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We shall consider, in this paper, the relative deformation, or quasidefor-
mation, and corresponding relative vorticity, or quasivorticity, in relativistic ki-
nematics, i.e. the deformation and the vorticity in a material continuum, with
respect to the proper time of a local frame which is not comoving with it.

Relative deformation has already been investigated in relativistic mecha-
nics. Cattaneo [7] and other authors have considered tensors which have simi-
larity with the ones we shall analyse here. We start from two definitions of
the tensor of quasideformation which represent, each one, an extension of the
well-known definition of deformation, which is given as the deviation from
Born’s rigidity. We compare these two tensors, find their timelike eigenvectors,
and obtain the condition for their mutual identity. We obtain also several ca-
ses of degeneracy (in' dimensions) for them, and a limiting velocity of the con-
tinuum with respect to the obcerver’s frame.

In the second part we introduce tensors of relative vorticity (we shall
give them the name of quasivorticity) analogous to previous tensors of quaside-
formation. The divergence of the corresponding vorticity vector gives an expres-
sion similar to the one given by Ehlers [8] for proper (as we call it) vorticity.
We form the scalar invariants for one of these pairs of tensors (deformation-
-vorticity) and obtain, for the vanishing of these invariants, an expression for
translation analogous to the one known for proper tensors. For the second
pair deformation-vorticity, these consequences are stronger, and not so obvious
for interpretation.

*
* *

We consider, in space-time V,, a material continuum and two fields of
velocities, which are, by hypothesis, second-order derivable. One of these is u®.
the field of velocities of the continuum, the other is £%, a field of timelike
unit vectors given at each point of that portion of space-time and independent
of u*. So:

(1.1 Gap WP =g nb%P=—1 (a,B3=1,2,3,4)

We shall interprete £* locally as the four velocity of an observer which moves
independently of the continuum. We shall examine the next two questions: 1)
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obtain the local deformation, with respect to the observer of velocity £2, of the
components of the metric tensor /4,5, spacelike with respect to u®, and 2) write
the spacelike projection, orthogonal to u®, of the deformation of the metric
tensor with respect to £* Then analyse and compare the two tensors obtained
above. Let us remark that the second formulation of the tensor of relative
deformation or quasideformation, mentioned above, is similar to that considered
by several authors (cf Romano [9], Grassini ]12]) and that Greenberg [11] in-
troduces a tensor of such type, obtained by means of two mutually orthogonal
vectors, one of which is timelike, instead of two timelike vectors, as in our case.

The first definition of the quasideformation is given by the Lie (or, con-
vective) derivative of h,; with respect to £e:

(L.2) Vo = oL £ Bag = L& (8o + Us Ug)

where _7; denotes convective derivation with respect to &%

The second definition of quasideformation is obtained by projecting on
directions spacelike with respect to u* the Lie derivative _# g,s:

(1.3) Tup =i Fe 8

We make the natural assumption that u* and £% respectively are the fields
of tangent unit vectors of two congruences of timelike curves.

Written explicitly, our tensors are:
(1.2)  vog=Vala+ Vaat s ¥ Vythy + g E¥ Vg thy + 11, ¥ Voo + gt V,
(1.3) T = Vo Vola+ g u” Vo By + g Ut Vo By +
+ Uy uY Ag &+ ug ¥ Ay &+ 2 uy ug u¥ ub V., E5
where V denotes the symbol of covariant derivation.

The second of our two symmetric tensors, T,q is, by its definition, ortho-
gonal to u* It has then 6 independent components, spacelike with respect to
an observer comoving with the continuum. Meanwhile the tensor v,;, when
considered by the comoving, or any other observer, has timelike components;
it has 10 independent components in the general case. We shall examine the
relations existing between these two quasideformation tensors.

Let us consider an arbitrary vector h*, limited only by the condition of
being orthogonal to %, A*u,=0. When writing this condition at every point
of the domain considered, its convective derivative, with respect to any para-
meter in space-time, will vanish. We consider A* as an arbitrary vector field,
limited only by the preceding requirement. So:

uagghg‘i‘heggu[a:().

Examine now what does mean the condition that one of the terms in the above
formula be equal to zero

or explicitly
E*ub Vy hg+ub h* Vg€, =0



On relative deformation-and vorticity. . . 103

If we form the difference between tensors v,g and 7., it results from (1.2°)
and (1.3') that, because of the orthogonality of #® and EP:

(1.5) (Vag — Top) BE =0
or explicitly
(1.5) ug u* (EYVy by +hY V4 €,) =0.

Hence, in the direction of a vector of the spacelike field 4%, the two tensors
of relative deformation, or quasideformation, have equal components. In the
case when that condition holds for every spacelike A* (with respect to u*). T,
is completely identical with spacelike components of vyg.

The condition (1.4) gives, because of the relation preceding it:

(1.4 hg P ub =0.

We shall write, in order to express the fact that for the vector 4P, relation
(1.4") holds, that the Lie derivative of u* with respect to > is proportional to u*:

(1.4 Feur=qu.

When unit vectors u* and £* are forming a two-surface, the Lie derivative of
one of them with respect to the other (if taking contravariant coordinates only)
is equal to their arbitrary linear combination (cf [11]). Relation (1.4") is suf-
ficient to make these vectors surface-forming. After an examination of prece-
ding relations, ‘we shall establish that the necessary and sufficient condition
for the complete identity of v,s with 7, is expressed by (1.4""). Because of:

u Lg iy +ty Lgu*=0
we shall have from (1.4”):
(1.6) o=u*uPV, &,
and from (1.2') we obtain
VuBuB: _gaﬂj&ua+uauﬂ uY VBEY:(uB uYV{BE:Y—(P) Uy
We draw therefrom the conclusion that #, can be an eigenvector of v, only
trivially, with a null eigenvalue. In that case teg is identical with vyg.

Let us examine the relations between v, and the deformation tensor cyg,
vanishing in the case of Born’s rigidity (cf Ehlers [8], Synge [3] Rayner [5]).
Tensor o, is defined by the expression:

(1.7) Gda-:guh,lﬁ:vauB‘*‘VQua‘FuaWB—l—uB We (wa=uYVYua)

Remark that o,z has, by Ehlers’ definition, an additional term chosen in order
to make the trace o> vanish. It is then a tensor of ,relative deformation* in
the sense of classical mechanics. We shall write these tensors with additional
terms corresponding to our case:

1t -~ 1
(1.2") vm:vaﬁ—jvzgaa

r = L o
(1‘3 ) TaB= Tae——g‘ Tzhdﬁ
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'Ew remains a tensor of the 3-space orthogonal to u*. In fact the difference
between vyg, T, and v,g, Tep respectively is not essential for us.

We shall apply to the tensor /,g, an identity holding for second order
convectives derivatives (cf Yano [4]):

(18) juiihuﬁ"‘gijuha{a:glhaﬂ
where M= ¥, 8= — Frun

By (1.2) and (1.7) preceding relation will read:
(1.8) ju Vaﬂ_gs Guﬁzcglhaﬁ‘

If applying this formula to the case when (1.4"’) holds, i.e. when 7,4 is iden-
tical with v,g, we shall have:

1.9) guvaﬁ—;f&‘jaﬁ:gchaﬁ
where 5%= —ou* as it is simple to verify, then
(1.10) ZuVap— L& Cap= — POap.

We have so by (1.8) the equivalence of the conditions (1.10) and (1.4""), which
is itself equivalent to (1.5). Hence:

Vag = Tap < :Z,,Vag—gg Ogg = — P Oup-

If the difference between convective derivatives of tensors c,g and Ty, with respect
to conjugate world lines having u* and £* as tangent unit vectors, is proportional
0 Gug, tensors vyg and T,y are equal.

The relation (1.10) expresses the fact that v,s has no components in the
direction of u=,

We point out the fact that 7,5 represents the spacelike projection of v,g
with respect to u™:

Vishihg=hIhg Prehys=hihi Fegs—Tup

This justifies the term of total quasideformation, given to v,g, at the difference
of 745, which is only its orthogonal projection.
Let us remark that the tensor of ‘“unstationarity®, defined by

jugm:Vaug—l-Vﬁua

can have u* as an eigenvector only in the case of vanishing acceleration, and
then corresponding eigenvalue is zero. Deformation tensor o,g in (1.7), by its
definition, has no components in the direction of u,. Remark also that if v,g
reduces to 7., in some domain in which considered continuum has Born’s ri-
gidity, it does not depend locally on the proper time of that medium. In the
same way, if a family of timelike world lines, given by £* exists, such that
hyg does not depend locally on their proper time, it results that the convective
derivative of 6,5 with respect to that parameter is proportional to o itself.
But the inverse does not hold.

From the preceding we have always
(1.11) Vo U UP =0
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which is easy to verify. As (1.4"") can be written

ju E»'a = -9 u®
we obtain, putting the value of ¢:
(1.12) uPuy Vb, — (u* ) "1 EPEYVyuy =0,

Let us examine now the conditions for £* to be an eigenvector of vg:
Vocﬁ‘ie:c/)g goﬁ'ji (aﬁuaua):xza
where 9 is the symbol of absolute derivation in the direction of &°. Then:
(1.13) L= —29E%0,%

where we have put #=£8u,. When substituting that eigenvalue in the prece-
ding relation:

(1.14) Vop P = —29EP 00 - &,

It yields from (1.13) that if the scalar product of #* with £* remains constant
along world lines of &%, the corresponding eigenvalue y vanishes. Let us find
the eigenvectors of vy, in the 2-plane #*, £* under the assumption that 0 re-
mains constant along * world lines. The right hand side in (1.14) remains
then equal to zero. We have so:

Vag (aUuf + b EP) =% (auy+bEy)
(1.15)
Vs (@'UP + b E8) = %" (auy + b Ey)

vos being symmetric, its eigenvalues are in the general case distinct, with mutu-
ally orthogonal eigenvectors (cf Synge [3]). So different vectors which correspond
in (1.15) to different eigenvalues » and x’, must satisfy the orthogonality con-
dition:

(1.16) aa’ +bb' —(a’b+ab’)d=0.

The two relations (1.15) are equivalent to the next two:

CVupEP=(x— %) (auy +c&y), c=b— }7 ab’
a

(1.15)
A= ) (it 1550, d=a-a'b.
Because of:
(1.17) £20,9=0 (we shall write E“()az_gd_)
T

We have (1.11) and one relation more:
Vo U UP = vy g E*EP = 0.
So that we obiain from (1.15'):
(k—n)@9—-c)=0, (k—%)(d-b9)=0.
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There are two possibilities now:

a) x=x" b) 3:i:i
a

For a) we have two distinct eigenvectors corresponding to one eigenvalue,
which means that y is a double root at least. But u* and £* being then eigen-
vectors, and their eigenvalues being equal to zero, as we have established, x is
also zero. In that case v,z has no components in the local 2-plane u®, £* For
b) we have:

3:£~£—i— S VY
a da b
Then (1.16) reduces to
ab+ab =0

From the above relations it yields:
b=>a=-b
a=
[—b >a=b
Therefrom &= +2.

In the special case when the scalar product of u* and &% is equal to +2
(which is possible, the metric being indefinite) the eigenvectors of v,g can
exist in the plane u*, £* These two vectors being oriented towards future, it
is easy to verify that only the value &= —2 is correct. The eigenvectors of
vyg are then:

A=ty —Eyr Pa=Uy+Ey

the first of them being spacelike, the second one timelike.
Hence, in the whole of the domains

(1.18) —o <9< —2 and ~2<P< 1

dy
for ;:0 the tensor of total quasideformation vyg (and also v,g) cannot have

extremal values in the 2-plane £* u®. It reduces then to a two dimensional tensor
in the local 2-plane which is the orthogonal complement of u*, .

All the eigenvectors of a symmetric tensor of rank 2 being mutually
orthogonal in space-time, it results that if v,g has two extremal values in those
directions which are purely spacelike for both the medium with four velo-
city u* and the observer £%, subjected to the condition (1.18), which makes the
intensity of the three-velocity of the medium steady with respect to the obser-
ver’s proper time, it becomes a two dimensional tensor.

The motion of the continuum observed from any ,,rest frame £, cor-

responding to %= -2, gives a three velocity equal to % cV/3, in other words

a very high one for any continuum. We can consider that velocity as a limiting
one, despite the fact that it was obtained from purely kinematical considerations.

Let us return to the tensor of ,,proper deformation‘ o,g, given by (1.7).
It is simple to obtain the next quadratic form:

(1.19) CapErEP = 2 (E3EBV, ttg — 9 4 uP Vo g) + 2 9 ut 0, 9.
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In the case when v,g reduces to 7,3 we obtain, in virtue of (1.12), that the
first term in the right hand side of (1.19) vanishes. Furthermore, if & remains
constant along the world lines of the fluid stream u*, the above quadratic form
becomes equal to zero. On the other hand, 6,5, being a spacelike tensor (it
belongs to the definite part of space-time), and expressing deformation, must
have positive coefficients written in its principal frame (the ,,deformation
ellipse*). The nullity of the quadratic form in (1.19) means then that o, either
vanishes or has no components in the direction of £f. So with the condition
(1.12) and:

(1.20) U9, 9 =0

ous becomes a two dimensional tensor, with no components in the plane u*, £

The independence of § on any parameter in the two-surface u,, &, given
by egs. (1.17) and (1.20), joined to the condition on v,z to have extremal
values in the orthogonal complement of that plane (or to have invariable ex-
tremal values in both the rest and the comoving frames) has, in virtue of (1.4")
the consequence that world lines are surface forming as it was already pointed
out. We have at each point of those surfaces completely isogonal pairs of
world lines determined by their tangent vectors. v,g and o, are then two
dimensional and orthogonal with respect to above local 2-planes. There is a
two-parameter family of such surfaces, the pseudo-angles between local basic
vectors on them varying from one to other, up to the value g,zu*Ef= —2.

In the case of given deformation tensors with above proprieties all the
consequences are obvious.

*
* *

We shall complete the tensors of quasideformation, considered in the pre-
vious section, introducing two skew-symmetric tensors complementary, by their
definition, to previous ones, and form correspondig invariants.

We introduce first:
2.1 Qua=Voba— Vely+uy EYVyug —ugut Vo by +ugu¥ Vo &y —ug E¥Vy iy

which is skew-symmetric and corresponding to v,g. The tensor 2, has, in the
general case, 6 independent components.

Second we introduce the tensor:

o) D g = Qs hEhi = (Vb — VsEy) hihi =
= Vobg— VgEy+ugur Vybg—tyuy Vgl +ug ¥ Vo by —ugu¥ Ay s

corresponding to T, in the same way as (g to vug, which is obvious from
the above relation. We can verify that the condition:

2.3) (Qup— Pyp) =0 (h*u,=0)

which holds when spacelike components of Q. and ®,g coincide, has also the
consequence that Qg has no components in the direction of u,, and coincides
completely with ®,g. That fact is expressed by (1.4"), which results from (2.3).
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We point out the fact that under the condition (1.17) Q,g, at the difference
of vug, is not less in dimension. The same conclusion holds under (1.20).

Let us return to the more general case of a four dimensional tensor of
total vorticity Q,s. If we introduce a vorticity vector ¢*:

(2.4) g — ; B, QL

in analogy with vectors used (cf Lichnerowicz [2], Synge [6], Ehlers [8], and
others) which are tangent vectors of vorticity world lines, we shall have for
an irrotational motion:

(25) kpa:() > HBQY8+MYQSG+uSQBY:0

Here the world lines are, for rotational motion, spacelike, §* being orthogonal
to u,. In every case the so-called vectors of kinematical vorticity are spacelike.
If we introduce an auxiliary vector &,=Qg, uf, we obtain after scalar multip-
lying of (2.5) by u* that:

(25’) Q’BY = £25Y + {}'Y Us — 35 U, = 0

the skew-symmetric tensor £)'y; vanishes as the consequence of the vanishing
of ¢* and vice versa. In the case when (2.3) holds all the preceding discussion
would lead to the conclusion that 9*=0. Therefrom (2.5') would yield that
Q.s, like ®y5, must vanish.

We shall examine the question of the divergence of ¢* We have first

Vs ‘P“ =y, (ug VY Es) = eBv8V, Ug - VY &~
1
s 7 Eaﬂys Uy (VB V«( EB - V‘YVB ES)

The second term of the right hand side can be, with the help of Ricci’s iden-
tity, written in the form
1
\Z "I-’a = aaﬂsta ug: Vy Gar ? By, @CS‘BYg:

or finally:

(2.6) Vo= ag (+4°9)

because the second term in right hand side of the previous relation has vani-
shed in virtue of the algebraic identities satisfied by the Riemann-Christoffel
tensor Rysys. The terms (.5 and x{, are respectively:

. 1 1
Bup = (VaZg = Vslody 38— 52900 (Vs — Vi),

The divergence in (2.6) becomes (cf Ehlers [8]), in the case of proper vorticity
tensor, equal to the product v, w* (w*=uf Vgu,), v* being the vorticity vector.
This can be verified in (Lichnerowicz [2]); our scalar product of forms ¢ and
¢ reduces to that expression for u*=£2,



On relative deformation and vorticity. . . 109

Let us form now the invariants for the pair of tensors t,g and @gg. It
is simpler that for the other pair of tensors. We have first:

2.7 Tug + Do =2 (Vo g+t u” VoeEg + ttg " Vo by + 1ty g ¥ 1 Vy E5)
Using next symbols:

Wy =t Vyg; 2 =Tugm®; B2 = Dy O
we shall have

(2.8) 12 1 @2 = 4[g*B (g% + 1Y 18) VyEuy- Vst Wo W+ (U w%)2].

The fundamental scalar invariants t2 and ®?2 are (cf Ehlers [8]) are strictly positive.

In the case when (2.8), i.e. the scalar invariants ®* and 72, are equal
to zero, we have accordingly the consequence that tensors 7y and ®,, are
equal to zero. After writing that, and multiplying (1.3") and (2.2) by &

(having in mind its orthogonality to v;a), we obtain combining:
(2.9) u¥ VgEy + 4 Wy tig = 0.
Putting this in (2.6) it yields:
(2.10) VoEg -+ tty Wy =0.
Contracting the above equation:
Vo Er+uruP V& =0.

This is the trace of both tensors T4g and v,g. It expresses the absence of dila-
tation, with respect to u,, of the elementary three-surface locally orthogonal
to the “world-tube of lines with tangent vector E* (cf Synge [3], Greenberg
[10]). The relation (2.10) represents the generalisation, in some way, of trans-
lation, in other words a “quasitranslation®, and it is similar to expressions
given by some authors (cf Synge [3], Salzman & Taub [1]). In fact, in the
absence of rotation and deformation in the sense considered here, it is the
only possibility.
Let us consider now tensors v,s and ,5. When combining them:

211 ap+ Qup =2 (Vo€ + uy EYVoyug -+ g ¥ Vo y)

Vop — $2ep =2 (Vply +ug £ Vy g + 1y u¥ Vet

we obtain non symmetric tensors. After multiplying by ut:

(Vocﬁ -+ Qa{a) ub = (Vﬁoc - Qaa) ub=0

(2.12) _
(VBoc + Qﬁcx) ub = (Vocﬁ - Qaﬁ) ub=2 8up (ju o u®)
and by &F:
213) (Vg + Qup) EP = (Voo — {260 EB =2 (EREYVguy -ty + 9 uP Vi Ep)
(2.13

(vga Qq) EB = (Vo — Qyp) EP=2(Dg byt $EPV U, + uP Dy &g+ Uy).
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The first relation (2.11) yields:
Det || vap + Qg || = Det || vyg — Qug || = 0

So either strokes or columns in these tensors are not independent, but we must
have in mind that tensors v,s+ £, are non degenerate and have, in the gene-
ral case, components in all the directions of space-time. The first relation
(2.13) gives us just the expression to which Q& reduces when taking in
account conditions (1.17) and (1.20).

If making, finally, invariants v* and Q? equal to zero, one make v,z and
Qg also vanish. Due to the fact that t,; and @, are then necessarily equal
to zero, we should obtain the quasitranslation given by (2.10), but relations (2.11),
being also equal to zero, have even stronger consequences.
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