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1. Introduction. A sequence {s,} is said to be summable (C, p, B)
for p>—1, B> —~1 and p+B> -1, to the sum s, if

(1.1) ﬁ,gzsj,p,,g/Eﬁ,B—)S, as n—» oo,

where E% 5 and S% g are defined by

Z Ef g x"=(1 —x)~»+8+1) and 2 Snex'=(1—x)"P Z Ebs, xn.
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When p>0, (C, p, ) method defined by (1.1) is a regular Noérlund method
and {C} g} is a regular Hausdorff transform of the sequence {s,) generated by
8
» T .
the sequence { b; = (p+B+l)P(n+B+l)}. If we put 8=0 in the (C, p, B)
E rg+nHDIr'n+p+p+H
method, we get the familiar Cesaro method (C, p) of order p> —1. A. Zyg-

mund [9] proved that the methods (C, p, B) and (C, p) are equivalent. Sum-
mability (C, O, B) means the convergence.

For p>~1, B> —1 and p+B>—1 let Th g=th s/En s and

(1.2) 21 12 gx"=(1—x)—I”ZIEEn(sn——sn_l)x”= ,ZoEﬁ_l X" D te Xt

n=1
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Here
t2,9=ESn(s,,—Sn_1), tﬁ,ﬁz ZlEft:i t?,Ba t5+{38— Z En r tr 8
and
5 I =
(1.3) Thhe —ris O EVIELg Tl (for 8>0).

nf r=1

Let f(x)~ZE,,s x". Then ZS,,ax” (1 —x)~2f(x). Hence

(1.4) E(P+@)Snax" (P+B) (1 -x)77f(x)
and

D S xprRen— xp+B (1 — x)=(2-D f(x).

n=0

Therefore

(1.5) z (p+B-+n) S5 an=x—(r6=D {xﬂ+ﬁ(1—x> @D f(x)}.

n=0

From (1.4) and (1.5) we get

(1.6) Z(P-FB-I—?I)S,,BX ‘*(p+B)S,, g x"

n=0 nLO

=—@E+D=x)2xf(x)+x(1-x)""Df (x)

=(l-—-x)-» > ESn(s,,—s,,;l)x”: > thex" by (1.2).
n=1

n=1

From (1.6) we get t5s=(p+B+n)Shs —(»p+B)Shs  and hence

(1.7) Tha=(p+B)(Crg —Chp)=n(Che—Chip)

A sequence {s,) is said to be summable by the generalized Abel method

(4,), for a real number o> — [, to the sum s, if > Ejs,x" is convergent for

n=

all x in 0<x<1 and A4, (x)=(l-x)**! ZE s"x"—>s, as x->1-0. This is

briefly denoted by s,— s(A4,). This method was introduced independently by
A. Amir Jakimovski ([1] p. 374) and C. T. Rajagopal ({8]p. 93). The proper-
ties of this method were discussed in detail by D. Borwein [2]. In the sequence
to function transformation method (4,) if we put «=0, we get the familiar

Abel method (4,) or (4).
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A sequence {s,} is said to be summable by the generalized Abel —(C, p, B)
method (44 C,p, B), for p>—1, a>—1, B>—1 and p+B> -1, to the

sum s, if ¥ E; Ch gx" is convergent for all x in 0<x<1 and
n=0

(1.8) AL ()=(1—x)p+1 S EsChgx"—>s, as x—> 10, i.e. Ch =54y
n=0

The sequence to function transformation method (4,; C, p, 8) reduces to

(i) generalized Abel-Cesaro method (4,; C, p) when 3=0,

(if) Abel—(C, p, B) method (4; C, p, B) when «=0,

(iii) familiar Abel-Cesaro method (4; C, p) when «=0 and $=0,
(iv) generalized Abel method (4,) when p=0 and

(v) familar Abel method (4) when p=0 and «=0.

In this paper strong summability methods {C, p, B}, [C, p, Blx, {4 C, p, B}k
and [A,; C, p, Bl based upon summability methods (C, p, B) and (Ay; C, p, B)
are defined, and various implications between these strong summability methods
and the ordinary summability methods (C, p, B), (C, p) and (A, C,p, B) are
investigated as generalizations of the corresponding results due to T. M. Flett [4]
and B. P. Mishra [6 and T). The ‘o’ depth and 'O’ depth Tauberian theorems for
summability methods {C, q, B}, and {A,; C, q, B}, with summability and bounded-
ness [C, p+ 1, Bl, as Tauberian conditions are established as generalizations of
the corresponding results due to T. M. Flett [4). In the latter part the 'o’ depth
and 'O’ depth Tauberian theorems for the ordinary summability method (A,; C, 4, B)
with the Tauberian conditions (C25 — C2E1 g) =0 (=) and (C5Jg = CLM1 g) = O (n~1)
are deduced.

For any number k>1 used as an index, we write k' =k/(k— 1), so that k
and k' are conjugate indices in the sense of Holder’s inequality. 1/k'=0
when k=1.

We use D(a, b.c,...) to denote a positive constant depending only
on a, b, c,....not necessarily the same on any two occurrences, D by itself
will denoie a positive absolute constant.

Inequalities of the form M<D(a, b,c,...)N are to be interpreted as
meaning “if the expression N is finite, then the expression M is also finite
and satisfies the inequality”.

2. Strong Summability. A sequence {s,} is said to be strongly
summable (C, p+1, ) with index k, or summable {C, p, B}, to the sum s
for p>—1, p>—1, p+B>—1and k>1, if

N
2.1) (N+ 1)1 S [Chg—s[=0(1), as N> co.

n=0

If (2.1) is true for some p> —1, then {s,} is said to be summable {C, *, B},
to s. The sequence {s,} is said to be bounded {C, p, B}, if

N
(2.2) (N+D-' S [Chal*=0(1), as N—> .
n=0
If (2.2) is true for some p> -1, then {s,} is said to be bounded {C, *, B};.
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A sequence {s,} is said to be strongly summable (4,; C,p, B) with
index k, or summable {4,; C, p, B}, to the sum s for p> —1, a>—1, B> —1,

p+p>~—1and k>1, if the series 3 E, C;gx" is convergent for all x in
n=0
0<x<1 and 4%® (x) defined by (1.8) satisfies the condition

R
(2.3) (1—=R) [ |42P (x)—s5 |*(1—x)~2dx=0(1), as R— 1-0.
0

The sequence {s,} is said to be bounded {4,; C, p, B} if

R
(2.4) (1-R) [ [42® @) [ (1-x)2dx=0 (1), as R-> 1 -0.
0

Summability {C, p, B}, to the sum s is equivalent to ICﬁ,',afs k>0 C, 1),
as n->oo and summability {4,; C, p, B}, to the sum s is equivalent to
lA&”’ 2 (x)-s]k—> 0(C, 1), as x—1~0. This follows by integration by parts.

Let y>1 be a fixed number. Then condition (2.1) is equivalent to

(2.5) {NY—l i |Ch s (n-l-l)‘Y}”k=o(l).
n=N

sup
As k— oo the expression on the left of (2.5) tends to n>NfC5, 6-4, so that
the limiting form of (2.5) as k— o is that C}, s —s=0(1), as n— . Thus
summability (C, p, 8) may be regarded as the case k = oo of summablity {C, p, B},.
It is necessary to transform (2.1) into (2.5) in order to obtain a reasonable

definition of summability {C, p, B}, for k=o0. If we take the (1/k)* power
Sup

of both sides of (2.1) and make k — o, we obtain formally n < N‘Cf,, g—S l =o(l),

and this implies that Cjg=s for all n. Boundedness (C, p, B) may be
regarded as the case k= o of boundedness {C, p, 8},.

Similarly summability (4,; C, p, B) and boundedness (4,; C, p, B) may be
regarded as the case k= oo of summability {4,; C, p, B}, and boundedness
{4,; C, p, B}, respectively.

We shall now define strong summability methods involving the expres-

sion T, 5. A sequence {s,} is said to be summable [C, p, B,, for p>—1,
a>—1, p+B>—1and k>1, if

N .
(2.6) (N+1)"1 S | Thg*=0(1), as N—co.

n=1

We may also regard the condition

2.7 T a=0(l1), as n— oo
as the case k= of the summability {C, p, 8],. The sequence {s,} is said ot
be bounded [C, p, Bl, if (2.6) or (2.7) holds with o replaced by O. If (2.6)

or (2.7) is true for some p> —1, then the sequence {s,} is said to be
summable [C, *, B],, and similarly in the case of boundedness.
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Corresponding to summability [C, p B], we have the generalized Abel-
(C, p, B) summability [4,; C. p, B], defined as follows. A sequence {s,} is said
to be summable [4,; C, p, Bly, for p>—1, a>—-1, B>—-1, p+B> -1
and k> 1, if

(2.8) (1-R) [ (1=xy-2|A"® (x) [fdx=0(l), as R—1-0.
0

When k = o, the condition (2.8) is being replaced by
(2.9) (1-x)ALY (x)=0(1), as x> 1-0.

The sequence {s,} is said to be bounded [4,; C, p, B];, if (2.8) or (2.9) holds
with o replaced by O.

When (=0, summability methods {C, p, 8}, and [C, p, B], reduce respec-
tively to the summability methods {C, p}, and {c, p}, defined by T. M. Flett [4].

When p=0, summability method {A4,; C,p, B}, reduces to summability
method {A4,},. This definition ot summability {4,}, is equivalent to the definition
given by B. P. Mishra [7], being obtained by obvious changes of variable and
parameter. When a=0 and p=0 summability method {4,; C, p, B}, reduces to
summability method {4}, defined by T. M. Flett [4]. When «=0 and $=0
summability method {4,; C, p, B}, reduces to summability method {4; C, p},.
This definition of summability {4; C, p}, is equivalent to the definition given
by B P. Mishra [6], being obtained by obvious changes of variable and
parameter.

When p=0, summability method [4,; C, p, Bl reduces to summabiliiy
method [A4,],. The condition to be satisfied by {s,} for [4,], summability is
equivalent to the condition imposed in the known result of B. P. Mishra
([7] p. 122, Theorem 4), being obtained by obvious changes of variable and
parameter. When «=0 and p=0 summability method [4,; C, p, B]; reduces to
summability me:thod [4], defined by T. M. Flett [4], and denoted by h'm as
{A};. When a=0 and B=0 summability method [4,; C, p, B, reduces to sum-
mab'lity method [4; C, p],. This definition of summability [4; C, p], is equivalent
to the definition given by B. P. Mishra [6], being obtained by obvious changes
of variable and parameter.

3. Theorems. We shall establish the implications between the summa-
bility methods defined above.

3.1. Theorem 1. (i) Let p>—1, B> -1, p4+B>—1 and l<k< .
If a sequence {s,} is summable {C, p, B}, to the sum s, then it is summable
{C, p, B},» to the same sum s for every m such that 1 <m<k.

(i) Let p>—1, a>—1, B>~1, p+p>—1 and I<k<oo. If a se-
quence {s,} is summable {4,; C, p, B}, to the sum s, then it is summable {4,;
C, p, B},, to the same sum s for every m such that 1<m<k.

(i) If p>—1, a>—1, B>—1, p+B>—1 and 0<m<k< oo, then for
any s

7

N , ’ I 1/m N » AR
(3.1.1) {(N+1)“ S Che—s } <{(N+1)‘1 > !Cn,sﬂ}
n=0

n=0

< %uplcﬁ,’, g —s|

LSS
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and

R
(3.1.2) {(1-R)fIA;”""(x)—si'"(l~x)-2dx}”’"
0

R
<{(1—R)J\A;”"”(x)—s1"(1—x)—2dx}""

<Sup‘A§f”B)(x)—s|<sup|Cﬁ,’,g—si.

(iv) Throughout (i)—(iii) we may replace {C, p, B} by [C, p, Bl, {4.; C, p, B}
by [Ay; C, p, B] (with omission cf the sum s), (C%. 5 —s) by T% 5 and AV P(x) —s
by (1-x) ALY (x).

The first inequalities in (3.1.1) and (3.1.2) follow from Hélder’s inequa-
lity. The second inequalities in (3.1.2) and (3.1.1) are obvious and the third
inequality in (3.1.2) follows from the identity

AL () = (1~ )“+1ZE Chgx" for 0<x<1,

since (1 — x)*+! Z Eu x"=1. The inequalities (3.1.1) and (3.1.2) are analogues

of (i) and (ii) for boundedness {C, p, B}, and {A4,; C, p, B},.

Theorem 1 is a collection of elementary results in the direction of decrea-
sing k. The complicated results in the direction of increasing k are collected
together in the fcllowing Theorem.

3.2. Theorem 2. Let p>—1, > —1, p+B> —1 and either 1 <k«

L
<m< oo and q>p+~—r—~!~ or l=k<m<ow and g>p+ — — .
k m k m

(i) If a sequence {s,} is summable {C, p, B}, to the sum s, then it is
summable {C, ¢, 8},, to the same sum s.

(ii) For any s

N /m
(3.2.1) Sup [(N+ D1 [Cle —s'"}
N n=0

N ) Uk
<Dk, m, p, 4, 8) SUP[(N+I)“‘ 5 ycﬁ,g_s{} .
N n=0
(i) In (i) and (ii) we may replace {C, p, B} by [C, p, B] (C, s—s) by
Tn. s and (C7 g—5) by T7 g.
3.3. Theorem 3. Let p> —1, B> —1, p+B> —1 and either k> and
g=>p* 1k or k=1 and q=p+1.

(1) If a sequence {s,} is summable {C, p, £}, to the sum s, then it is sum-
mable (C, g, ) and hence (C, q) to the same sum s.
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(ii) For any s

N
Sup |Ck,s—s|<D(k, p, g, ) Sup {(N+ n="ty
N

n=0

1/k

Cﬁ, Q—-S[k}

(iii) If a sequence {s,} is summable [C, p, B;, then Th g = 0(l), as n— oo.
8

N 1/k
(iv) SxPlTﬁlv,skD(k, », 4, B)Sup {(N+ nrs |T‘n’,al"} :
n=0

Theorems 2 and 3 can be proved by the arguments similar to that of
Theorems 2 and 3 of T. M. Flett [4].

Remark. From theorems 1 and 3 we get that a sequence {s,} is sum-
mable {C, *, B}, if and only if it is summable (C, *, B).

34. Thecrem 4. Let p>—1, g0, a>—1, >—-1, p+B>—1 and
1<k < oo,

(i) If a sequence {s,} is summable {C, p, B}, to the sum s, then it is sum-
mable {4,; C, g, B},, to the same sum s for every m (1 <m< o).

(ii) If a sequence {s,} is summable [C, p, B],, then it is summable
[4a: C, g, B, for every m(l <m< ).

Proof of Theorem 4. If a sequence {s,} is summable {C, p, B}, to
the sum s, by Theorem 3 (i), it is summable (C, p’) where p'>p+1/k if 1 <k
and p’>p+1 if k=1, to the same sum s and hence it is summable (4,) to s
by the following Lemma 1.

Lemma 1. (see D. Borwein [2].) If a sequence {s,} is summable (C, p)
(p> —1) to the sum s, then it is summable (4,) (x> —1) to the same sum s.

Now by the following Lemma 2 we observe that {s,} is summable
(4, C, q, B) to s, since {Cz,g} is a regular Hausdorff transform of {s }.

Lemma 2. (see A. Amir Jakimovski [1]). Let o> — 1 be a real number.
If a sequence {s,} is summable (A,) to the sum s and {h,} is a regular Hausdorff
transform of {s,}, then {h,} is summable (4,) to the same sum s.

Hence by Theorem 1 (ii) with k= oo, we gef that the sequence {s,} is
summable {4,; C, ¢, B},, to the same sum s for every m. Hence (i) is proved
and (ii) follows from (1) applied to the sequence {n(s,—s, ,)}.

The special case ¢=0, a=0 and B=0 of this theorem is a known result
of T. M. Flett ([4] p. 120, Theorem 4). The known result of D. Borwein
([2] p. 320, Theorem 4) which is used to prove this theorem is a special case
of this theorem with =0, =0 and k=m=co. This theorem also includes
the known result of B. P. Mishra ([6] p. 316, Theorem 6) as a special case
with «a=0, =0 and g=p, k=m. And further the known result of B. P. Mishra
([7] p. 125, Theorem 5) is a particular case of this theorem with 3=0 and
q=0.

Theorem 4 establishes the connection between summability {C, p, B}, with
summability {4,; C, ¢, B},, and summability [C, p, 8], with summability [4,;
C, g, Bl,,- We have also the following convexity theorem.
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3.5. Theorem 5. Let g>p>—1, B> —1, p+f>—1 and 1 <k< o

(i) If a sequence {s,} is bounded {C, p, B}, and summable {C, %, 3}, or
(C, =, B) to the sum s, then it is summable {C, q, B}, to s.

(#) If a sequence {s,} is bounded [C, p, B, and summable [C, %, B],, then
it is summable [C, g, B],.

The proof of this theorem follows by an argument simifar to that of
Theorem 5 of T. M. Flett [4] using the following Lemmas 3, 4 and 5.

Lemma 3. Let p>—1, B>—1, p+B>—1,3>0 and I <k<ow. If a
sequence {s,} is bounded {C, p, B}, and summable {C,p+1, B}, to the sum O,
then it is summable {C, p+3, B}, to O.

Lemma 4. (see A. Zygmund [9)). If p>—1, p>—1 and p+p> -1,
then the summability methods (C, p, B) and (C, p) are equivalent.

Lemma 5. (see E. Kogbetliantz [5]). Let q>p> — 1. If a sequence {s,}
is bounded (C, p) and summable (C) to the sum s, then it is summable (C, q) to
the same sum s.

The implications between the two types { } and [ ] of strong summa-
bility methods are established in the following theorems.

3.6. Theorem. 6. Let p>—1, B>—1, p+B>—1 and l<k<oo. If
a sequence {s,} is summable {C, p, B}, to the sum s, then it is summable

[C,p+1, Bl
The proof of this theorem follows by an argument similar to that of
Theorem 6 of T. M. Flett [4].

37. Theorem 7. Let p>—1,8> 1, p+B>—1 and 1 <k< . If a
sequence {s,} is summable {C, *, B}, to the sum s (or summable {C, *, B} to s)
and is summable [C, p+ 1, Bl,, then it is summable {C, p, B}, to s.

Proof of Theorem 7. Let 1 <k< o. Without loss of generality we may
assume that the sum s=0. from Theorem 2 (i) we get that if a sequence {s,}
is summable {C, *, #}, to the sum O, then it is summable {C, p+v, B}, for
some integer v to O. And from Theorem 2 (iii), we get that if a sequence {s,}
is summable [C, p, B],, then it is summable [C, p+v, B],. Hence by the
repeated use of the following Lemma 6, the result follows.

Lemma 6. Let p>—1, B>~—1, p+B>—1 and 1 <k<oo. If a
sequence {s,} is summable {C, p+ 1, B}, to the sum O and is summable [C, p + 1, B];,
then it is summable {C, p, B}, to O

This can be easily proved using (1.7) and Minkowski’s inequality.
Consider the case k= o. From (l.3) we get for v>2
(3.7.1) y A S— z EY S EZY T where v/ =y — 1.

P+Y
nB r=1

From (3.7.1) we get that

(3.7.2) T =0(l), as n— oo implies T%5' =0 (1), as n—» co.
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From (1.7) we have C5l0 ' =(p+B+vy) " TW& +CL.
Hence whenever T%'5'— 0 and C4'5— s, as n— oo,

(3.7.3) Chid™ > 5, as n—>oo.

Therefore when k= o, the result follows from (3.7.2) and the repeated use
of (3.7.3). This completes the proof of Theorem 7.

Remark. The conditions in Theorem 7 are also necessary. This fellows
from Theorems 2 (i) and 6.

Theorem 7 is a Tauberian theorem of ‘o’ depth. The corresponding
Tauberian theorem of ‘O’ depth is the following theorem.

3.8. Theorem 8. Let g>p>—1, f>—1, p+B>~1 and 1<k< .
If a sequence {s,} is summable {C, *, B}, to the sum s (or summable (C, *, B)
to s) and is bounded [C, p+ 1, Bl, then it is summable {C, q, B}, to s.

Proof of Theorem 8. If a sequence {s,} is summable {C, *, 8},, then
by Theorem 6 it is summable [C, *, B],. Now since it is also bounded [C, p + 1, B,
by Theorem 5 (ii) it is summable [C, g, 8], for every ¢>p* 1. From this and
Theorem 7 the result follows.

Remark. As a consequence of Theorem 7 and 3 (i) we get that if a
sequence {s,} is summable {C, *, 8}, and summable [C, p, B],, then it is sum-
mable (C, p). Further as a consequence of Theorem 8 and Theorem 3 (i) we
get that if a sequence {s,} is summable {C, *, 8}, and bounded [C, p, 8], for
k>1, then it is summable (C, p), and as a consequence of Theorems 8 and
2 (i) we get that if a sequence {s,} is summable {C, *, 8}, and bounded [C, p, 8],,
then it is summable {C, p, B},, for every finite m> 1.

The case B=0 of this theorem is a known result of T. M. Flett [4].
The case =0 and k= oo of Theorems 6,7 and 8 are well known results in
the theory of ordinary Cesaro summability ([5] pp. 15, 30 and 31).

Now we shall investigate the corresponding results for the generalized
Abel — (C, p, B) method (4,; C, p, B).

39. Theorem 9. Let p>—1, a>—1, f>—1 and p+B>—1.

(7)) If a sequence {s,} is summable {A,; C, p, B}, to the sum s and is also
summable [A,; C, p, Bl, where k> 1, then it is summable (A,; C, p, B) to the
same sum S.

(i) If a sequence {s,} is summable {A,; C, p, B}, to the sum s and is also

bounded [A,; C, p, Bli, where k>1, 'then it is summable (A,; C, p, B) to the
same sum s.

(iii) If a sequence {s,} is summable {A,; C, p, B}, to the sum s and is also
bounded [A,; C, p, Bl,, then it is summable {A,; C, p, B}, to the same sum s
for every finite m> 1. ,

Proof of Theorem 9. Since AY®(x) is a power series, 47 ®(x)—s
vanishes only at a finite number of points in 0 <x< R<1, so that |4%® (x)—s]
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is differentiable in (0, R) except at a finite number of points. Hence we have
for any k> 1, by integration by parts,

R
(3.9.1) f|A§f" ® (x)—s]"(l——x)‘de: [‘Aff' ® (x)—stk(] —x)-15
0

R
-—»kf{A&”’m(x)—wl"—l(l—x)“ljlA&”‘B)(x)—s|dx.
X
0

Since

‘Zd—!Agp'B)(x)—sf < ii—(Ac(f’m(x)”s) =[4LP (x))
dx dx

whenever the left side exists, (3.9.1) gives

R
(3.9.2) IA&”’B)(R)—s|k<(1—R)\A&"’B)(O)—slk—k(l—R)f|A§f’B)(x)—s["(l-
]

R
—x)"2dx+k(1-R) [ | AP P () —s[FT (1—x)~1 |49 (x)] dix.
0

From (3.9.2) with k=1, it follows that if a sequence {s,} is summable {4,;
C, p, B}, to the sum s and summable [4,; C, p B],, then it is summable (4,;
C, p, B) to the sum s and that if it is summable (4,; C, p, §), to the sum s
and bounded [4,; C, p. B),, then it is bounded (4,; C, p, ). Now for 1<m<
< oo, we have

R
(3.9.3) (1—R) [ | AL P (x)—s|" 1 —x)~2dx <
0

<x<(R

R
<{ Sup [4LP (x)—s[" 3} (1 =R [ | 48P (x)—s[(1—x)~2dx.
0:
0

From (3.9.3) we get that if {s,} is bounded (4,; C, p, ) and summable {4,;
C, p, B}, to s, then it is summable {4,; C, p, B},, to s for every finite m> 1.
Hence if the sequence {s,} is summable {4,; C, p, B}, and bounded [4,; C, p, B],
then it is summable {4,, C, p, B},, for every finite m> 1. Therefore the results
(i) with k=1 and (iii) are proved. Now for k>1, we have

R
(3.9.4) (1-R) [ 1479 ) —s[* 4P ()| @ —x)1dx <
0
<[A-R [|42P ) —sf (1 —x)-2ax}"
0

R
. {(1 —-R)b[(l — x)k=2 lAgp, By (x)[k}llk
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by Hdlder’s inequality. If a sequence {s,} is summable {4,; C, p, B}, to s and
bounded [4,; C, p, B], (or summable [4,; C, p, B],) for k>1, we obtain from
(3.9.4) that

(3.9.5) (=B [|47P @) —s[ ' 1 -x)~14LY (x)|dx=0(1) as R— 1-0.
0

Hence the results (i) with k>1 and (ii) follow from (3 9.5) and (3.9.2) and
the proof is completed.

The special case p=0 and «=0 of this theorem is a known result of
T. M. Flett ([4] p. 122, Theorem 9). Theorem 9 (i) includes a known result
of B. P. Mishra ([6] p. 313, Theorem 1) as a special case with « =0 and B=0,
since by a known result ({6] p. 314, Theorem 4), summability {4; C, p}, and
summability [4; C, p], are necessary and sufficient for summability {4, C; p—1},.
And further Theorem 9 (i) includes a known resuli of B. P. Mishra ([7] p. 120,
Theorem 1) as a special case with p=0, since by a known result ({71 p. 120,
Theorem 3), summability {4, }, implies summability {4,},, and by another
known result ({7] p. 122 Theorem 4), summability {4,,,}, implies summa
bility [A4,];. Because Theorem 4 of [7] is

“The necessary and sufficient conditions for the sequence {s,} to be sum-
mable {A4,, }, to the sum s are that it be summable (4,) to s and

Y

[ IyTd () Fdy=0(Y), as ¥ o0
0
where

T.(»)=+p) D5 Eys, y"[(1+p)".
n=0

Hence yT,’ (y)=x(1—x) A, (x) where y=1~x—, and
—-x

00 1
[ 1yTe ) [edy = [ 6 (1 =202 | 4,/ (x) [F dx.
R 0 0
Hence f [¥T,' (W)|Fdy=0(Y), as Y-> o, is equivalent to
0 R
(1-R) [ x*(1—x¥-2|4,’ (x)[Fdx=0(1), as R— 10,
0

which is equivalent to
R

(A-RB [ (1-xy2|4, (x)|Fdx=0(1), as R— 1 —0.
0

Hence by definition {s,} is summable [A4,],.

We shall now pass on to the generalization of the ‘o’ and 'O’ Tauberian
theorems for (4,; C, p. 8) method.

3.10. Theorem 10. Let p>—1, ¢>0, a>—1, >—1, p+8>—1
and 1<k<oo. If a sequence {s,} is summable {A,; C, q, B}, to the sum s and
is also summable [C, p+1, B, then it is summable {C, p, B}, to s.
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Proof of Theorem 10. Since {s,} is summable [C, p+ 1, ], we obtain
by Theorem 4 (ii) that, it summable [A,; C, g, Bl,. By hypothesis it i» also
summable {4,; C, q, B}, to the sum s. Hence we get by Theorem 9 (i) that,
it is summable (4,; C, g, B) to the same sum s.

Since {s,} is summable [C, p+ 1, 8], from Theorem 3 (iii) we get
re=n(Chs—Ch 1 5)=0(1), as n— oo, for p'>p+1, ie.

(3.10.1) (Cha—Clig)=0(m"), as n—>oo, for p'>p+1.

Now summability (4,; C, g, p) of {s,} to the sum s and (3.10.1) imply that it
is summable (C, %, 3) to the same sum s. This follows from the following
Lemma 7 which is proved by the author in [10] since the condition (3.10.1)
implies the condition (3.10.2) of Lemma 7.

Lemma 7. Let p’>-1, g>—1, a>~1, >—-1, p+p>~1 and
g+B8> —1. If a real sequence {s,} is summable (A C, q, ) to the sum s and

(3.10.2) lim (€ s —Chp) >0

when n>m, m—oco so that n/m—1, then {s,} is summable (C,p’,B) to the
same sum s.

Hence by Theorem 7 we obtain that the sequence {s,} is summable
{C, p, B}, to the sum s. Thus the theorem is established.

Remark. This theorem is stronger than Theorem 7 which is used in
the proof. The conditions of this theorem for summability {C, p, B}, are also
necessary. This part follows from Theorems 4 (i) and 6.

The special case g=0, =0 and B=0 of this theorem is a known result
of T. M. Flett ([4] p. 122, Theorem 10). The special case k= co of this theorem
is the following result in ordinary summability.

3.11. Theorem 11. Let p> -1, g>~-1, a>—1, p>—-1, p+f>—1
and q+B> —1. If a sequence {s,} is summable (A, C, g, B) to the sum s and
(ChH —Citl)=o(n—1) as n—>oo, then {s,} is summable (C, p, B) to the same
sum s and hence it is summable (C, p) to s.

In Theorem 11, we have ¢>—1 instead of ¢>0, since by Lemma 2
summability (4, C, ¢, 8)(g> -1, p>—1 and g+B>—1) implies summa-
bility (4, C, 4, B)(¢'>q), as {C,‘f:g} is a regular Hausdorff transform of
{CZ,B}. The last part of Theorem 11 follows from Lemma 4.

Remark. When ¢>0, the conditions for summability (C, p) are also
necessary. This follows from Theorems 4 (i) and 6 with k=m= co.

We have also the following Tauberian theorem which is an immediate
consequence of Theorems 10 and 3 (i).
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3.12. Theorem 12. Let p>—1, g0, a>—1, B>—1,p+B>—1 and
either q’>p+% and k>1 or q'>p+1 and k=1. If a sequence {s,} is summable

{Ay; C, q, P} to the sum s and is also summable [C,p+1, B, then it is sum-
mable (C, q', B) to the same sum s and hence it is summable (C, q') to s.

Theorem 10 can be deduced from the following ‘O’ Tauberian Theorem 13,
but it is more elementary than Theorem 13.

3.13. Theorem 13. Let p'>p>—1, ¢>0, a>—1,8>—-1,p+p> —1
and 1<k<oo. If a sequence {s,} is summable {A,; C, q, B}, to the sum s and
is either bounded {C,p’, B}, or bounded [C, p-+1, B, then it is summable
{C', p', B} to the same sum s.

Proof of Theorem 13. By the analogue of Theorem 6 for bounded-
ness, we obtain that, if a sequence {s,} is bounded {C, p, B},, then it is bounded
[C, p+1, Bl,. Hence it is bounded [4,; C, g, Bl by the analogue of Theorem
4 (ii) for boundedness. By hypothesis it is summable {4,; C, ¢, 8}, to s. Hence
by Theorem 9 (ii), for k>1, we get that, it is summable (4,; C, ¢, B) to s.

Now boundedness [C, p+ 1, B], implies by Theorem 3 (iv) for p’>p+1
(3.13.1) (Cos—Ch10)=0(nY), as n—co.

Hence boundedness [C, p+1, 8], and summability (4,; C, ¢, B) of {s,} to the
sum s imply that it is summable (C, %, B) to s. This follows from Lemma 7,
since the condition (3.13.1) implies the condition (3.10.2). Hence the result of
the theorem for the case k>1 follows from Theorem 8.

If k=1, then by Theorem 9 (iii) we obtain that the sequence {s,} is
summable {4,; C, g, B}, to the sum s for every finite m>1. By the analogue
of Theorem 2 (iii), we get that boundedness [C, p+ 1, B], implies boundedness
[C, *, Bl,, for every finite m> 1. Hence it implies boundedness [4,; C, g, B],, by
the analogue of Theorem 4 (it). Now the result for the case k=1 follows from
the result for the case k>1. Hence the theorem is established.

Remark. Theorem 13 is stronger than Theorem 8 which is used in
its proof.

The special case ¢g=0, a=0 and $=0 of this theorem is a known
result of T. M. Flett ([4] p. 122, Theorem 11). The special case k = o of this
theorem is the following result in ordinary summability.

3.14. Theorem 14. Let p'>p>—1,g>—1,a> —1,B8> -1, p+B>—1
and q+B> —1. If a sequence {s,} is summable (A,; C, g, B) to the sum s and
is either bounded (C,p, B) or (Chl' —C51 g)=0 ("), as n—oo, the {s,} is
summable (C, p’, B) to the same sum s and hence it is summable (C, p’) to s.

In Theorem 14, we have g> —1 instead of ¢=>0, since by Lemma 2,
for ¢>q> -1, p>—1 and g+p>—1, summability (4,; C, g, B) implies
summability (4,; C, ¢’, B), as {CZ: B} is a regular Hausdorff transform of {CZ, g}-
The last part of Theorem 14 follows from Lemma 4.

We have also the following Tauberian theorem which is an immediate
consequence . of Theorems 13 and 3 ().
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3.15. Theorem 15. Let p’>p>—1, g0, a>—1,8> -1, p+p> -1
and either q’>p’+~]1€— and k>1 or q'>p'+1 and k=1. If a sequence {s,}

is summable {A,; C, q, B}, to the sum s and is either bounded {C, p, B}, or
bounded [C, p+1, Bl,, then it is summable (C, q’, ) to the same sum s and
hence it is summable (C, q') to s.

The inequality form of Theotems 10 and 13 is the following Theorem 16
which can be proved by an argument similar to that of Theorem 10.

3.16 Theorem 16. Let p>—1, g>0, a>—1, B>—1, p+p>—1
and 1 <k<<o. Then

n=0

Sup N k 1/k Sup N 11k 1/k
N [(N+1)—1 S [Chel ] <D(k, p, B) N[(N+1)—1 S |10 }

n=1

R
+D (kg B) R (1= B [ 490 (9 (1 - x)2dx)".
0

The special case =0, oo=0 and =0 of this theorem is a known result
of T. M. Flett ([3] p. 73, Theorem 5 and [4] p. 122, Theorem 12).

The author is greatly indebted to Dr. V. Ganapathy Iyer for his help in
the preparation of the paper.

REFERENCES

[11 Amir Jakimovski, A., Some relations between the methods of summability of
Abel, Borel, Cesdro, Holder, and Hausdorff, J. Analyse Math. 3 (1953—54), 346—381.

[21 Borwein, D.,, On a scale of Abel-Type summability methods, Proc. Cambridge
Philos. Soc. 53 (1957), 318—322.

[3] Flett, T. M., Some generalization of Tauber’s second theorem, Quart. J. Math.
Oxford (2) 10 (1959), 70—80.

[4] Flett, T. M., Some remarks on strong summability, Quart. J. Math. Oxford 2)
10 (1959), 115—139.

[51 Kogbetliantz, E., Sommation des séries et intégrales divergentes par les moyen-
nes arithmétiques et typiques. Paris, 1931.

[6] Mishra, B. P.,, Some theorems on strong summability, Math. Z. 90 (1965),
310—318.

{71 Mishra, B. P., Strong summability of infinite series on a scale of Abel type sum-
mability methods, Proc. Cambridge Philos. Soc. 63 (1967), 119—127.

8l Rajagopal, C. T.,, Theorems on the product of two summability methods with
applications, J. Indian Math. Soc. 18 (1954), 89—105.
91 Zygmund, A, Bull. de I’Acad Polonaise (Cracow) A (1927), 309—331.

[10] Jeyarajan P. A., 4 Tauberian theorem for (A«; C, p, B) summability, Portu-
galiae Mathematica, 34 (1975) To appear).

Annamalai University,
Annamalainagar,
India.



	85.tif
	86.tif
	87.tif
	88.tif
	89.tif
	90.tif
	91.tif
	92.tif
	93.tif
	94.tif
	95.tif
	96.tif
	97.tif
	98.tif

