TRANSFORMATIONS OF MEASURABLE SETS BY AUTOMORPHISM GROUPS

S. S. Jou

(Received March 27, 1974)

1. The purpose of this note is to extend the Theorem of [3] into more general settings and at the same time generalize the Theorems of [5] into more general representations.

We follow the notations of [3] and the definitions are standard by [1]. G always denotes locally compact group (regarded Hausdorff by [1]) and μ denotes a left Haar measure on G. R^+ denotes the set of all positive real numbers and C denotes the set of all complex numbers. Suppose $f: G \to C$. The left and right translations of f are denoted by $_af$ and f_a for any $a \in G$; namely $_af(x) = f(ax)$ and $f_a(x) = f(xa)$ for all $x \in G$. $L^1(G)$ denotes the Banach space of all complex-valued integrable functions and $\|\cdot\|$ is used to denote the L^1 -norm. Suppose $T: G \to G$ and $f: G \to C$. Denote $f_T = f \cdot T: G \xrightarrow{T} G \xrightarrow{f} C$. We use l^A to denote the characteristic function of the subset l^A of l^A or otherwise. l^A is understood to be $l^A \cdot T$.

Let $\mathfrak{S}(G)$ denote the collection of all automorphisms of G ([1], page 426). In the following, we will assume as open neighbourhoods of the identity l_G of $\mathfrak{S}(G)$, the collection $\{\mathfrak{B}(F,U)\}$, where for a compact subset F of G and U an open neighbourhood of the identity e of G, $\mathfrak{B}(F,v)$ is the set of all $\sigma \in \mathfrak{S}(G)$ such that $\sigma(a) \in Ua$ and $\sigma^{-1}(a) \in Ua$ for all $a \in F$. Then $\mathfrak{S}(G)$ is a topological group with the topology of open sets of the form $\cup \{\sigma \mathfrak{B}(F,U)\}$ where $\sigma \in \mathfrak{S}(G)$ ([1], page 427). It is easy to see that $(x,\sigma) \to \sigma(x)$ is a continuous mapping of $G \times \mathfrak{S}(G)$ into G. Hence $\mathfrak{S}(G)$ is a transformation group on G.

Theorem: Let A, B_1, B_2, \ldots, B_n be subsets of a locally compact group G of strictly positive finite Haar measure. Then the mapping

$$(x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n, T_1, T_2, \ldots, T_n) \rightarrow \mu [A \cap L_{x_1} R_{y_1} T_1(B_1) \cap L_{x_2} R_{y_2} T_2(B_2) \cap \cdots \cap L_{x_n} R_{y_n} T_n B_n)]$$

is a nontrivial continuous mapping of $G^{2n} \times [\mathfrak{S}(G)]^n$ into R^+ where $x_i \in G$, $y_i \in G$, $T_i \in \mathfrak{S}(G)$, $L_{x_i} : G \to G$ and $R_{y_i} : G \to G$ such that $L_{x_i}(z) = x_i z$ and $R_{y_i}(z) = zy_i$ for all $z \in G$ and $|\leqslant i \leqslant n$. The Theorem is irrelevant of the order of L_i , R_{y_i} and T_i .

2. The following three lemmas are important to the proof of the Theorem.

Lemma 1. There exists a continuous homomorphism ρ of $\mathfrak{S}(G)$ into the multiplicative group $R^+ / \{0\}$ such that for any $f \in L^1(G)$, then

$$\int_{G} f_{T}(x) d\mu(x) = \rho(T^{-1}) \int_{G} f(x) d\mu(x)$$

for any $T \in \mathfrak{S}(G)$. Hence $f_T \in L^1(G)$ if $f \in L^1(G)$ and $T \in \mathfrak{S}(G)$.

Proof: As for the existence and continuity of ρ see [2]. The second part of this Lemma is easy.

Lemma 2: Suppose $f \in L^1(G)$ and $\{T_\gamma\}$ is a net in $\mathfrak{S}(G)$ such that $T_\gamma \to S \in \mathfrak{S}(G)$. Then

$$\lim_{\Upsilon} ||f_{T_{\Upsilon}} - f_{S}|| = 0.$$

Proof Given $\varepsilon > 0$, choose a continuous function g with compact support K such that

$$||f-g|| \leq \frac{\varepsilon}{4 \rho(S^{-1})}.$$

Then

$$||fr_{Y}-f_{S}|| \leq ||fr_{Y}-gr_{Y}|| + ||gr_{Y}-g_{S}|| + ||g_{S}-f_{S}||$$

$$\leq \rho (T_{Y}^{1-})||f-g|| + \int_{G} |g(T_{Y}(x))-g(S(x))| d\mu(x) + \rho (S^{-1})||g-f||$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{4} + \frac{\varepsilon}{4} = \varepsilon, \text{ as } T_{Y} \text{ is sufficiently close to } S.$$

For

$$l = \int_{G} |g(T_{\gamma}(x) - g(S(x)))| d\mu(x)$$
$$= \rho(S^{-1}) \int_{G} |g(T_{\gamma}S^{-1}(x)) - g(x)| d\mu(x)$$

and we can find an open neighbourhood \overline{W} of e with compact closure \overline{W} such that $ST_{\gamma}^{-1}(K) \subset \overline{W}K$ whenever T_{γ} is sufficiently close to S. Hence we have

$$\begin{split} &l = \rho\left(S^{-1}\right) \int\limits_{\overline{W}K} \left| g\left(T_{\gamma} S^{-1}\left(x\right)\right) - g\left(x\right) \right| d\mu\left(x\right) \\ &\leqslant \rho\left(S^{-1}\right) \varepsilon_{1} \mu\left(\overline{W}K\right) \leqslant \frac{\varepsilon}{4}, \text{ (by letting } \varepsilon_{1} \leqslant \frac{\varepsilon}{4 \rho\left(S^{-1}\right) \mu\left(\overline{W}K\right)}, \end{split}$$

because for any $x \in \overline{W}K$, $[T_{\gamma}S^{-1}(x)x^{-1}]$ is sufficiently close to e whenever T_{γ} is sufficiently close to S.

Lemma 3: Let $f \in L^1(G)$. Then $(x, y, T) \to {}_x(f_T)_y$ is a continuous mapping of $G^2 \times \mathfrak{S}(G)$ into $L^1(G)$.

Proof. For any $(u, v, S) \in G^2 \times \mathfrak{S}(G)$ we have

$$\| \|_{x}(f_{T})_{y} - \|_{u}(f_{S})_{y} \| \le \| \|_{x}(f_{T})_{y} - \|_{x}(f_{S})_{y} \| + \| \|_{x}(f_{S})_{y} - \|_{u}(f_{S})_{y} \|.$$

By Lemma 1 and Lemma 1 of [3],

$$||_{\mathbf{y}}(f_S)_{\mathbf{y}} - u(f_S)_{\mathbf{y}}|| \to 0 \quad \text{as} \quad (\mathbf{x}, \mathbf{y}) \to (\mathbf{u}, \mathbf{v})$$

and

$$\| x(f_T)_y - x(f_S)_y \| = \Delta (y^{-1}) \| f_T - f_S \| \to 0$$

as $(x, y, T) \rightarrow (u, v, S)$ by Lemma 2 and the continuity of the modular function Δ of G (see [1], [3]).

Hence
$$\|x(f_T)_y - u(f_S)_y\| \to 0$$
 as $(x, y, T) \to (u, v, S)$.

Proof of the Theorem: For any fixed $(u_1, u_2, ..., u_n, v_1, ..., v_n, S_1, S_2, ..., S_n)$ in $G^{2n} \times [\mathfrak{S}(G)]^n$, and any $(x_1, x_2, ..., x_n, y_1, y_2, ..., y_n, T_1, T_2, ..., T_n)$ in

$$G^{2n} \times [\mathfrak{S}(G)]^n$$
, $|\mu(A \cap x_1 T_1(B_1) y_1 \cap \cdots \cap x_n T_n(B_n) y_n) - \mu(A \cap u_1 S_1(B_1) y_1)$

$$\bigcap \cdots \bigcap u_n S_n(B_n) v_n \leq \sum_{j=1}^n \| l^{x_j T_j(B_j) y_j} - l^{u_j S_j(B_j) y_j} \|$$

(by Lemma 2[3])

$$\leq \sum_{j=1}^{n} \| \sum_{x_{j}^{-1}} \left(l_{T_{j}}^{B_{j}} \right)_{y_{j}^{-1}} - \sum_{u_{j}^{-1}} \left(l_{S_{j}}^{B_{j}} \right)_{y_{j}^{-1}} \| \to 0$$

as $(x_j, y_j, T_j) \rightarrow (u_j, v_j, S_j)$ for j = 1, 2, ..., n, by lemma 3. Hence the mapping is continuous. By Lemma 3 of [3], it is easy to see that the mapping is non-trivial.

If we change the order of the composition of L_{x_i} , R_{y_i} and T_i , then the mapping is also continuous and not identically zero since $\sigma L_x = L_{\sigma(x)} \sigma$, $\sigma R_y = R_{\sigma(y)} \sigma$ and $(x, \sigma) \to \sigma(x)$ is jointly continuous for any $\sigma \in \mathfrak{S}(G)$ and $x, y \in G$. Now the proof is complete.

Corollary: Suppose $\infty > \mu(A) > 0$, $\infty > \mu(B) > 0$. Then for any $\sigma_0 \in \mathfrak{S}(G)$ there exists an open neighbourhood of W of σ_0 such that $\bigcap_{\sigma \in W} A[\sigma(B^{-1})]$ contains an open subset of G.

By the above corollary, if we take $\sigma_0 = l_G$ then AB^{-1} will contain an open subset of G. This is practically the Steinhaus Theorem [7] in the case of locally compact group.

Under composition, we see that the general linear group Gl(n, R) of non-singular linear transformations of R^n with topology inherited from the uniform topology on the collection $\mathcal{L}(R^n, R^n)$ of all linear transformations is a topological group and Gl(n, R) is topological isomorphic to $\mathfrak{L}(R^n)$. Hence it is easy to get all the consequences of [5] from our Theorem.

REFERENCES

- [1] E. Hewitt and K. A. Ross, Abstract harmonic analysis, Springer-Verlag, 1963 (vol. 1).
- [2] J. Braconnier, Sur les groupes topologiques localement compacts, J. Math. Pures Appl., N. S. 27, 1—85 (1948), (see page 75—76).
 - [3] S. S. Jou, Transformation of measurable sets, Glasnik Mat. 8 (28), 1973, 81-84.
- [4] L. H. Loomis, An introduction to harmonic analysis, Princeton, N. J., D. Van Nostrand Co., 1953.
- [5] M. Pal, On Certain transformations of sets of positive measure, Publication de l'institut Mathématique, Nouvelle série, 14 (28), 1972, 123-128.
- [6] D. Montgomery and L. Zippin, Topological transformation groups, New York, Interscience Publications, Inc. 1955.
- [7] H. Steinhaus, Sur les distances des points des ensembles, de mesure positive Fund. Math., 1 (1920), 93—104.

Universidad de los Andes Mérida, Venezuela