains more than one element, then C, is
a proper subset of C. But then, in view of (7), it contradicts the minimality of
C. Therefore, C contains only one element, say #. Since T maps C into itself,
u is a fixed point of T.
The uniquennes of the fixed point u follows by (4). Indeed, if v=7v then

=)=l Tu= v | <max{0, (=] +]» =),

1 2
3 s}

and hence ||u—v| =0. Therefore, v=u.
The proof of the Theorem is complete. ,
Now we prove a Theorem similar to that of Krasnoselskii {13] and [8],

but for different kind of mappings.
Theorem 2. Let K be a nonempty . bounded closed and convex subset
of a uniformly convex Banach space B and T:K—K a mapping satisfying

@ Tty <max [ x4y =Ty, (x=Ty [+ |y =T,

FUx=ylis x4 ly-1 )]

x,+ Tx,

and (5). Then the sequence {x,}n-o, Where x, = , converges to the fixed

point of T in K, where x, is any arbitrary point of K.

Proof. Since every uniformly convex Banach space is reflexive, and (4')
implies (4), by Theorem 1 T has a unique fixed point # in K. Then we have

| Tx—uf = Tx,,~Tu||<max{~;—(Hx,,—Tx,, I+0),
3l e, (=l + 5= T )
<max (- Cx—ull =T, -Gl =]+ =T )}

As || Tx,—ul|< %(]!xn—uHJrHu—Tx,,H) implies HTx,,‘—quHx,,—uH, and

HTx,,—u]|<%(2Hx,,—uH+Hu—Tan) implies || Tx,—ul||<|/x,—u]||, it follows

©® T —uf< x—ul)
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We now consider the sequence {||x,—Tx,|}. Assume that

| x,—Tx,||>e>0 for all nEN.

Then
I(x, —w)— (Tx, —w)||=|| x,— Tx,||=¢, nEN.

Hence, as B is uniformly convex and x,, Tx,EK,
x, + Tx,,_u
2

L2gmax{|x,—ul, |[|Tx,—ull}, n>n, 0<g<l.
Then by (9) we obtain

H Xnp1 U ng' ”xn_‘uHa n>n,, 0<g<l.

2| Xy —u][=2

=[|(x,— ) + (Tx,—u)]|

n—»o0

Hence lim || x,—u||=0. Thus lim x,=u when inf {||x,—T7x,|/}>0.
n—»w neN

Suppose now that
inf || x, — Tx, |[} .

If || x,— Tx,|[=0 for some n, then x, is a fixed point of T and hence x,=u.

T .
X, +Tx, _u+t - lim x, =u. Let now || x, — Tx, || >0 for each

2 2 n—>8
nEN. Then there exists a subsequence {x,} of the sequence {x,} such that

Then x,,,=

(10) lim ||x,, — Tx, || =0.
By (4) we have
1
|| Tx,, — Ty, || < max {—2—({|xni— Tx, || +]] X, = T, D

7 =T 5= T D
Lt 0= T+ 5, s )
<max[%(’!xn,.—Txn,.H+Hxnj~Txn,-H), (= T 1) Tty = Ty [+
#l5= T 1 Ty =T, D~ 1 5= Tt 141 T = Ty |+ oy =+

+nx,,,.~Txn,.n+nxn,.—Txn,~H>}<%<“ S = T || 1| 5, = T [ Ty = Tt -

Hence
H Tx",'_ Txl’lj H <2 (H xﬂ,‘ - Txﬂ,' “ + “ xﬂj - T’xnj H)
So by (10) {Tx,,i} @, is a Cauchy sequence and hence it converges, say, to v.

Then by (10)
(11 lim x, =lim Tx, =v.

. (] .
—>00 >
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Now

v =TIy =, [+ 5= T [ Tt = T < 9=+ 57, — Tty [+

L [%(u X T ||+ ][ v = V), g;_ (Ul %, = To ]|+ | v = T, s
3 I~ = VD)l 3, = o

ety = [+ Iy = TV =Ty |+~ T .

So
1Y =Ty I3y =0, || + |30, = Tt D+ v — Tx,, |

and hence, by (I11), v=Tv. Then v=u, as T has the unique fixed point w.
Using (9) we obtain that

x,+Tx, u+tu 1
Xy —ull=| +—""2L- K<—(||xp—u||+]||Tx,—u <] |x, —u ],
R e e e A Ra At (e
and since limx,,_=f=u, we have lim|lx,—ul||=0, ie., lim x,=u.

The proof of the Theorem is complete.

Theorem 3. Let B be a uniformly convex Banach space and let T be
a selfmapping of B into itself satisfying (4') on B and

3
) supl|y— Ty||<> 2
y&D 2

where D is any nohempty convex subset of B which is mapped into itself by T.

Then T has a fixed point in B if and only if the sequence X ety X =

x,+Tx, . . , .
=L2——, x, being an arbitrary point, converges in B.

Proof. If T has a fixed poinf u in B, then, proceeding in the same
manner as in Theorem 2, we obtain lim x,=u.

n—0

Assume now that {x,} converges and let

v=lim x,.
n—>o0

We define an operator F by T as follows

Fx,=x+Tx_.
2
Then F maps B into itself and we have , ,
Xpt+ Txn v+ Ty
(12) | X1 —Fv||=|| Fx,— Fy| = e <

5 U=y [+ 75, =17 )
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As ||z—Tz||=2||z~ Fz|| for each z& B, by (4) we get

1 1
HTx,,—Tngmax[?(Hx,,—Tx,,HJrHv—TvH), (=Tl =T, .
5 Uyl =T =1 )
<max{%(|]xn—Tx,,H—|—Hv—TvH),

Syl =Ty, =T D)

<%(2Hxn—VH+Hxn—Txanllv—Tv[I)=Hxn—VHJrHxn—FxanHv—FVH

=]|x,,—v]]+Hx,,—x,,HHJrHl—FvH.
Therefore, we have by (12)

“xn+1_Fv‘Igé—[uxﬂ_v’]—*"('lxn_v“+“xn_xn+1H+Hv—FvH)]

<=yl (= S+ 7= 5 | 5 = F ),

Hence

llan_Fv”<2”xn_vH+Hxn+1'“VH+Hxn_xn+1H'
. . . N . v+ Ty
Since lim x,=v, the above inequality implies v=Fy. Thus v=Fy=

gives v=Tv.
The proof of the Theorem is complete.

, which
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