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1. Let X (x,,...,x,) be a point in the space E” and FX)=f(x;..., %)
a real valued, L-integrable function having the period 27 in each variable. Let

4 o0

+ n
(1) fX)~S -3 am...my exp(i ijxj)
— Jj=1

n
be its multiple Fourier series. The functions exp (i > m; xj>, where m; (j=

j=1
=1, 2,...,n) are integers, represent a complete set of regular solutions of the
characteristic value problem
Au(X)+ru(X)=0

in the domain 0<x;<2mj=1, 2,...,n with the characteristic values
A=miL ... +m?>, where A is the Laplace differential operator.
In this article we shall prove two theorems: Theorem 1. and Theorem 2.
We shall use the following notations, definitions and results:
(i) The spherical partial sums of order k of series (1) is defined by

k

) o ()= S 4, (X),
v=0
where
A4,(X)= S am,. . .m, €Xp (i S m; x,-),
m2+ . tmp2=V j=1

and A, (X)=0 if k cannot be represented as a sum of n squares.
(i) ®-mean of spherical partial sums (2) is defined [2] by

)] S5 =3 @ (%)am,...mnexp (i,élmj xj),

pSw
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where pi=mi+ - - - +m}, and @ (¢) is a function defined for a << o, D (0)=1.
ST (X) can be expressed [2] by

@ SO0 =27 (T 2] 1w [ £ (X 1) Ho () dr,
whenever 0
©) [1®@|rtdi< oo,

0

(iii) f(X;t) is the spherical mean of the function f(X) over a sphere
whose radius is ¢ and its centre is at the point X (x,,..., x,), i.e.

(6) F(X;t)=2"1nn2T (n/2) ff(x1 +tE,...,x,+1E)dog,

where o is the unit sphere £f+ ce +<Z,2,: 1, and do; its (n—1)— dimensional
volume element.
(iv) The kernel Hg (v) is defined [2] by

() Ho®)=v f ® (—) WY gy ) du = f © (W) w1V, () di,
y
0 (V]

where
V() =u—+J, (u),

and J, (u) is the Bessel function of the first kind of order .

(v) We assume that @ (z) has the following properties [2]:

(a) The inequality (5) holds.

(b) If r is the integer defined by —1/2<n/2—1~r<1/2, then @ (¢) has
(r+2) derivatives in 0<r<C oo, each bounded in some neighborhood of #=0,
such that

lim sup | @@ (1) u¥ | < o0, f | O () uY | du<< 0
0

for p=0,1,2,...,r+2; O0<y<<(n—1)/2.

Lemma A. If \ is any real number >-—1/2 and if ® (t) satisfies pro-
perty (b), then [2]

®) fCD (W) w1V, (vu) du=0 (v=22-2-%) for 4 >0, as v— .
0

(vi) The spherical means of order s of the function f (X) are defined [3] by
9 [ (X )=25T ()[B(s,n/2)] L t—nt2-25§_(X; 1), for s>0

=f(X; 1), for s=0,
where

Y (X; ) =215 [[ (]! [ (22—t o1 f (X;7) d 5, 5>0.
0
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(vii) A particular case of ®-mean (3) is the Riesz mean S’;(X) of order
k (k>0) of spherical partial sums (2) defined [3] by

(10) SkX)= S {1 ~@mi+ - +md) w-Z}am,...m,,exp<i > m; x,).
m24 .o fmp2<w? j=1

There is the following relation [3] between f;(X;?) and Sk X):

an [ XG0 = 1542 [ S (X)W Vi mn (1) dW,
0
where
s>1, k>(n—1)/2 and ¢, =25-1-k+n2 (s + nf2) [[ (L +k)]7L

(viii) L (x) belongs to the class of slowly oscillating functions at infinity
if it is positive and continuous in 0 <x<C oo and

lim L (¢x)/L (x)=1 for every fixed #>0.

X—>r0

We shall explore the following properties of slowly oscillating functions:
() If A>0, then [4]

(12) x*L(x)—> o0, x 2L (x)—>0 as x— oo.

(B) If g(¢) is such that both integrals

1 ©
(13) [talg@|dt and [#|g(t)|ar
0 1

exist for some >0, then [1]

(14) [e(t) L(xtydt=L(x) [ g(t)dt asx—> oo.
0 0

(ix) Throughout this article all ¢’s, C’s and M’s denote the positive
constants.

2. Now we shall consider ®-summability of the derived multiple Fourier
series obtained by successively applying s-times the Laplace differential operator
to series (1) under the hypothesis that =25 f(X;¢) is of bounded variation.

By A X[S (X)] we denote that the Laplace operator is successwely applied
s-times to the ®-mean of the spherical partial sums of series (1).

In the next theorem we shall meet the integral

(15) a= [ 1425 Ko (¢) db,
0

where

(16) C Ke(®= (= 1Ve, 2 H, (1),
v=0
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and

Hy @)= [ @ @) uts—24m=1V 514 (tu) du.
0

Now we will show that integral (15) does exist. In virtue of (), Lemma
A, we get

H,(t)=0(—r4s+2v=9%) as o0, a>0,
and according to (16) it comes out

(%)) Ko (1)=0(t—""25-%) as t>o0, a>{
If we suppose that

(18) fl‘D(u)]u"' 2 du< o0,
0
then we have

|H, ()| < [ |® @) 0142 | Vi pyma (t0) | du < M [ |® @) ] =142 du<M,,
(1} 0

because

(19) | V,.(¥)| <M on the interval (0, co).
Exploring the results

(20) | Vo (®) | <M, for 0<x<b

and

1) | V(%) | <M, x~+-12, for x> b,

where p> —1 and 5>0, we shall estimate the integrals

5-2 H, () = 122 [ @ ) ubs= 2411 Vy_y_ 1y (1) du =
0

o 1/t o

(22) =t25=2( [ 4 [+ [ )= Hy, () + Hyy (1) + Hys (1),
0

© 1/t
v=0,1,...,5~1 and o<1/t
According to (19) and (20) we obtain

(4]

I Hv1 (t) |<t23—2 f I O] (ll) l u4s—2 vita—1 V2s—-—v—l+n/2 (tu) du<
0

w

(23) <M, t2.s—~2vf | D (u) | uts=2v+n—1 du< M, 121-2v,
0
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and
1t 1t

| H,, (f) | < M, 152> j | ® (u) | uts=2v+7=1 dy — sz | ® () | w2471 (1) =2 du <
(5] «

1/t
<M, [ | © @) |u+n=1 du< M,,.

Further, with respect to (21) and (18) we get

-

| Hyy (1) | < M, 12— f | @ (u) | uts—2v+n—1 (g)=25+v— (=112 gy —
1

(25) = M, [ |® () | w2571 (fu) == D2 du< My,
1/t

From (16), (22), (23), (24) and (25) it follows that for all finite values of ¢
(26) | Ko (1)|<C.

Finally, we can conclude that the integral

o ) )
a=jt"—1+2sK¢(t)dt =f+f=a:l+a2
0 0 8
exists, since a, exists because of (26), and according to (17)

a,=0 ([1-1-=dr)=0(1).
3

Now we shall prove the following

Theorem 1. Let ® (¢) have the property (b) and
27 [1®@) |42 dt< o0,
V]

where s is a nonnegative integer. If Y (X; t)=1"25f(X; 1) is of bounded variation
in 0<<t<< oo, then

(28) lim A% [S% (X)] = ca  (X; +0),

w—>0a

where ¢=21-72|T (n/2)]7L.

Proof. Substituting (6) in Bochner’s fundamental formula (4) we get

29) Se Xy =@y 2w {{ [ F(X+18) 4oy} Ho (w0), db,
where °e
X+tE=(0c,+tE,...,x,+1E).

8*
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We shall introduce the polar coordinates (R,0,...,0,.), 0OSR<,
0<0,<m, m=1,2,...,n—2 and 0<6,_, <2 . Since o is the unit sphere, i.e.
R=1, we have

1

©w T T 2
S?;(X)=(2Tc)‘"/2wf ff ff(x1+tcosel,...,x,,+tsin61---sinﬁ,,_l)-
0 0 0 0

+sin""20, sin*=30,- . -sin6,_, Ho (wt)dtdO - - .db,_,d6,_

Now introducing the new coordinates v, — o0 <v;<< o0, j=1,...,n we obtain

Sy X)y=@m)w [+ [ fX+n) | 0| Ho (0| ])dn, - - - dn,=

G0 =@ 7w [ [f@ | X—n i Ho w| X=n[)dn,- - - dny
where -
Ml‘\/m +71n

According to the formulae of transformation it follows that t=|7]|.
Exploring the fact that we can differentiate Bochner’s fundamental formula

(4) we shall apply the Laplace operator Ay to the integral in (30) and then
we get

1= @my 2w [ [ f) A {|X~n|""How|X—n|)}dn,- - - dn,=

—@my 2w [ [ FX+E) AL{|E[" Ho (w|E])}dE, - - - dE,.

According to (7) we denote

F=F(f)=11"" Ho (wt) = w1 f D ) w1 V_ |, (Wit) du,

where now

t= (8] =yEte . 22
Using (6) and (29) we get

I=cw [ L AR f(X;0)dt, ¢=21""2[T (n/2)]7,
0

with
A} F=w1+25s Ko (wt),

where Ko (7) is defined by (16). The expression for A;F is obtained [3]
exploring the formula

;f;[V,,.(x)]= X Vy (.
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Now we can write
T=cw+2s [ p1e2s Ko (wt) § (X; 1) dit,
0

where
X =172f(X;0),

or

oo

T=cw+ 25y (X; +0) [ 171425 Ko (we) dt + cwn+ 25 [ 1771+23 Ko, (w) T (X; 1) di,
0 0

where

(31 TX; )=y (X; )~ (X;+0).
In virtue of notation (15) we have

32) I=ca{ (X;0)+1%
where

Ix=cwr2s [ 1425 Ko (wt) T(X; 1) dt.
1]

Since T(X;?) is of bounded variation in 0<?< oo, the left and right-hand
limits T(X;t—o0) and T(X;t+o) exist for every ¢>o0. Without restricting the
generality we may assume that T'(X;?) is bounded and monotonic because any
real-valued function of bounded variation is the difference of two bounded
monctonic functions. We split the integral I* in the following way

A 13 )
(33) I* =cw"+2s(f+f+f) tn=1%2s Ko (wt) T (X; ) dt =I1+ I3+ I3,
0 A w

where A can be chosen so that | T(X;7)|<e for 0<t<A and any arbitrary
e>0

We shall estimate the last three integrals applying the meanvalue theorem
to each one.

Ay
I =cw2s [T(X;+0) [ =142 Ko (wt) dt +
0

A
FTGA=0) [ 2 Ky wi)d ],  (0<h, <),
Ay

According to (31) we have T(X;+0)=0, and then

Aw
I1=cTX;2—0) [ w125 Ko (u) du.

Mw
Since the last integral is finite, then, with respect to the choice of A, we get

(34) | 11| <Ce,
where >0 is arbitrarily small.
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Further
oW 0
Ii=c{T(X;p+ 0)fu”‘1+2‘Kq,(u)du+T(X; oo)fu"‘l”’Kq,(u) du, (p<<p,<< o).
pw o w

Since, because of the existence of integral (15), the last two integrals become
arbitrarily small when w becomes sufficiently large, say for w>w,, and T (X; u + 0)
and T(X; o) being finite, we have

(35) | I3 |<Cye for all w>w,
Similarly we get
Y w

L=c{TX:; 2+ 0) [ w125 Ko (u) du +
Aw

ww

+T X —0) [ w1425 Ko (wydu |, (A<, <)

Ly W

where T(X;A+0) and T(X;p—0) are finite and both integrals can be made
arbitrarily small if w is sufficiently large, say w>w,. Therefore we have

(36) | 13]<C, e for all w>w,.

Since I is equal to A% [S%(X)], the result (28) of Theorem 1 follows
from (32), (33), (34), (35) and (36).

3. Now we are going to prove a theorem (Theorem 2) which connects
the asymptotic behaviour of the spherical means of higher order of the function
f(X) with the asymptotic behaviour of the Riesz mean S,.(X) of the sphe-

rical partial sums of series (1) when the behaviour of S7(X) is connected with
the behaviour of a slowly oscillating function. A such theorem was mentioned
in [5], but without the proof.

Theorem 2. If

37 ST(X)==wpP L (W) as w— oo
where
(38) p>—2(g+1)

and L (w) is a slowly oscillating function at infinity, then
2?T (1 +g+p/2) T (s+n/2)
Fd+q)T[s+(n-p)2]

fi (X y)> yPL(1]y) asy—0

for
39) s>max {1, p+qg—(n—3)/2}.

Proof. We shall use relation (11) with k=g if g>@®m~ 1)/2, and with
k=@n—-1)/2+¢,e>0if g<(n—1)/2. In virtue of hypothesis (37) we can choose
such a number 3 that
(40) [ Sk (X)—wPL(w)|<ezwP L(w)
for w>3 and any ¢>0.
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We shall write (11) in the following form

3
£ 3)=c %2 { SL)Y WA Vg () dbw +
0
Tyt [ S5O0 —w2 LON]I WA Viy gz (yW) dw +
3

22 [ WPt L () Virq m (W) d =
3

(41) —H, +H,+H,.

Now we are going to estimate the last three integrals. We shall write H,
in the form

-

Hy=c,v | w021 Vi () L () du=

8fy
w Sfv
(42) =clvl’(f—f)=H3l+H32, where v=1/y.
o o

We can apply property () of the slowly oscillating function to integral
H,, because the function
g)=urt 2 Vo g ynp (u)

satisfies conditions (13). Namely, in virtue of (20) and (38) the first of inte-
grals (13) exists, and according to (21) and (39) the second of integrals (13)
exists too. Then with respect to (14) we obtain

(43) Hy ~c, vl’L(v)ful’+2qu1 Viiqinn (W) du  asv—>oo.
0

Since p and g satisfy conditions (38) and (39), we can use the following
formulae [3]

[ w1 Vg ) du=22-8-1T (¢/2) [[ (1 +B—a/2)] 7! for O<a<B+3/2,
0

and then (43) becomes

p
(44) Hy= 22T (14+qg+p/2)T (s+n/2)
T (1+q)T[s+(n—p)2]
where y=1/v.
Now we shall estimate the integral H,,. Employing (20) we have

yPL(Jy) as y =0,

8fv
|Hy, | <M, c, vl’f up+2a+l [ (vu) du.
0
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Since the function L (x) is positive and continuous in the interval 0<x< o0,
we get
3fv

| Hy, | <M, ¢, vpf up+2a+l gy —

0

M, MLy

p2a+2 vp+2q+2L(v) '

Exploring property («) of the slowly oscillating functions, given by (12), and
condition (38), it comes out

H32=o[vPL ] as v-—>oo,

or
(45) H32=0[J’—pL(1/J’)] as y— 0.
From (42), (44) and (45) we obtain '
46) He 2T (1+q+p/2) T (s+n/2) JPL(lfy) a5y 0.

CA+g) s+ @n-p)2]

We can estimate the integral H, by (40).

|H2l<scly2q+2pr+2p+1 I Vs+q+n/2(yw)| L(w)dw=
0

o0

=g¢, vaul’”‘”l | Verganiz @) | L (vu) du<
Sfv

[e ]
<ec, vl’ful"‘z‘l‘“1 |Vsrqenz@| L(vu)du,
0

where v=1/y. Under the same conditions as in the case of integral H, we get
o0

J w2 |V, @] L () duc
0

gL(v)fu“Z‘l” | Viiqen2 @) du as v —o0.
0

If we split the last integral in two parts, then we shall see, using relations
(38), (39), (20) and (21), that it exists. Since £ can be arbitrarily small, we obtain

H2=0[v1’ L] as v
or ‘

47) H,=o[y 7 LQ1[y)] as y - 0.

Finally we have to estimate the integral H,. Since S (X)is continuous in
the interval O0<Kw<C o, it follows according to (37)

| S5 (X) | <Mwe L(w),
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and we have
)

|H, |<e, My2a+2 [wre2ast [y, o (yw) | L(w)dw =
0

8/v
=c, Mv”ful"“z‘l+1 [Viigina @ | L) du, v=1/y.
0

In virtue of both (20) and the fact that the function L(x) is continuous in
the interval 0<Cx<C 00 it comes out

3fv
|H, |<M, v”fu"*z‘l“du:
0
According to (12) and (38) we get

Myv  M,v L(v)
vp+2q+l _vp+2q+1L(v).

H =0 [ L] as v >,
or

(48) Hy=o[y? L(1/»)] as y—>0.
From (41), (46), (47) and (48) it follows
2¢T (1 +q+p/2) T (s +n/2)
C(1+qg)Tls+@n—p)2]

Therefore we have proved Theorem 2.

S (X5 )=

y?L(1/y) asy— 0.
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