IMPLICIT DIFFERENTIAL EQUATION IN LOCALLY CONVEX SPACES

(Communicated November 20, 1973)

O. Hadžić

V. V. Mosyagin and A. I. Povolockij [1] have proved a theorem on the existence of a solution of the equation:

(1)
$$F\left(t, x, \frac{dx}{dt}\right) = 0 \quad x(0) = x_0$$

in locally convex spaces, using a generalization of Krasnoseljskij's fixed point theorem which was proved by Millionščikov.

We shall generalize their theorem in two directions, using some results from the theory of ψ -densifying operators and a fixed point theorem which we have proved in [5].

As in [1], let $\{p_i\}_{i\in I}$ be a family of seminorms defining the topology in the locally convex space E,

$$U_b = \{x \mid x \in E, \ p_{ik}(x - x_0) \le b, \ k = 1, 2, \dots, m; \quad i_k \in I, \ b > 0\},\$$

$$U_c = \{z \mid z \in E, \ p_{ik}(z - z_0) \le c, \ r = 1, 2, \dots, s; \quad j_r \in I, \ c > 0\}$$

and

 $F(t, x, z) = f_0(t, x, z) + f_1(t, x)$ be a mapping from $[0, T] \times U_b \times U_c$ into E. Further, let the mapping f_0 satisfy the following conditions [1]:

1. The mapping f_0 is uniformly continuous on $[0, T] \times U_b \times U_c$ and for every $i \in I$ there exists L(i), $0 < L(i) \le 1$ so that:

$$p_i(z_1 + h_0 f_0(t, x, z_1) - z_2 - h_0 f_0(t, x, z_2)) \le L(i) p_i(z_1 - z_2)$$

for every $z_1, z_2 \in U_c, x \in U_b, t \in [0, T] (h_0 \neq 0)$

2. The set $\overline{q([0, T], U_b, U_c)}$ is compact, where $g(t, x, z) = z + h_0 f_0(t, x, z)$.

3.
$$\sup p_{j_r}(g(t, x, z) - z_0) + \sup p_{j_r}(h_0 f_1(t, x)) \le c$$

 $(t, x, z) \in [0, T] \times U_b \times U_c$ $(t, x) \in [0, T] \times U_b$
 $r = 1, \ldots, s$ $r = 1, 2, \ldots, s$

and $T \cdot M_{i_k} \leqslant b$ $k = 1, 2, \ldots, m$; where $\sup p_i(g(t, x, z)) + \sup p_i(h_0 f_1(t, x)) \leqslant M_i$; for every $i \in I$. $(t, x, z) \in [0, T] \times U_b \times U_c$ $(t, x) \in [0, T] \times U_b$

Now, we shall give some definitions and theorems (see [2])

Definition 1. Let \mathfrak{M} be a subset of 2^E and $Q \in \mathfrak{M}$ implies \overline{co} $Q \in \mathfrak{M}$. Further, let (A, \leq) be a partially ordered set. The measure of noncompactness ψ is a function $\psi: \mathfrak{M} \to A$ so that $\psi(coQ) = \psi(Q)$.

Definition 2. $F: \Lambda \times M \to E$, $M \subset E$ is ψ -densifying if the implication $\{\psi [F(\Lambda \times Q)] \geqslant \psi (Q)\} \Rightarrow \{\overline{Q} \text{ is compact}\}$ holds The measure ψ is:

- a) monotone if $Q_1 \subseteq Q_2$ implies $\psi(Q_1) \leqslant \psi(Q_2)$ for every $Q_1, Q_2 \in \mathfrak{M}$.
- b) algebraic semiadditive if $\psi(Q_1 + Q_2) \leqslant \psi(Q_1) + \psi(Q_2)$ for every Q_1 , $Q_2 \in \mathfrak{M}$.
- c) semihomogeneous if $\psi(zQ) = |z| \psi(Q)$ for every $Q \in \mathfrak{M}$ and z-complex number.
- d) continuous if for every $Q \in \mathfrak{M}$, $p \in P$, $\varepsilon > 0$ there exists a neighbourhood V of the origin so that:

$$|\psi(Q_1)(p) - \psi(Q_2)(p)| < \varepsilon$$

where Q_1 and Q_2 are such that $Q_1 \subseteq Q_2 + V$ and $Q_2 \subseteq Q_1 + V$.

- e) 1-regular if $\psi(Q) = 0$ implies that the set Q is totally bounded.
- f) 2-regular if for every totally bounded set Q the equality $\psi(Q) = 0$ holds. For example, Kuratowski's measure of noncompactness has all these properties.

Theorem A [2]. Let R be a closed θ and convex subset of a locally convex space E, let ψ be a measure of noncompactness defined on E and F be b a ψ -densifying mapping of R into R. Suppose that one of the following two conditions is satisfied:

- 1. For every $(x_0 \in R, Q \subseteq R, Q \neq \emptyset) \psi(\{x_0\} \cup Q = \psi(Q))$.
- II. ψ is semiadditive and invariant in respect to translation.

Then $\gamma(\Phi, R) = 1$.

Theorem B (Theorem 2 in [5]) Let G be a closed and convex subset of the topological Hausdorff locally convex, complete space E and S, T two mappings of G into E satisfying following conditions:

- 1. For every $x, y \in G$, $Tx + Sy \in G$.
- 2. a) For every $i \in I$ there exists $q(i) \ge 0$ and $f: I \to I$ such that $p_i(Tx Ty) \le q(i) p_{f(i)}(x y)$ for every $x, y \in G$
 - b) For every $i \in I$ and $n \in N$ there exist $a_n(i) \ge 0$ and $g(i) \in I$ such that for every $x \in E$, $n \in N$ the inequality $p_{f^n(i)}(x) \le a_n(i) p_{g(i)}(x)$ holds.

c) The series

$$\sum_{n=1}^{\infty} \left(\prod_{k=0}^{n-2} q \left[f^{k}(i) \right] a_{n-1}(i) \right)$$

is convergent.

3. The mapping S is continuous and SF is relatively compact set. Then there exists at least one point $x_0 \in G$ such that:

$$Sx_0 + Tx_0 = x_0.$$

Theorem 1. Let ψ be a measure of noncompactness defined on E which is invariant in respect to translation and has the properties a) -f). Further, suppose that the mapping $f_1:[0,T]\times U_b\to E$ is uniformly continuous and satisfies the following conditions:

(*) For every bounded set $M \subseteq U_b$ and for every $t \in [0, T]$

$$\psi(f_1(t, M)) \leqslant L(t, \psi(M))$$

where L is a mapping from $[0, T] \times [0, \infty) \rightarrow [0, \infty)$ so that the problem z' = L(t, z); z(0) = 0 has one and only one solution $z(t) \equiv 0$, $t \in [0, T)$.

If the mappings f_1 and f_0 satisfy conditions 1. — 3. and if either condition I or II is satisfied there exists at least one solution of the equation (1) which is defined on [0, T].

Proof: Let $\mathcal{C}^1([0, T], E)$ be the set of all continuously differentiable mapping from [0, T] into E. The topology in $\mathcal{C}^1([0, T], E)$ is defined by the family of the seminorms:

$$\tilde{p}_{i}(\tilde{x}) = \sup_{t \in [0, T]} p_{i}[x(t)] + \sup_{t \in [0, T]} p_{i}[x'(t)]$$

It is known that $\mathscr{C}^1([0,T],E)$ is, in this topology, a complete locally convex space. The measure of noncompactness $\psi_{\mathcal{C}^1}$ on $\mathscr{C}^1([0,T],E)$ is defined in the following way. Let $\mathfrak{M}_{\mathcal{C}^1}$ be a family of all bounded sets $Q \subset \mathscr{C}^1([0,T],E)$ for which the set $Q' = \{\tilde{x'}(t) \mid \tilde{x} \in Q\}$ is equicontinuous. The measure $\psi_{\mathcal{C}^1}$ is introduced by: $\psi_{\mathcal{C}^1}(Q)(t) = \psi(Q_t')$ and maps $\mathfrak{M}_{\mathcal{C}^1}$ into $\mathscr{C}([0,T],E)$. $\mathscr{C}([0,T],E)$ is partially ordered by the relation $\leq :f_1 \leq f_2 \Leftrightarrow f_I(t) \leq f_2(t) \ \forall t \in [0,T]$.

Let

$$\begin{split} V_{1,\,i} &= \{\tilde{x} \mid \tilde{x} \in \mathcal{C}^1 \left([0,\,T],\,E \right),\,x\left(0 \right) = x_0,\,\,p_i\left(x\left(t_1 \right) - x\left(t_2 \right) \right) \leqslant M_i \mid t_1 - t_2 \mid \\ & \text{for every } \left(t_1,\,\,t_2 \right) \in [0,\,T]^2 \} \quad i \in I \\ V_{2,\,j_r} &= \{\tilde{x},\,\tilde{x} \in \mathcal{C}^1 \left([0,\,T],\,E \right),\,p_{j_r}(x'\left(t \right) - z_0 \right) \leqslant c,\,\,\text{for every} \\ & t \in [0,\,T] \} \qquad r = 1,\,2,\,\ldots,\,s. \\ V_{3,\,\,i} &= \left\{ x,\,\,x \in \mathcal{C}^1 \left([0,\,T],\,E \right),\,p_i\left(x'\left(t_1 \right) - x'\left(t_2 \right) \right) \leqslant \frac{\varphi_i\left(\mid t_1 - t_2 \mid \right)}{1 - L\left(i \right)} \right\} \\ & i \in I \end{split}$$

70 O. Hadžić

where:

$$\varphi_{i}(\eta) = \sup p_{i}(g(t_{1}, x(t_{1}), x'(t_{1})) - g(t_{2}, x(t_{2}), x'(t_{1}))) +$$

$$\tilde{x} \in \bigcap_{i \in I} V_{1, i} \cap \bigcap_{r=1}^{s} V_{2, jr}) \mid t_{1} - t_{2} \mid \leq \eta$$

$$+ \sup p_{i}(h_{0} f_{1}(t_{1}, x(t_{1})) - h_{0} f_{1}(t_{2}, x(t_{2})))$$

$$\tilde{x} \in \bigcap_{i \in I} V_{1, i} \cap \bigcap_{r=1}^{s} V_{2, jr}) \mid t_{1} - t_{2} \mid \leq \eta.$$

In is evident that $\varphi_i(\eta) \to 0$ when $\eta \to 0$. In [1] it has been shown that

$$V = \bigcap_{i \in I} V_{1,i} \cap (\bigcap_{r=1}^{s} V_{2,j_r}) \cap (\bigcap_{i \in I} V_{3,i})$$

is closed and convex subset of $\mathcal{C}^1([0, T]), E$.)

The equation (1) is equivalent to the integral equation:

(2)
$$x(t) = x_0 + \int_0^t g[s, x(s), x'(s)] ds + \int_0^t h_0 f_1[s, x(s)] ds$$

The mappings T and S will be defined as follows:

$$Tx = h_0 \int_0^t f_1[s, x(s)] ds$$

$$Sx = x_0 + \int_0^t g[s, x(s), x'(s)] ds.$$

Our aim is to prove that the mapping T+S, the set V and the measure $\psi_{\mathcal{C}^1}$ satisfy the conditions of the theorem A. As it has been shown in [3], T+S maps V into V. Next we shall show that the set V is a bounded subset of $\mathcal{C}^1([0, T], E)$. It follows:

$$\begin{aligned} p_{i}\left(x\left(t\right)\right) &= p_{i}\left(x\left(t\right) - x\left(0\right) + x\left(0\right)\right) \leqslant p_{i}\left(x\left(t\right) - x\left(0\right)\right) + p_{i}\left(x\left(0\right)\right) \leqslant \\ &\leqslant M_{i} \cdot \left|t\right| + p_{i}\left(x_{0}\right) \leqslant M_{i} \cdot T + p_{i}\left(x_{0}\right) \quad \text{for every } \tilde{x} \in V, \quad \text{since } V \subset \bigcap_{i \in I} V_{1, i}. \quad \text{Further} \\ p_{i}\left[\frac{x\left(t + h\right) - x\left(t\right)}{h}\right] \leqslant M_{i}. \end{aligned}$$

and so, by continuity of the seminorms p_i ,

$$p_{i}\left(x'\left(t\right)\right) = p_{i}\left[\lim_{h\to 0}\frac{x\left(t+h\right)-x\left(t\right)}{h}\right] = \lim_{h\to 0}p_{i}\left[\frac{x\left(t+h\right)-x\left(t\right)}{h}\right] \leqslant M_{i}.$$

This means that the set V is a bounded subset of $\mathcal{C}^1([0, T], E)$. From $V \subset \bigcap_{i \in I} V_{3,i}$ it follows that the set $V' = \{x'(t), x \in V\}$ is equicontinuous and from $V_0 = \{x(0) \mid x \in V\} = x_0$ that the set V_0 is compact. Using these facts and the con-

dition (*) we conclude, by theorem 1.4.2*[2], that the mapping T is ψ_{C_1} -densifying on the set V. Further the set $g(0, T], U_b, U_c$) is compact and the measure ψ is 2-regular, so the mapping S is ψ_{C_1} -densifying on the V. From this we conclude that the mapping T+S is also ψ_{C_1} -densifying on the set $V \subset \mathfrak{M}_{C_1}$. Now it is easy to show that all conditions of the theorem A are satisfied and that therefore exists at least one solution of the equation (2), i.e. (1).

In [1] f_1 is a contraction type mapping so our theorem generalizes the result of Mosyagin and Povolockij.

Theorem 2. Suppose that the conditions 1., 2. and 3. are satisfied and that the mapping f_1 satisfies the following conditions:

- i) For every $i \in I$, there exist $q(i) \geqslant 0$ and the mapping $\varphi: I \rightarrow I$ so that $p_i(f_1(t, x) f_1(t, y)) \leqslant q(i) p_{\varphi(i)}(x y)$ for every $t \in [0, T]$ and $x, y \in U_b$
- ii) For every $i \in I$ and $n \in N$ there exist $a_n(i) \geqslant 0$ and $g: I \to I$ so that: $p_{\varphi^n(i)}(x) \leqslant a_n(i) p_{g(i)}(x)$ for every $x \in E$ and $R = \sup_{i \in I} \overline{\lim_{n \in N}} \sqrt{\prod_{k=0}^{n-1} q \left[\varphi^k(i) \right] a_n(i)} \neq \infty \text{ and } \frac{1}{Rh_0} > 1.$

Then there exists at least one solution of the equation (1) defined on $[0, T_1]; T_1 = \min\left(T, \frac{1}{Rh_0} - 1\right)$.

Proof: Let T, S, V and \mathcal{C}^1 are as in the theorem 1. We shall prove that all conditions of the theorem B are satisfied. Indeed we have

$$\begin{split} p_i(T\tilde{x}_1 - T\tilde{x}_2) &= h_0 \left\{ \sup_{t \in [0,\,T]} p_i \left[\int_0^t \left(f_1\left(s,\,x_1\left(s\right)\right) - f_1\left(s,\,x_2\left(s\right)\right) \right) \, ds \right] + \\ &+ \sup_{t \in [0,\,T]} p_i \left[f_1\left(t,\,x_1\left(t\right)\right) - f_1\left(t,\,x_2\left(t\right)\right) \right] \right\} \leqslant h_0 \left(T+1\right) \, q\left(i\right) \sup_{t \in [T,\,0]} p_{\varphi\left(i\right)} \left(x_1(t) - x_2(t)\right) = h_0 \left(T+1\right) \, q\left(i\right) \, \tilde{p}_{\varphi\left(i\right)} \left(\tilde{x}_1 - \tilde{x}_2\right) = Q\left(i\right) \, \tilde{p}_{\varphi\left(i\right)} \left(\tilde{x}_1 - \tilde{x}_2\right) \quad \text{and} \\ \tilde{p}_{\varphi^n\left(i\right)} \left(\tilde{x}\right) &= \sup_{t \in [0,\,T]} p_{\varphi^n\left(i\right)} \left(x\left(t\right)\right) + \sup_{t \in [0,\,T]} p_{\varphi^n\left(i\right)} \left(x'\left(t\right)\right) \leqslant \\ \leqslant a_n(i) \sup_{t \in [0,\,T]} p_{g\left(i\right)} \left(x\left(t\right)\right) + a_n(i) \sup_{t \in [0,\,T]} p_{g\left(i\right)} \left(x'\left(t\right)\right) = a_n(i) \, \tilde{p}_{g\left(i\right)} \left(\tilde{x}\right) \end{split}$$

^{*} In fact this theorem was proved for Banach spaces but it can be easily proved also in the case of locally convex spaces.

Further the series

$$\sum_{n=2}^{\infty} \left(\prod_{k=0}^{n-2} Q\left[\varphi^{k}(i) \right] \right) a_{n}(i) = \sum_{n=2}^{\infty} \left[h_{0}(T+1) \right]^{n-1} \prod_{k=0}^{n-2} q\left[\varphi^{k}(i) \right] \times a_{n-1}(i)$$

is convergent for $T < \frac{1}{Rh_0} - 1$.

The conditions 1. and 4. can be easily verified as in [2]. For $\varphi(i) = i$ for every $i \in I$ from our theorem follows the result in [1].

In the special case when $f_1(t, x) = A(t)x$ we can replace the conditions i) and ii) by the following:

For every $i \in I$ and $k \in N$ there exist $q_i(k) \ge 0$ and $\varphi: I \to I$, independent from k so that

$$p_i(A(t_1) \ A(t_2) \dots A(t_k) x - A(t_1) \ A(t_2) \dots A(t_k) y) \leqslant q_i(k) p_{\varphi(i)}(x - y)$$

for every $x, y \in U_h$ and

$$(t_1, t_2, \ldots, t_k) \in [0, T] \times [0, T] \times \cdots \times [0, T]$$
 so that

$$0 \leqslant t_k \leqslant t_{k-1} \leqslant \cdots \leqslant t_1 \leqslant T$$
.

$$R = \sup_{i \in I} \quad \overline{\lim}_{n \in N} \sqrt[n]{\frac{q_i(n)}{n!}} \neq \infty \left\{ h = \min \left(T_1, \frac{1}{Rh_0} \right) \right\}$$

For the proof see [4].

REFERENCES

- [1] В. В. Мосягин, А. И. Поволоцкий, Задача Коши для неяного дифференциального уравнения в локально выпуклом пространстве, уч. зап. Петрозав. Ун., Т. XVIII, вып. 2. 1970, 122—127.
- [2] Б. Н. Садовски, Предельно компактные и уплотняющие оператори, УМН, XXVII, вып. 1 (163), 1972, 81—146.
- [3] B. Stanković, Dve teoreme o diferencijalnim jednačinama u lokalno konveksnim prostorima, CLAS SANU, odelenje prirodnomatematičkih nauka, knj. 35. 1972, str. 33—42.
- [4] O. Hadžić, Egzistencija rešenja jedne klase diferecijalnih jednačina u lokalno konveksnim prostorima, Matematički vesnik 8 (23), sv. 2. 1971, 163—170.
- [5] O. Hadžić, Existence Theorems for the System $\begin{cases} x = H(x, y) \\ y = K(x, y) \end{cases}$ in Locally Convex Spaces, Publ. Inst. Math., tome 16 (30), 1973, pp. 65—73.