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This paper is dedicated to the memory of our Professor T. Popoviciu
1. Introduction.

An example of a sequence of linear polynomial operators, with ,,good*
approximation properties, is given by the Bernstein operators [1, 5, 10, 11 13].
These properties, for instance the convexity preservation, enable us to use the
Bernstein operators in various fields of mathematics as for example Sum-
mability, Statistics [14].

The aim of this note is to introduce a sequznce of linear polynomial
operators and at the same time to study their properties whch are similar to
those of Bernstein operators.

For a fixed number £ on the interval (0, ;) let us write
K :=[s, 1 -<]CK, K: =[0,1],
Ne::[i , i +1, L +2, ],
2¢e 2¢e 2¢
[+ fly: =max]-[, [+ = max .l
K1

We define the sequence of operators L,:C(K)—>C(K)), n<| N, by

n t t+1 t+k )
1 L V= l n T Ty T s eres 7;f dt
Q) o ,20 . .f[n+ n+1 nt+l ]
0
where
L., (%) " (x 1)knENk01 n
X). = - ) ) =V, 1y, veuy
o n"(n—k)!( 2n+2 ‘

and the symbol [x,, x;, ..., X,;-] denotes the divided difference at the pres-
cribed knots x;, i=0, ..., m.

If
nt+tl 1 k 2 1 n—k
p,,,k(x):z(lt”__(”) (x——»-——) (..’” —x\) :
nt k 2n+2/ \2n42

ncN,, k=0,1,...,n

then we prove
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Theorem 1. The linear operator L,:C(K)—>C(K,) (see (1)) may be
defined by

k+1
n+1 1
@ Lf=S P f £y dt= f Pr ey a (9 1(2) dt.
k=0 k 0
nit

Therefore L,, n=N. are linear positive operators.

Proof. From (2) one proves by induction that for derivation of L, we have
(n+ Dr=I*ipljt ai

L,V (x)= Cp. 1 (x)-
| I{-—l)—l w n"(n—j)! IZO s ()
3) n .
f tt+ ! t+—j—;f dt
n+1 n+1
k
ntrl
where
n—j 1 V/2n+1 )"‘f—k
C,i(x): = x— —x ,
ks () ( k )( 2n+2) (2n+2
Indeed,
k+1
+1 1 k-1 2 1 k A
nt “ n - n+ n=
Lf) () — k( )(x— ) ( —x) [ 1) dt—
(Eal)" () n" [kgl k 2n+2 2n+2 . 7o
k
n+1
k+1
1 1 k72 1 1 k"—f1
" n n-+ e
- n—k x— —Xx 1) dt
kgo( )(k>( 2n-l-2) <2n+2 ) ff() ]
k
n+1
and
k+1
1 \k-1/2 1 P
i n “2n+ o
k x— —-x f@)ydt=
Sk o) i) [0
k.
ntl
k+2
1 1 kD -1 k"+1
7 sl G e
o\ k 2n+2/ \2n+2
k+1
n+1
k+1
1 1 \* o
w3 () 5 G )
i—o\ k 2n+2) \2n+2 . n+1
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k+1
n+1

So-n() () G [ roe

n+1

k+1
n—1

n+1
— k n—-1-k p
n z (n 1) (x_ 1 ) (2n+l_x> j £y dt,
Ko\ k 2n+2/ \2n+2
k

n+1t

because (n—k)=n (n; 1) . It follows

)
n+1
ot by 1
Ly = zckl(x)f [LHm,f]dt
k

n+1

and formula (3) for j=1 is valid. Let us assume that (3) holds true for
j=p+1. Then we may write

(L)@ (x)z(n+ *?n! (p+ 1)!

X-Y
n(n—p—1)! ( )
where
—-p—1 I vk—1 n—p—-1—-k
X — Z k(n P 1)(x— 1 ) (_2n+1_x) )
k=1 k 2n+2 2n+2
k+1
¥l
f t, t+ 1 y ey U pJ{l dt
n+1 nel’
n+41
e
and
n—p-2 _1 1 k 2 1 n—p—-2-k
R M
k=0 k 2n+2/ \2n+2
k+1
i 1 1
f ft—— 2 rla
n+l1 n+1
k
nti
Further, since
k42
S5
f PP Ll ] FT
n+1 n+1
k+1
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)] dt

k41
nil :
=f tt+ ,...,t+p+1;f(.+ l)dt
n+1 n+l n+1
k
n+l
and
n—p-1 n—p—2
n—p—1-k =(n—-p—1 ,
-r )( k ) (b )( k )
we may write
k+1
p—2 il 1 1 1
A—p— P+
X=(m-p-1 C x t 14 s veuy s fl e+
( )’Z" oz () [ n+1 n+1 f( n+1
k
nt1
and
k+1
, ni1 . |
n—-p—
Y=(n-p-1) Z Cr,pe2 (%) t, t+ ) eees t+p+ ) fldt.
k=0 n+1 n+1
k
PES)
Thus we have
(L f)?*D (x) = (n+1)y?nl(p+1)! (n=p—1).
n(n—p~1)!
kil
2 nl 1 1
n—p—
. Z Ck,p+2(x)f 5 t+ s e t+i; <.+ )mf dt
k=0 n+1 n+1 n+1
k
ntl
ie,
(Lnf)(p«{-z\ (X)= (I‘l+ 1)”_1’“1 n! (p+ 2)' .
n(n—p—2)!
k1
O s i
s 1 p+2
C 3G (x)f TN L A P
g oo n+1 n+1
k
ntl
because
1
L+ t+1—’+—1; <-+ L )—f=
n+1 n+1 n+1

1
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In this manner the formula (3) is valid. In other words with substitution
t+k

t— we have
n+1
N f)(p”)(x):(n+l)”—1’—2n!(p+2)!.
" mn—p—2)!
1
n—p—2
S Ck,p+2(x)f t+k, M, o ﬁr_k_@iz;f dt.
=0 n+1 n-+1 n+1
0

Now, because
1

17! ;
w0 1 )i [ A P
2n+2/ w(n—j n+l n+l n+1

0

on account of Taylor expansion (1) follows. Further, x&K, and nz[%]
e
imply
xE 1 H 1__ 1
2n+2 2n+2
and

P ,.z0 on K|,

this is L,, nCGN are positive operators. [

2. The convergence properties.

We prove the following
Lemma. If ¢;(y): =y, j=0,1, ..., then we have

L,e,=¢,,
Le=e,

n—1 1 5n+3
L,e,= e,+—e

_—_—eo’
12n(n+1)?
— — — 2_ —
=D =2, 3@=D, on-6,  2n+l
2 n? 4n?(n+1)2 4n%(n+1)>2
(=D (-2)(n-3) e4+6(’1—1) (n—2)e +3(n—1) (n+3) (3n+2)e
n? n? 2nd(n+1)2

L,e,

&)
L,e,

n

3 2

7112—7n—6e +n3—90n2~105n—30
2n3(n+1)2 80 n3 (n+ 1)*

-
Proof. “If we put

m i m
Ep:=zk”( )ak[,"—k, m=0,1, ...,
k=0 k
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then we may write

EJ = (a+bym,

Ej=may kl’—li(m)a"“lb”—k
k=1 m\k

m—1 _
=ma 3 (k+1)1"1<m 1) ak pm—1-k
K=o k
p—1 —
=ma 'y (p I)E(,"AI,
v=0 v
p=1,2, ....
Setting
1 b=2n+1_x

m=n, a=x- s
2n+2 2n+2

in above formulas we may write

n—j j i
Lnej:(n_jLL_ (]_"I)Ef.
w(j+1) 5o\ v

By using this formula we can calculate (5). [

Theorem 2. If L, C(K)—>C(K)), nEN, are defined as in (1)—(2),
then for every f&C(K) we have

Jim [~ L,f],=0.

Proof. Let H: =(e,, e,, e,) be a set of polynomials of degree two.
The well-known result of T. Popoviciu [11] asserts that it is sufficient to prove
the convergence at any element from H in order to prove the pointwise con-
vergence on the whole space C(K,) of a sequence of linear positive operators
to the identity operator. This theorem was extended later by P. P. Korovkin [4]
to the case when H={f,, f|, f,) where {f,, f,, f,} is a Chebyshev system. Thus
our theorem is proved if we show that

lim |le;—L,¢],=0, Jj=0,1,2.
n—+co
But this is immediate having in view the above lemma. [J

Another proof may be performed as follows (see [6, 7]) where the
convexity role in the approximation by linear positive operators is put in
evidence.

Let f&CP(K), me=f"<M;
and

W@ =@ -m T, b M,%z 1.
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Taking into account that k;, j=1, 2 are convex (non- -concave) on K, the fol-
lowing inequalities are valid [7]
h (x) = (L, hy) (%), x&K,, n&ENe, j=1,2,

i. e.,

1 1
5 My e)sLof—f= ML, e,~ e,).

Making use of (5) we get
1 L,,ez—ez=x(1—x)— S5n+3 - 3n+1

< < .
12(n+1)2 n R2a@+1)2 12(m+1)?
In such a way for fEC®(K) and n&N, we have

msL,f—f< M, on K.

24 (n+1)? 8(n+1)

In other words the sequence of opzrators is pointwise convergent to the identity
on a dense subset. But ||L,||=1, nEN, finishes the proof. [

Theorem 3. If o(f; d) is the modulus of continuity, then we have

1
el i)
17~ Laf T
Proof. Let Q,, (¢ x): =(t—x)?" According to a result of A. Lupas
and M. W. Miiller [8] we may write

(6) Hf—L,,fH1§m=i1n2f {14827\ L, Q,,, || o 3, >0
Let us put ;

1 2n+1
Y, (x): = x— -x}, xek,.
) ( 2n+2) (2n+2 ) =

By using the above lemma we obtain

k+1
nt1

L Q) (9= 5 Pri(® f (t— x*dt
k=0

nti
4
=3 ( ) =1y xi=v(L,e,) (x)
v=0
_ 3(n—2)x4_ 6(n—2)x3+ 3(2n3+n2—9n——6)x2_
n n’ 2m(n+1)?

_3(n2—3n—2)x+n3—90n2—105n—30
2n¥(n+1)? 80m3(n+1)*
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which may be written in the form

3(n—2) 3 1
7 LQ)(0)=""" Z Y20+ —— Y, () b —— .
@ (B2 =77 (X)+2n(n+ 1)2 ®* 50 (n+1)*

Further we have

L, =

2(=2) X, (x)
n3

max ¥,? (x) + ————ma +——=
x 2n(n+1)? =« 80 (n+1)*

T = ac—
n’ 2/ 2n(m+1)? 2 80 (n+1)*
15n2+1 15@m+1)? 3 :
= < < s h=1,2,....
80 (n+1)* 80 (n+1)* 16(n+ 1)
If in (6) we select m=2, 8=—1~
Vn+1

Theorem 4. If fcCO(K) and o (f'; 8) is the modulus of continuity
of ', then we have

, the proof is complete. ]

11 , 1
||f—Lnf|!1§mm(f; ﬁﬁ)
Proof. Setting
ex():=t-x, A.@O):=fO)-f(x)
we observe that there is at least a point 0: =0 (¢, x) such that
min {x, ¢t} <0 <max {x, 7}
and

A ()=e, () f" (x)+D, (1)
where

D,(t): =e, ()" O)—f (9]
But (L,e,) (x)=0 and for n&N, we find
®) )= (L)) 0 [=]L, DY) ®) =Ly Dy) (%) | (L, | Dy ]) ().

_ 10 %) —x|

Further, if we put a2, =2, (7): , >0, we have

o(fs M)z (f5 1+ +) o (f; )

as well as
|1 D) [=[e, ]|/ ®)~f x)[=]e, ()| (f5 1.9).

Using these results we conclude

®) (La| D) )= (5 8) [(La] ex]) () +(Ly | x| ) (%)
Schwartz’s inequality enables us to write

Ly e ) 0=V (L, Q) ®=V[L, Q]
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Now, we put
1, |6-x|=3
0, |0-x|<d
Taking into account that [f]<8, |0 —x|<|f—x|, we have
le, ()| [ (D]=]e, ) [ (D) 1 (D) =
sle, ()| ()P =33t—x|-|0-x=
<83 (- x)%

¥ (1): =[ 3>0.

In this way
lex (D] ()] =873 Q, (¢, x).

Since L, is a monotone operator, we conclude that
(L] e[ L) (=573 (L, Q) (.
From these inequalities and (9) becomes
(L, D) (S (f, 8) ([ L@y |12+ 373]| L, 4}
VxEK, n&Ng, 3>0.
If we select 8: =1/)n+1, according to (5), (7), (8), (10), we have
l

1 .1
S0 L) 05 o (f, V‘m)

(10)

which proves the assertion. [

It is clear that in the proof we have not used the forms (1) or (2) of
the operators, only the fact that they are linear, positive and that they preserve
that the linear functions were applied. This fact was put in evidence in [8].

3. The representation of the remainder.
For x fixed on K| let R, :C(K)->R be the remainder defined as
Rn,x [f] L= (Lnf) (X) _f(x)'
The equalities (5) furnish
Rn, x [eo] = Rn,x [el] =0,
x(1-x)  5n+3
12n(@n+1)?

In [7] it is shown that if L is a linecar positive opecrator defined on  C(K)
with the properties

Rn, x [ez] =

1° Ley=e,, Le=e,
2° feC(K), fz0on K, f+#0 implies Lf>0 on K,CK,
then for any continuous (strictly) convex function f: K—R holds

_f<If on K,.

7 Publications de I'Institut Mathématique
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We return to the operators L,; therefore
R, [f1>0 for nEN,, xCK :=[ 1-¢]

T. Popoviciu [12] has established that in these hypothesis the functional
R, ,:C(K)—>R has “a simple form”, i.e., there is a constant @ and the
distinct points a,,, B, Yar from K so that

Rn,x[f] = Q * [“nx’ ans Yuxs f]y
Q being independent of f. For f: =e, we find
Q = Rn, x [82].
In this manner we have proved

Theorem 5. Let fEC(K) and L,, nEN, be defined by (1). For each
xEK, there exist the distinct points oy, Buxs Yux such that

(x(l—x)_ S5n+3

(@L,f) '(x) /)= 12n(n+ 1)

)-[anx, Busx> Ynes 1

Another kind of representation theorem is the following asymptotic
formula

Theorem 6. Let us suppose that fEC(K), f'' exists at the point
x,EK,. Then

lim n{(I.f) ()~ (o)} = "—%‘—")f (o).

n—»>4-oo

The proof is similar to the well-known result of E. Voronovskaja for the
Bernstein operators [5]. Likewise it may be deduced from the general theorem
obtained in [9] by R. G. Mamedov.

Other topics, as converse theorems, saturation theorems, may be investigated
by means of the methods used by J. Karamata and M. Vuilleumier [3], De Vore
[2]. For instance we note that the saturation class is

Sat. kL. [L,,]={fec(1<) N f=Lafll, =0 (%) } _Lip® 1 (K)

where Lip® 1 (K) is the subspace of C(K) formed with those functions which
have a derivative f'& Lip 1 on K.

4, The convexity preservation.
As we have seen the operators L,, nC N, have the interesting property that
fEL,fon K|
for f& C(K) non-concave on K. Another result is

Theorem 7. The operators L,,n<Ne, preserve the shape of the function.
More precisely, if f& C(K) is a non-concave function of the order p+1, then
L,f, nEN,, are nonconcave on K, of the same order, p=-2, —1,0,....
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Proof. According to (4) the inequalities

t+k’ t+k+1,m’t+k+p+2;f =0
n+1 n+1 n+1

Crpi2(x)20
k=01,...,n—-p—-2; xEK,, t&[0,]
certifies the validity of inequality

dp+2
de+2

and the theorem is proved. [J

L. )20 Vx&kK,
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