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1. The purpose of this note is to extend the Theorem of [3] into more
general settings and at the same time generalize the Theorems of [5] into more
general representations.

We follow the notations of [3] and the definitions are standard by [1].
G always denotes locally compact group (regarded Hausdorff by [1]) and p
denotes a left Haar measure on G. R* denotes the set of all positive real num-
bers and C denotes the set of all complex numbers. Suppose f:G—C. The
left and right translations of f are denoted by ,f and f, for any a< G; namely
Jx)=f(ax) and f,(x)=f(xa) for all x&G. L!'(G) denotes the Banach space
of all complex-valued integrable functions and || || is used to denote the L!-
norm. Suppose T:G—G and f:G—>C. Denote fT=f-T:G1» G-L.C. We use
/4 to denote the characteristic function of the subset 4 of G; namely M(x)=1
or 0 depending on x& A4 or otherwise. /4, is understood to be /4-T.

Let ©(G) denote the collection of all automorphisms of G ([1], page 426).
In the following, we will assume as open neighbourhoods of the identity /; of
&(G), the collection {73 (F, U)}, where for a compact subset F of G and U
an open neighbourhood of the identity e of G, 3 (F,v) is the set of all
6&=S (G) such that ¢(a)cUa and 6~ (a)&Ua for all acF. Then ©(G) is a
topological group with the topology of open sets of the form U{o Z3(F, U)}
where 6 &S (G) ([1], page 427). It is easy to see that (x, 6)— o(x) is a con-
tionuous mapping of G x S(G) into G. Hence &(G) is a transformation group
on G.

Theorem: Let A, B,, B,,..., B, be subsets of a locally compact group
G of strictly positive finite Haar measure. Then the mapping

(By5 Koy ems0 Xys Y Vasewes Yoy dgn Lysnn- s T,)—
> w[ANLx, Ry, T, (B) N L5, Ry, T, (B,) (\ + - - N Lx, Ry, T,, B,)]

is a nontrivial continuous mapping of G x[S(G)]" into R* where x,&G,
€6, T,c€(G), Lx; :G—>G and Ry;:G—G such that Lx(z)=x;z and Ry (z)=
=zy, for all zCG and |<i<n. The Theorem is irrelevant of the order of
L,, Ry; and T;.
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2. The following three lemmas are important to the proof of the Theorem.

Lemma 1. There exists a continuous homomorphism o of & (G) into the
multiplicative group R* {0} such that for any f< L' (G), then

[ dp ()= (T [ f(x) du(x)
G G

Jor any T&S(G). Hence frcLY(G) if f& LY(G) and T< G (G).

Proof: As for the existence and continuity of p see [2]. The second
part of this Lemma is easy.

Lemma 2: Suppose f<L'(G) and {T,} is a net in S(G) such that
T,—~ S&S(G). Then
lim ||/, — £ =0.
Y

Proof Given ¢>0, choose a continuous function g with compact sup-
port K such that

v 1?\<ﬁ€ )
|’j £ 4P(S_1)
Then
Wry=Ssli<||fre— &y +||81y— &5+ || &8s —f5 |
<e@)|I/~gl+ [18(T, () -2 (S @) | du) +p (S| g 1|
G
<E—+~8——+i=s, as T, is sufficiently close to S.
2 4 4
For

1= [18(T,() g (S ()| du(x)
—o(SY [18(Ty$71(x) — g (x) | dp.(x)
G

and we can find_an open neighbourhood W of e with compact closure W such
that ST ' (K)C WK whenever T, is sufficiently close to S. Hence we have

I=e (57 [18(T, 57 (x) 8 (¥ | du(x)

WK
€

= S_l WK\ T ——,
<p(S D p(WK)< 40 (5w O7K)

%, (by letting <, <

because for any x & WK, [T, S 1(x) x~1] is sufficiently close to e whenever T,
is sufficiently close to S.
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Lemma 3: Let f& L'(G). Then (x,y, T)— (fr), is a continuous map-
ping of G*xS(G) into L'(G).

Proof. For any (u,v,S)EG%x S (G) we have
H x(fT)y_u(fS)v H < i x(fT)y_ x(fS)y “ + H _x(fS)y ~u(fS)V Ii
By Lemma 1 and Lemma 1 of [3],

Hx(fs)y_u(fS)VHéO as (x’y)_)(u,v)

and

Hx(fT)y_x(fS)yH=A(y_1)HfT_fSH—>0

as (x,y, T)— (4, v, S) by Lemma 2 and the continuity of the modular function
A of G (see [1], [3]).

Hence || ,(f7), —(fh]|— 0 as (x, 3, T)—(u, v, S).

Proof of the Theorem: For any fixed (u,, uy, ..., Uy, Vs onv, ¥y,
Sy Sy n Sy in Gx[S(G)Y, and any (x|, X, . s Xps Vi Vas o oo Vs 115
T,,..., T, in

G SO, |w(ANx, T,B) ¥, -+ - (1%, T,(B)y,) —w(ANu, S, (B) v,
(Yeooos (11, S, (B)v,) < i I 15 T8y _ 14 Si By I
=1

(by Lemma 2[3])
i Bj B;
<> x~1(lTj_1)y—1 - u—l(lsj_l)v—l |—0
=1 j y j

as (x;, ¥, T))— (4, v;, S;) for j=1,2,...,n by lemma 3. Hence the mapping
is continuous. By Lemma 3 of [3], it is easy to see that the mapping is non-
trivial.

If we change the order of the composition of Ly, Ry, and T;, then the
mapping is also continuous and not identically zero since 6 L,=Lsy0, o R, =
Ry, and (x, o) > o (x) is jointly continuous for any ¢&&(G) and x, y&G.
Now the proof is complete.

Corollary: Suppose o0 >u(4)>0, ©>pu(B)>0. Then for any

6o =S (G) there exists an open neighbourhood of W of o, such that (\ Ao (B~1)]
oW
contains an open subset of G.

By the above corollary, if we take o,=/; then 4B~! will contain an open
subset of G. This is practically the Steinhaus Theorem [7] in the case of locally
compact group.

Under composition, we see that the general linear group GI(n, R) of non-
singular linear transformations of R" with topology inherited from the uniform
topology on the collection % (R*, R") of all linear transformations is a topo-
logical group and GI(n, R) is topological isomorphic to & (R"). Hence it is easy
to get all the consequences of [5] from our Theorem.
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