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1. Introduction

Extensive literature exists on the hydromagnetic instability of flows in a
non-rotating medium. Stuart [1] and Lock [2] investigated the stability of the
flow of an electrically conducting liquid between parallel walls in the presence
of a parallel and a transverse magnetic field respectively. They found that for
small disturbances, a magnetic field exerts a stabilizing influence on the flow.
The stability of Couette flow of a conducting liquid between two parallel pla-
tes in the presence of a transverse magnetic field was examined by Kakutani
[3], who found that the magnetic field may be destabilizing because of the
varying curvature of the basic velocity profile.

In the present -paper we have studied the stability of the flow of an
electrically conducting liquid permeated by a magnetic field in a channel for-
med by two vertical parallel plates and placed on a turn table, which is rota-
ted about a vertical axis. The shear flow relative to this rotating frame is
induced by either imposing a pressure-gradient along the channel or by moving
one plate in its own plane with respect to the other in a Couette flow. The
corresponding stability problem for a zonal flow in a non-conducting liquid
was recently investigated by Hart [4].

2. Stability of a rotating shear flow with a vertical magnetic field

Consider the Couette flow of an electrically conducting liquid in a ver-
tical channel described above, the liquid being subjected to a uniform vertical
magnetic field H,. The turn table on which the channel is placed is rotated
with a uniform angular velocity Q about a vertical axis which is taken as
z-axis. The flow is caused by moving one plate in its own plane relative to
the other with velocity U, in a horizontal direction which is taken as x-axis.
This flow has a velocity distribution U (y, z), along the same direction, the
y-axis being perpendicular to the plates. We take the origin ‘n the middle of
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the channel so that the plates are given by y= 4+ D/2. When H, the height
of the vertical plates is much larger than D, the z-variation in the mean ve-
locity profile U(y, z) is concentrated near the horizontal boundaries. Further,
although rotation induces a secondary flow in the y-direction due to Coriolis
forces, such a flow will give a small correction to the basic flow U(p, z) if

R,DJE2H<103,

where R, is the Rossby number U,/2 QD and E is the Ekman number v/2 Q D?
(see Hart [4]). We therefore take the basic flow away from the horizontal
boundaries as (U(y), 0, 0) for D/H<1 and R, D/E? H< 103, the basic magnetic
field being (0, 0, Hy). It can be easily seen that such a magnetic field will
not affect the velocity distribution.

We now perturb this basic state by taking the pzrturbed velocity com-
ponents as (U+u, v, w) and the perturbed magnetic field components as
(n H,+h,). Substituting these in the MHD momentum equations and li-

nexa’rlz};;lg, we get the following dimensionless equations
ou' du ) oh’
)] RO[—()——H) dY] EViu o +AdZ
@) 007) _op Ly +A¢)h
0T
’ r a ’
3) Roaw _ op Wi A h, ,
ot 0Z 0Z
where
— 1
T-Y, v, w)=t @, vw), Y-, Z2- %,
U, U, D D
tU )
4 T=—"2 (b, b/, b)) =—(h,, h,, b)), P =,
( ) .D ( 1 2 3 ) HO( 'y p U(z)

and A4 is the magnetic parameter p., H{/8 np DQU,. In writing the above equa-
tions, we have assumed 0/0 x=0 following Benton [5]. Further with 9/0 x =0,

the equation of continuity and the solenoidal relation V.H=0 enable us to
introduce ¥ and ® such that

) L SRRSO L Cpy 00
0Z oY’ 0z’ 2

Using (5) in (1) — (3) and eliminating the pressure p’, we get

©) [E(D*~k?) - R, c]g(Y)—Akm(Y)=[ 33] kh(Y),

0 [E(D?—k2) — R, 6] (D? — k?) h — kg (¥) + Ak (D> - k?) [(Y) =0,
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where following the techniques of normal mode analysis we have assumed
' W =Re{iec*e*Zh(Y)}; u' =Re{e°e*Zg(Y)};

®) ®=Re{e°e*Z [(Y)}; h'=Re{ie°"e*Zm(Y)}

with D=d/dY and Re denoting the real part. The disturbances are thus in the

form of rolls with their axes along x-axis.
Similarly the magnetic induction equation gives the following components

i
(9) [_}%M(Dz—kz)—c]m(Y)=—kd—gl(Y)—kg(Y),

(10) [RI (Dz—kZ)—c]l(Y)_kh(Y).

M

If the marginal state is stationary, we may put ¢=0 in the above equations.
Elimination of g, / and m in favour of & gives

(11) (D*— k) [E(D* —k?)*+ ARy KT h (Y) =
— —k?[(R,— 1) (D?— k?)?+ AR k?] A (Y).

Here we have set dU/dY=1 for the plane Couette flow velocity field
U=Y+(1/2) satisfying U=1 at Y=1/2 and U=0 at Y= --1/2. The differen-
tial equation (11) being of tenth order requires ten boundary conditions. These
are furnished by the four magnetic boundary conditions corresponding to the
prescription of /(Y) and m(Y) at Y= +1/2 and the six no-slip conditions for
velocity corresponding to the vanishing of A(Y), A’ (¥Y) and g(¥) at Y= +1/2.
For the sake of simplicity we assume the surfaces Y= +1/2 to be free so that
the shear stress vanishes there. Using (6) — (10), these conditions give

(12) h=Dh=D*h=DSh—--- =0 at Y:i%—.

[t may be seen that no explicit magnetic boundary conditions are needed for
the determination of eigenvalues, although they will be required for determi-
ning the components of the magnetic field. It was pointed out by Chandra-
sekhar [6] that qualitative conclusions about stability are not affected by the
assumption of two free surfaces despite its artificial nature. The solution con-
sistent with (12) corresponding to the lowest mode is

(13) h(Y)=A cosn ¥,
A, being a constant. This will satisfy (11) provided
1 [(® k) QKT

(14) >
E? k2(R,—1)(n*+k?)
where
AR?\,, v
(15) 0~ ps Pumry

and the last term in (11) is neglected while writing (14) since for mercury,
the magnetic Prandtl number P,a -16 x 1076 It may be seen that a necessary
condition for the marginal stability to exist is R,<<1. The physical significance
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of this inequality is that the total vorticity should be negative so that the pcr-
turbations may be sustained by coupling between the vorticity field and Corio-
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lis force. Variations of E-2 with k2 for several values of the magnetic para-
meter Q and Rossby number R, are shown in Figs. 1 and 2. It may be seen
that £-? has a minimum and for a fixed Q, this minimum decreases steadily
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with increase in R,. The variation of this minimum (denoted by Enm) with R,

for several values of Q is shown in Fig. 3 which shows that E,;izn steadily in-
creases with increase in the magnetic field for a fixed Rossby number. Thus
the magnetic field exerts a strong stabilizing influence on the flow.
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3. Stability of a rotating pressure flow with a horizontal magnetic field

We next consider the stability of the hydromagnetic flow in the vertical
channel (described earlier) rotating about a vertical axis, the motion relative to
the rotating frame being caused by a uniform pressure gradient along the
channel. The liquid is permeated by a uniform transverse magnetic field along
y-axis, so that under the conditions stated earlier viz., D/H<1 and R,D/E? HL105,
the velocity distribution will correspond to Hartmann flow in a non-rotating
channel (Cowling [7]). We thus have a basic velocity field (U(y), 0, 0) and a
basic magnetic field (H,(y), H,, 0) whose stability we shall now investigate.
Taking the perturbed velocity field as (U-+u, v, w) and the perturbed magnetic
field as (H, +h,, Hy+h,, h) and assuming the disturbances in the form of
rolls as in sectlon 2 (1e ., 0/0 x=0), the linearized perturbation equations for
momentum are

ou ,dU ) p.eH(Z, oh, ., dH,/
(16) R«—' w) EVid o+ g apn, oy T ey
o0 op ) w,Hs  oh,
an Bige=~oxtEV V¥ +gonDy, ar°
ow'  op' s wHy  ohy
() Ry ==zt EV'™ * 500U, oY

where H,'=H, (y)/H, and the dimensionless variables are the same as defined
in (4) and U, is given by PM (cosh M — 1)/p.ecHosmhM P being the impo-
sed pressure gradlent in the channel and M being the Hartmann number
(1/2) u, H, d (c/pv)!/2. Similarly the components of the magnetic induction equa-
tion are

oh’ ,dH, ou h ,dU 1

= 2h7
(19) or TV ay oy M aytr, VM
(20) ohy’ 07 +—V2h
ot oY R,,
@ ohy ow +~——V2
ot 0Y Ry,

In the above equations, U stands for U (y)/U, where U(p) is the Hartmann
velocity given by (Cowling [7])

i 2 My
M cosh M — cosh ———

yj c 173 sinh M

(22) U=

The equation of continuity and V.H=0 give rise to two functions ¢ and @
(as in section 2) defined by
oy oy , 0® , 0D

23 vV=—=®, w=——, b=, h'=———
23) 0Z oy’ P oz’ oY
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Use of (23) in (16) gives

0 oh,' dH,’ du oY
2_ 1y - e P X = P, i
(24) (EV Root)u +A(()Y+h2 dY) (ROdY 1)02,

while elimination of p’ from (17) and (18) gives upon using (23)

ou'
0Z

0 0
25 EV2—R -1V — +A4—(V2®d)=0.
(25) ( 007) g S (ve)

Further (19) and (23) give

0 dH; 0y dU 0® 0u'>
2 e 2 x v T2 T 2T
(26) (V RMar)hl ( dY 0Z dY 0Z oY Ruts

while both (20) and (21) lead to

0 oy
27 V2R, —|®= 2T .R..
@7 ( M()T) oy M

To make further progress we shall now assume R,,<1 which is a rea-
sonable assumption for flow of conducting liquids like mercury or liquid sodium
under laboratory conditions. In this case it is reasonable to assume that both
the basic and perturbed induced magnetic field components are small so that
equations (26) and (27) will be approximately satisfied. Indroducing

(28) ¢ =Re {ie*? h(Y)},
(29) u' =Re{e*? g (Y)}

for the marginal state (assuming it to be steady) and substituting in (24) and
(25), we get after ignoring terms of O (R,,):

(30) E(DZ—-kZ)g(Y)+(RO%//~ l)kh(Y):O,

(31) E(D*—k?2h(Y) - kg (Y)=0.

It may be noticed that although the induced magnetic field does not appear in
(30) (31), the basic velocity U(Y) is modified by the imposed magnetic field.
The boundary conditions are the no-slip conditions at the walls given by

(32) W=h=g-0 at Y:i%-,

We have solved (30) and (31) by Galerkin’s method a succint account of
which may be found in Mikhlin [8]. Calculations were performed on zn
IBM 1620 Digital Computer and the variation of E-2 with k2 is shown in
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Fig. 4 for several values of R, with M =4. This shows that as in the case of

a parallel magnetic field, £~2 has a minimum Eni for fixed M and R,. Fur-
ther for a fixed wave number k, E-? decrezses with increase in R,. In Fig. 5,

o3

03}

02t

3 .
s 8 282 2
S 39
£ & 2 4
~ o w »

o1}

0.0% ’_l—ﬁ__l_a_t_t_l___l.
0 3 50 60 0 80

2%

#16.4. Variotion of £ with K for different weluts of R, with Ma 4

Fig. 4. Variation of E~? with K?
for different values of R, with
M=4

L { L \

oo s

—F 5 St T ®
71.5. Variotion of Ermig with R for verious values of M
Fig. 5. Variation of E_2 with

R, for various values of M

curves of E,;;zn versus R, are plotted for various values of M which show that
the magnetic field exerts a strong stabilizing influence on the flow.
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