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IMPLICIT DIFFERENTIAL EQUATION IN LOCALLY CONVEX SPACES

(Communicated November 20, 1973)
O. Had?i¢

V. V. Mosyagin and A. I. Povolockij [1] have proved a theorem on the
existence of a solution of the equation:

(1) F(t, x,%):o x(0)=x,

in locally convex spaces, using a generalization of Krasnoseljskij’s fixed point
theorem which was proved by Million§¢ikov.

We shall generalize their theorem in two directions, using somsz results
from the theory of {-densifying operators and a fixed point theorem which we
have proved in [5].

As in [1], let {p}ic; be a family of seminorms defining the topology in
the locally convex space E,

Uy,={x|xEE, p,(x—x)<b, k=1,2,...,m; § &I, b>0},
U-={z|2€E, p,(z-z)<c, r=1,2,...,5 jEL c>0}
and

F(t, x,2)=f,(t, x, 2) +f, (t, x) be a mapping from [0, T]x U, x U, into E.
Further, let the mapping f, satisfy the following conditions [1]:

1. The mapping f, is uniformly continuous on [0, T}xU,x U, and for
every i< I there exists L(i), 0<L(i)<1 so that:

D; (z1 +hy fo (8, X, 2) — 2, — hy fo (2, X, 22))<L(i) p;(z,—1z,)
for every z,, z,U,, xCU,, t€[0, T] (h,#0)
2. The set ¢ ([0, T], U,, U, is compact, where g (¢, x, z) =z + hy f, (¢, x, 2).
3. sup pjr(g(t, X, ) = z,) + sup pjr(hofl(t, x))<e
(t, x, 2)[0, TIx Uy x U, (t, x)<[0, T1x U,
r=1,...,s r=1,2,...,58
and T-Mi, <b k=1,2,..., m; where
sup p, (g, x, 2)) + sup D; (hof1 (, x))<Mi; for every i L
 x, 2)E[0, TIx U, x U, (t, x)c[0, TIx U,

5%
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Now, we shall give some definitions and theorems (see [2])

Definition 1. Let I be a subset of 2 and Q&M implies co Q< IN.
Further, let (4,<) be a partially ordered set. The measure of noncompactness

¢ is a function ¢:IM — 4 so that ¢ (co Q)= (Q).

Definition 2. F:AxM — E, MCE is Y-densifying if the implication
{YIFAx D=0 (@)} = {Q is compact} holds

The measure ¢ is:
a) monotone if Q,CQ, implies ¢ (Q,)<y(Q,) for every Q,, 0,<M.

b) algebraic semiadditive if §(Q,+0Q)<Y(Q)+¢(Q,) for every Q,,
o,cMm.

¢) semihomogeneous if ¢ (zQ)=|z| ¢ (Q) for every QI and z-complex
number.

d) continuous if for every Q& I, pC P, e>0 there exists a neighbourhood
V of the origin so that:

[$(2) @)~ (2) (p) | <
where Q, and @, are such that @ CQ,+V and Q0,C0Q, +V.

e) I-regular if {(Q)=0 implies that the set Q is totally bounded.

f) 2-regular if for every totally bounded set Q the equality ¢ (Q)=0 holds.
For example, Kuratowski’s measure of noncompactness has all these properties.

Theorem A [2]. Let R be a closed § and convex subset of a locally convex
space E, let § be a measure of noncompactness defined on E and F be b a y-den-
sifying mapping of R into R. Suppose that one of the following two conditions
is satisfied:

L. For every (x,CR, QCR, Q#9) 4 ({x,} UQ=14(0Q).
IL. { is semiadditive and invariant in respect to translation.

Then v (P, R)=1.

Theorem B (Theorem 2 in [5]) Let G be a closed and convex subset
of the topological Hausdorff locally convex, complete space E and S, T two
mappings of G into E satisfying following conditions:

1. For every x, y& G, Tx+ SyCQG.
2. a) For every ic1 there exists q(i)>=0 and f:I — I such that
Pi(Tx—Ty)<q () ppy (x—) jor every x, yC G

b) For every icI and nEN there exist a,(i)>0 and g (i)E1 such that
for every xCE, n€N the inequality pm) (x)<a, (i) Py (x) holds.
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¢) The series
o n—2

> (ITalrx®la,_ )
n=1 k=0

is convergent.

3. The mapping S is continuous and SF is relatively compact set.
Then there exists at least one point x,&G such that:

Sxy +Txy= X,

Theorem 1. Let { be a measure of noncompactness defined on E
which is invariant in respect to translation and has the properties a) —f).
Further, suppose that the mapping f,:[0, T] xU, — E is uniformly continuous
and satisfies the following conditions:

(*) For every bounded set MU, and for every t<(0, T
b(f, 6 M)SL (8,4 (M)

where L is a mapping from [0, T]x[0, o) — [0, 00) so that the problem
2’ =L(t, z); z(0)=0 has one and only one solution z(t)=0, t&[0, T).

If the mappings f, and f, satisfy conditions 1. — 3. and if either condi-
tion 1 or 11 is satisfied there exists at least one solution of the equation (1)
which is defined on [0, T].

Proof: Let B'([0, T], E) be the set of all continuously differentiable
mapping from [0, T] into E. The topology in % ([0, T], E) is defined by the
family of the seminorms:

13,.(;)= sup p,[x()]+ sup p,[x (2)]
tc[0, T] tefo, 71

It is known that 41([0, T], E) is, in this topology, a complete locally convex
space. The measure of noncompactness Lp%l on %1 ([0, T, E) is defined in the
following way. Let 2)38%1 be a family of all bounded sets QC % ([0, T), E) for
which the set Q'={x' (f)| x&Q} is equicontinuous. The measure q)%l is introdu-
ced by: dcon () ()= § (/) and maps Mz into F (0, 71, B). % (0, T}, E) s
partially ordered by the relation <:f,<f, & f;(0</(®) V¢€[0, T].

Let

Vii={%| XEB1 (0, T1, E), x Q) =g, py(x (1) =X (L) <M1, =1, |

for every (t,, t,) [0, T} i€l
Vaje={x, x€B'(0, T}, E), p;, (¥’ (1) — z))<¢, for every
t<[0, T} r=1,2,...,s

¢ (| tl—tzi)}

V3,,-={x, xEFL(0, T}, E), p; (x' (1) —x' ()< 1—L()

il
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where:
@, (m)=sup p;(g (t1 » X (1), x @) —g @y, x(8), x’ @)+

iEl_QlVl,,-ﬂ(éle,j,) lt,—t,|<n
+sup p, (hy £, (t, x(t)—hof, (tyy X (1))
xeav, ,.m(rrj1 Vi) |1~ t,|<n.
In is evident that ¢, (%) — O when  — 0. In [1] it has been shown that
V:iQI Vl’im(rél Vz,j,)ﬂ(if;VL,-)

is closed and convex subset of F1 ([0, T), E.)
The equation (1) is equivalent to the integral equation:

) x (£)=x, +0f gls, x(s), x'(s)] ds +0f ho f, 18, x (5)] ds

The mappings 7 and S will be defined as follows:

Tx = hoof Sils, x(8)]ds

Sx=x, +0f gls, x(s). x' (s)]ds.

Our aim is to prove that the mapping T+ S, the set ¥ and the measure
q;%m satisfy the conditions of the theorem A. As it has been shown in [3], T+ S

maps V into V. Next we shall show that the set ¥ is a bounded subset of
10, T, E). It follows:

Pi(x(1)=p;(x (@) —x0)+x(0)<p, (x () —x(0) +p, (x 0)<
<M, |t|+p,(x)<M,; T+p,(x,) for every xCV, since VCN\V,, Further

icl
B0y,

and so, by continuity of the seminorms p,,

x(t+h)—x(t)]: limp.[x(t+h)_x(t)]<M.
h h o

!

P @)=p) 1im

h—>0 h—>0

This means that the set ' is a bounded subset of %' ([0, T, E). From

VC NV, it follows that the set V' ={x'(f), x&V} is equicontinuous and from
icl

Vo={x(0)|xEV}=x, that the set ¥, is compact. Using these facts and the con-
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dition (%) we conclude, by theorem 1.4.2%[2], that the mapping T is up%l-densi-

fying on the set V. Further the set g ([0, T], Uy, U,) is compact and the measure
¢ is 2-regular, so the mapping S is QJ%,-densifying on the V. From this we

conclude that the mapping 7+ S is also &L%m-densifying on the set V' C 9]2%91. Now

it is easy to show that all conditions of the theorem A are satisfied and
that therefore exists at least one solution of the equation (2), i.e. (1).

In [1] f, is a contraction type mapping so our theorem generalizes the
resuit of Mosyagin and Povolockij.

Theorem 2. Suppose that the conditions 1., 2. and 3. are satisfied and
that the mapping f, satisfies the following conditions:

i) For every icI, there exist q(i)=>0 and the mapping ¢:1 —> I so that
P, (i (s X)—£, (6 ) <4 () Py iy (X =)
for every t&[0, T and x,yEU,

il) For every i<I and n=N there exist
a,(i)>=0 and g:1 — I so that:

Por iy () <a, () Py (X) for every x& E and

i€l yenN

e ] N 1
R-sup Tim y/T]4le* D] a, (%00 and ——>1.
Vil Rh,
Then there exists at least one solution of the equation (1) defined on

. 1
[0, T,% Tl-:mm(T, E_ l).

0

Proof: Let 7, S, V and %! are as in the theorem 1. We shall prove
that all conditions of the theorem B are satisfied. Indeed we have

P(Tx, = Tx;) =y {sup p, [[(£, s, %, () =1, (5, %, (5))) ds] +
t<[0, 7] O
+sup p, L, (1, %, () =1, (t, %, OD}<hy (T+1) g () sup p, o (x,(8) =
te[0,7] terr.o PO
—2%,(O)=hy (T+1)40) Py (1= %) =Q (), (x,— %) oand
Pon iy @) =, SUP_ Poniyy (FO)F SUP Py (D)

<a,(i) Sup Pyey (x (1)) +a,() sup p, (¥ (1)) = a,(i) Py ()
te [0, T] tc 0, 7]

* In fact this theorem was proved for Banach spaces but it can be easily proved also
in the case of locally convex spaces.
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Further the series

(o) n—

2 0o n-2
2 (ITole* @D a, @ = 2 [h @+ D" TT qle* ()] x a,_,()
n=2 k=0 n=2 k=0

is convergent for T<1—— 1.
0

The conditions 1. and 4. can be easily verified as in [2]. For o (i)=i
for every i< I from our theorem follows the result in [1].

In the special case when f (¢, x)=A4(f)x we can replace the conditions
i) and ii) by the following:

For every i<1I and k& N there exist ¢;(k)>>0 and ¢:I — I, independent
from k so that

pi(A@) A@) .. . A(t)x—A@) A) ... AW N< ) poiy (x—)
for every x, yEU, and
(s ty oo - 1)E[0, TIx [0, T]x - - - x[0, T] so that
k — times

0<y<ty <+ - - <1 <T.

sup T T oy min (7, L)
R—isg? Jlerr]b ol ;éoo{h-—mm T, Rh,

For the proof see [4].
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