THEOREMS ON STRONG SUMMABILITY

P. A. Jeyarajan

(Received November 5, 1971)

1. Introduction. A sequence \(\{s_n\} \) is said to be summable \((C, p, \beta)\) for \(p > -1, \beta > -1 \) and \(p + \beta > -1 \), to the sum \(s \), if

\[
C^p_{n, \beta} = S^p_{n, \beta}/E^p_{n, \beta} \to s, \text{ as } n \to \infty,
\]

(1.1)

where \(E^p_{n, \beta} \) and \(S^p_{n, \beta} \) are defined by

\[
\sum_{n=0}^{\infty} E^p_{n, \beta} x^n = (1 - x)^{-(p + \beta + 1)} \quad \text{and} \quad \sum_{n=0}^{\infty} S^p_{n, \beta} x^n = (1 - x)^{-p} \sum_{n=0}^{\infty} E^\beta_n s_n x^n.
\]

Here

\[
E^p_{n, \beta} = \sum_{r=0}^{n} E^p_{r, \beta}, \quad S^p_{n, \beta} = \sum_{r=0}^{n} S^p_{r, \beta}, \quad E^p_{n, \beta} = E^p_{n, \beta} = \binom{n + p + \beta}{n} \frac{n^{p + \beta}}{\Gamma(p + \beta + 1)},
\]

\[
E^p_{n, \beta} = \sum_{r=0}^{n} E^p_{n-r} E^p_{r, \beta}, \quad S^p_{n, \beta} = \sum_{r=0}^{n} E^p_{n-r} S^p_{r, \beta}
\]

and

\[
C^p_{n, \beta} = \frac{1}{E^p_{n, \beta}} \sum_{r=0}^{n} E^p_{n-r} E^p_{r, \beta} C^p_{r, \beta} \quad \text{for } \delta > 0.
\]

When \(p > 0 \), \((C, p, \beta)\) method defined by (1.1) is a regular Nörlund method and \([C^p_{n, \beta}]\) is a regular Hausdorff transform of the sequence \(\{s_n\} \) generated by the sequence \(\left\{ \frac{E^\beta_n}{E^p_{n, \beta}} = \frac{\Gamma(p + \beta + 1)}{\Gamma(p + \beta + 1)} \right\} \). If we put \(\beta = 0 \) in the \((C, p, \beta)\) method, we get the familiar Cesàro method \((C, p)\) of order \(p > -1 \). A. Zygmund [9] proved that the methods \((C, p, \beta)\) and \((C, p)\) are equivalent. Summability \((C, O, \beta)\) means the convergence.

For \(p > -1, \beta > -1 \) and \(p + \beta > -1 \) let \(T^p_{n, \beta} = t^p_{n, \beta}/E^p_{n, \beta} \) and

\[
\sum_{n=1}^{\infty} t^p_{n, \beta} x^n = (1 - x)^{-p} \sum_{n=1}^{\infty} E^p_n n (s_n - s_{n-1}) x^n = \sum_{n=0}^{\infty} E^{p-1}_n x^n \sum_{n=1}^{\infty} t^0_{n, \beta} x^n.
\]

(1.2)
Here
\[t^0_{n, \beta} = E_n^\beta n (s_n - s_{n-1}), \quad t^\beta_{n, \beta} = \sum_{r=1}^{n} E_{n-r}^{\beta-1} t^0_r, \quad t^{\beta+\delta}_{n, \beta} = \sum_{r=1}^{n} E_{n-r}^{\beta-1} t^\beta_r \]
and
\[T^{\beta+\delta}_{n, \beta} = \frac{1}{E_n^{\beta+\delta}} \sum_{r=1}^{n} E_{n-r}^{\beta-1} E_r^{\beta} T^\beta_r \quad \text{(for } \delta > 0) \]

Let \(f(x) = \sum_{n=0}^{\infty} E_n^\beta s_n x^n \). Then \(\sum_{n=0}^{\infty} S^\beta_{n, \beta} x^n = (1 - x)^{-p} f(x) \). Hence
\[\sum_{n=0}^{\infty} (p + \beta) S^\beta_{n, \beta} x^n = (p + \beta) (1 - x)^{-p} f(x) \]
and
\[\sum_{n=0}^{\infty} S^{p-1}_{n, \beta} x^{p+\beta+n} = x^{p+\beta} (1 - x)^{-(p-1)} f(x). \]

Therefore
\[\sum_{n=0}^{\infty} (p + \beta + n) S^{p-1}_{n, \beta} x^n = x^{-(p+\beta-1)} \frac{d}{dx} \{ x^{p+\beta} (1 - x)^{-(p-1)} f(x) \}. \]

From (1.4) and (1.5) we get
\[\sum_{n=0}^{\infty} (p + \beta + n) S^{p-1}_{n, \beta} x^n = \sum_{n=0}^{\infty} (p + \beta) S^\beta_{n, \beta} x^n \]
\[= - (\beta + 1) (1 - x)^{-p} xf(x) + x (1 - x)^{-(p-1)} f'(x) \]
\[= (1 - x)^{-p} \sum_{n=1}^{\infty} E_n^\beta n (s_n - s_{n-1}) x^n = \sum_{n=1}^{\infty} t^\beta_{n, \beta} x^n \quad \text{by (1.2).} \]

From (1.6) we get \(t^\beta_{n, \beta} = (p + \beta + n) S^{p-1}_{n, \beta} - (p + \beta) S^\beta_{n, \beta} \) and hence
\[T^\beta_{n, \beta} = (p + \beta) (C^\beta_{n, \beta} - C^{p-1}_{n, \beta}) = n (C^p_{n, \beta} - C^p_{n-1, \beta}). \]

A sequence \(\{s_n\} \) is said to be summable by the generalized Abel method \((A_\alpha)\), for a real number \(\alpha > -1 \), to the sum \(s \), if \(\sum_{n=0}^{\infty} E_n^\alpha s_n x^n \) is convergent for all \(x \) in \(0 < x < 1 \) and \(\alpha_2 (x) = (1 - x)^{\alpha+1} \sum_{n=0}^{\infty} E_n^\alpha s_n x^n \to s \), as \(x \to 1-0 \). This is briefly denoted by \(s_n \to s \) \((A_\alpha)\). This method was introduced independently by A. Amir Jakimovski ([1] p. 374) and C. T. Rajagopal ([8] p. 93). The properties of this method were discussed in detail by D. Borwein [2]. In the sequence to function transformation method \((A_\alpha)\) if we put \(\alpha = 0 \), we get the familiar Abel method \((A_0)\) or \((A)\).
A sequence \(\{ s_n \} \) is said to be summable by the generalized Abel \(- (C, p, \beta)\) method \((A_{a}; C, p, \beta)\), for \(p > -1, \alpha > -1, \beta > -1 \) and \(p + \beta > -1 \), to the sum \(s \), if
\[
\sum_{n=0}^{\infty} E_n^{n+1} C_{n, \beta} x^n \text{ is convergent for all } x \text{ in } 0 < x < 1 \text{ and }
\]
(1.8) \[
A_{a}^{(p, \beta)}(x) = (1-x)x^{1+} \sum_{n=0}^{\infty} E_n^{n+1} C_{n, \beta} x^n \to s, \text{ as } x \to 1-0, \text{ i.e. } C_{n, \beta} \to s (A_{a}).
\]

The sequence to function transformation method \((A_{a}; C, p, \beta)\) reduces to

(i) generalized Abel-Cesàro method \((A_{a}; C, p)\) when \(\beta = 0 \),
(ii) Abel \(- (C, p, \beta)\) method \((A; C, p, \beta)\) when \(\alpha = 0 \),
(iii) familiar Abel-Cesàro method \((A; C, p)\) when \(\alpha = 0 \) and \(\beta = 0 \),
(iv) generalized Abel method \((A_{a})\) when \(p = 0 \) and
(v) familiar Abel method \((A)\) when \(p = 0 \) and \(\alpha = 0 \).

In this paper strong summability methods \(\{ C, p, \beta \}_{k} \), \(\{ C, p, \beta \}_{k} \), \(\{ A_{a}; C, p, \beta \}_{k} \) and \(\{ A_{a}; C, p, \beta \}_{k} \) based upon summability methods \(\{ C, p, \beta \} \) and \(\{ A_{a}; C, p, \beta \} \) are defined, and various implications between these strong summability methods and the ordinary summability methods \(\{ C, p, \beta \} \), \(\{ C, p \} \) and \(\{ A_{a}; C, p, \beta \} \) are investigated as generalizations of the corresponding results due to T. M. Flett [4] and B. P. Mishra [6 and 7]. The 'o' depth and 'O' depth Tauberian theorems for summability methods \(\{ C, q, \beta \}_{k} \) and \(\{ A_{a}; C, q, \beta \}_{k} \) with summability and boundedness \(\{ C, p + 1, \beta \}_{k} \) as Tauberian conditions are established as generalizations of the corresponding results due to T. M. Flett [4]. In the latter part the 'o' depth and 'O' depth Tauberian theorems for the ordinary summability method \((A_{a}; C, q, \beta)\) with the Tauberian conditions \((C_{n, \beta}^{p+1} - C_{n-1, \beta}^{p+1}) = o(n^{-1}) \) and \((C_{n, \beta}^{p+1} - C_{n-1, \beta}^{p+1}) = O(n^{-1}) \) are deduced.

For any number \(k > 1 \) used as an index, we write \(k' = k/(k-1) \), so that \(k \) and \(k' \) are conjugate indices in the sense of Hölder's inequality. \(1/k' = 0 \) when \(k = 1 \).

We use \(D(a, b, c, \ldots) \) to denote a positive constant depending only on \(a, b, c, \ldots \), not necessarily the same on any two occurrences, \(D \) by itself will denote a positive absolute constant.

Inequalities of the form \(M < D(a, b, c, \ldots) N \) are to be interpreted as meaning "if the expression \(N \) is finite, then the expression \(M \) is also finite and satisfies the inequality".

2. Strong Summability. A sequence \(\{ s_n \} \) is said to be strongly summable \((C, p + 1, \beta)\) with index \(k \), or summable \(\{ C, p, \beta \}_{k} \) to the sum \(s \) for \(p > -1, \beta > -1, p + \beta > -1 \) and \(k > 1 \), if
(2.1) \[
(N + 1)^{-1} \sum_{n=0}^{N} \left| C_{n, \beta} - s \right|^{k} = o(1), \text{ as } N \to \infty.
\]

If (2.1) is true for some \(p > -1 \), then \(\{ s_n \} \) is said to be summable \(\{ C, *, \beta \}_{k} \) to \(s \). The sequence \(\{ s_n \} \) is said to be bounded \(\{ C, *, \beta \}_{k} \) if
(2.2) \[
(N + 1)^{-1} \sum_{n=0}^{N} \left| C_{n, \beta} \right|^{k} = O(1), \text{ as } N \to \infty.
\]

If (2.2) is true for some \(p > -1 \), then \(\{ s_n \} \) is said to be bounded \(\{ C, *, \beta \}_{k} \).
A sequence \(\{s_n\} \) is said to be strongly summable \((A_\alpha; C, p, \beta)\) with index \(k\), or summable \((A_\alpha; C, p, \beta)_k\), to the sum \(s\) for \(p > -1, \alpha > -1, \beta > -1, p + \beta > -1\) and \(k > 1\), if the series \(\sum_{n=0}^{\infty} E_n^\alpha C_{n, \beta} x^n\) is convergent for all \(x\) in \(0 < x < 1\) and \(A_\alpha^{(p, \beta)}(x)\) defined by (1.8) satisfies the condition

\[
(2.3) \quad (1 - R) \int_0^R |A_\alpha^{(p, \beta)}(x) - s|^k (1-x)^{-2} \, dx = o(1), \quad \text{as} \quad R \to 1 - 0.
\]

The sequence \(\{s_n\}\) is said to be bounded \((A_\alpha; C, p, \beta)_k\) if

\[
(2.4) \quad (1 - R) \int_0^R |A_\alpha^{(p, \beta)}(x)|^k (1-x)^{-2} \, dx = O(1), \quad \text{as} \quad R \to 1 - 0.
\]

Summability \((C, p, \beta)_k\) to the sum \(s\) is equivalent to \(|C_{n, \beta}^{p, s}|^k \to 0\) \((C, 1)\), as \(n \to \infty\) and summability \((A_\alpha; C, p, \beta)_k\) to the sum \(s\) is equivalent to \(|A_\alpha^{(p, \beta)}(x) - s|^k \to 0\) \((C, 1)\), as \(x \to 1 - 0\). This follows by integration by parts.

Let \(\gamma > 1\) be a fixed number. Then condition (2.1) is equivalent to

\[
(2.5) \quad \left\{ \sup_{k} \left(\frac{1}{N^{\gamma - 1}} \sum_{n=N}^{\infty} \left| C_{n, \beta}^{p, s} \right|^k (n+1)^{-\gamma} \right) \right\}^{1/k} = o(1).
\]

As \(k \to \infty\) the expression on the left of (2.5) tends to \(n \geq N |C_{n, \beta}^{p, s}|\), so that the limiting form of (2.5) as \(k \to \infty\) is that \(C_{n, \beta}^{p, s} = o(1)\), as \(n \to \infty\). Thus summability \((C, p, \beta)\) may be regarded as the case \(k = \infty\) of summability \((C, p, \beta)_k\).

It is necessary to transform (2.1) into (2.5) in order to obtain a reasonable definition of summability \((C, p, \beta)_k\) for \(k = \infty\). If we take the \((1/k)^{th}\) power of both sides of (2.1) and make \(k \to \infty\), we obtain formally \(n < N \left| C_{n, \beta}^{p, s} \right| = o(1)\), and this implies that \(C_{n, \beta}^{p, s} = s\) for all \(n\). Boundedness \((C, p, \beta)\) may be regarded as the case \(k = \infty\) of boundedness \((C, p, \beta)_k\).

Similarly summability \((A_\alpha; C, p, \beta)\) and boundedness \((A_\alpha; C, p, \beta)\) may be regarded as the case \(k = \infty\) of summability \((A_\alpha; C, p, \beta)_k\) and boundedness \((A_\alpha; C, p, \beta)_k\) respectively.

We shall now define strong summability methods involving the expression \(T_{n, \beta}^{p, s}\). A sequence \(\{s_n\}\) is said to be summable \([C, p, \beta]_k\), for \(p > -1, \alpha > -1, p + \beta > -1\) and \(k > 1\), if

\[
(2.6) \quad (N+1)^{-1} \sum_{n=1}^{N} \left| T_{n, \beta}^{p, s} \right|^k = o(1), \quad \text{as} \quad N \to \infty.
\]

We may also regard the condition

\[
(2.7) \quad T_{n, \beta}^{p, s} = o(1), \quad \text{as} \quad n \to \infty
\]

as the case \(k = \infty\) of the summability \([C, p, \beta]_k\). The sequence \(\{s_n\}\) is said ot be bounded \([C, p, \beta]_k\) if (2.6) or (2.7) holds with \(o\) replaced by \(O\). If (2.6) or (2.7) is true for some \(p > -1\), then the sequence \(\{s_n\}\) is said to be summable \([C, *, \beta]_k\), and similarly in the case of boundedness.
Corresponding to summability \([C, p, \beta]_k\) we have the generalized Abel-\((C, p, \beta)\) summability \([A_x; C, p, \beta]_k\) defined as follows. A sequence \(\{s_n\}\) is said to be summable \([A_x; C, p, \beta]_k\), for \(p > -1, \alpha > -1, \beta > -1, p + \beta > -1\) and \(k > 1\), if

\[
(1 - R) \int_0^R (1 - x)^{k-2} |A_x^{(p, \beta)}(x)|^k dx = o(1), \text{ as } R \to 1 - 0.
\]

When \(k = \infty\), the condition (2.8) is being replaced by

\[
(1 - x) A_x^{(p, \beta)}(x) = o(1), \text{ as } x \to 1 - 0.
\]

The sequence \(\{s_n\}\) is said to be bounded \([A_x; C, p, \beta]_k\), if (2.8) or (2.9) holds with \(o\) replaced by \(O\).

When \(\beta = 0\), summability methods \(\{C, p, \beta\}_k\) and \([C, p, \beta]_k\) reduce respectively to the summability methods \(\{C, p\}_k\) and \(\{c, p\}_k\) defined by T. M. Flett [4].

When \(p = 0\), summability method \(\{A_x; C, p, \beta\}_k\) reduces to summability method \(\{A_x\}_k\). This definition of summability \(\{A_x\}_k\) is equivalent to the definition given by B. P. Mishra [7], being obtained by obvious changes of variable and parameter. When \(\alpha = 0\) and \(p = 0\) summability method \(\{A_x; C, p, \beta\}_k\) reduces to summability method \(\{A\}_k\) defined by T. M. Flett [4]. When \(\alpha = 0\) and \(\beta = 0\) summability method \(\{A_x; C, p, \beta\}_k\) reduces to summability method \(\{A; C, p\}_k\). This definition of summability \(\{A; C, p\}_k\) is equivalent to the definition given by B. P. Mishra [6], being obtained by obvious changes of variable and parameter.

When \(p = 0\), summability method \(\{A_x; C, p, \beta\}_k\) reduces to summability method \(\{A_x\}_k\). The condition to be satisfied by \(\{s_n\}\) for \(\{A_x\}_k\) summability is equivalent to the condition imposed in the known result of B. P. Mishra ([7] p. 122, Theorem 4), being obtained by obvious changes of variable and parameter. When \(\alpha = 0\) and \(p = 0\) summability method \(\{A_x; C, p, \beta\}_k\) reduces to summability method \(\{A\}_k\) defined by T. M. Flett [4], and denoted by him as \(\{A\}_k\). When \(\alpha = 0\) and \(\beta = 0\) summability method \(\{A_x; C, p, \beta\}_k\) reduces to summability method \(\{A; C, p\}_k\). This definition of summability \(\{A; C, p\}_k\) is equivalent to the definition given by B. P. Mishra [6], being obtained by obvious changes of variable and parameter.

3. Theorems. We shall establish the implications between the summability methods defined above.

3.1. Theorem 1. (i) Let \(p > -1, \beta > -1, p + \beta > -1\) and \(1 < k < \infty\). If a sequence \(\{s_n\}\) is summable \(\{C, p, \beta\}_k\) to the sum \(s\), then it is summable \(\{C, p, \beta\}_m\) to the same sum \(s\) for every \(m\) such that \(1 < m < k\).

(ii) Let \(p > -1, \alpha > -1, \beta > -1, p + \beta > -1\) and \(1 < k < \infty\). If a sequence \(\{s_n\}\) is summable \(\{A_x; C, p, \beta\}_k\) to the sum \(s\), then it is summable \(\{A_x; C, p, \beta\}_m\) to the same sum \(s\) for every \(m\) such that \(1 < m < k\).

(iii) If \(p > -1, \alpha > -1, \beta > -1, p + \beta > -1\) and \(0 < m < k < \infty\), then for any \(s\)

\[
\left((N + 1)^{-1} \sum_{n=0}^{N} |C_{n, \beta} - s|^m \right)^{1/m} \leq \left((N + 1)^{-1} \sum_{n=0}^{N} |C_{n, \beta} - s|^k \right)^{1/k}
\]

\[
\leq \sup_{n \leq N} |C_{n, \beta} - s|
\]
and

\[(3.1.2) \quad \left\{ (1 - R) \int_0^R \left| A_\alpha^{(p, \beta)} (x) - s \right|^m (1 - x)^{-2} \, dx \right\}^{1/m} \]

\[\leq \left\{ (1 - R) \int_0^R \left| A_\alpha^{(p, \beta)} (x) - s \right|^k (1 - x)^{-2} \, dx \right\}^{1/k} \]

\[\leq \sup_x A_\alpha^{(p, \beta)} (x) - s \leq \sup_n |C_n^{\beta} s - s|.

(iv) Throughout (i)—(iii) we may replace \(\{C, p, \beta\} \) by \([C, p, \beta]\), \(\{A_\alpha; C, p, \beta\} \) by \([A_\alpha; C, p, \beta]\) (with omission of the sum \(s \)), \(\{C_n^{\beta} s - s\} \) by \(T_n^{\beta} \) and \(A_\alpha^{(p, \beta)} (x) - s \) by \((1 - x) A_\alpha^{(p, \beta)} (x)\).

The first inequalities in (3.1.1) and (3.1.2) follow from Hölder's inequality. The second inequalities in (3.1.2) and (3.1.1) are obvious and the third inequality in (3.1.2) follows from the identity

\[A_\alpha^{(p, \beta)} (x) = (1 - x)^{x+1} \sum_{n=0}^{\infty} E_n^{x} C_n^{\beta} x^n \quad \text{for} \ 0 < x < 1,\]

since \((1 - x)^{x+1} \sum_{n=0}^{\infty} E_n^{x} x^n = 1\). The inequalities (3.1.1) and (3.1.2) are analogues of (i) and (ii) for boundedness \(\{C, p, \beta\}_k \) and \(\{A_\alpha; C, p, \beta\}_k \).

Theorem 1 is a collection of elementary results in the direction of decreasing \(k \). The complicated results in the direction of increasing \(k \) are collected together in the following Theorem.

3.2. Theorem 2. Let \(p > -1, \beta > -1, p + \beta > -1 \) and either \(1 < k < m < \infty \) and \(q > p + \frac{1}{k} - \frac{1}{m} \) or \(1 - k < m < \infty \) and \(q > p + \frac{1}{k} - \frac{1}{m} \)

(i) If a sequence \(\{s_n\} \) is summable \(\{C, p, \beta\}_k \) to the sum \(s \), then it is summable \(\{C, q, \beta\}_m \) to the same sum \(s \).

(ii) For any \(s \)

\[(3.2.1) \quad \sup_N \left\{ (N + 1)^{-1} \sum_{n=0}^{N} |C_n^{\beta} s - s|^m \right\}^{1/m} \]

\[\leq D (k, m, p, q, \beta) \sup_N \left\{ (N + 1)^{-1} \sum_{n=0}^{N} |C_n^{\beta} s - s|^k \right\}^{1/k}.

(iii) In (i) and (ii) we may replace \(\{C, p, \beta\} \) by \([C, p, \beta]\) \(\{C_n^{\beta} s - s\} \) by \(T_n^{\beta} \) and \(\{C_n^{\beta} s - s\} \) by \(T_n^{\beta} \).

3.3. Theorem 3. Let \(p > -1, \beta > -1, p + \beta > -1 \) and either \(k > 1 \) and \(q > p + 1/k \) or \(k = 1 \) and \(q > p + 1 \).

(i) If a sequence \(\{s_n\} \) is summable \(\{C, p, \beta\}_k \) to the sum \(s \), then it is summable \(\{C, q, \beta\}_m \) and hence \(\{C, q\} \) to the same sum \(s \).
Theorems on strong summability

(ii) For any \(s \)
\[
\text{Sup}_{n} \left| C_{n, \beta}^{\alpha} - s \right| < D(k, p, q, \beta) \text{Sup}_{n} \left\{ \left(N + 1 \right)^{-1} \sum_{n=0}^{N} \left| C_{n, \beta}^{\alpha} - s \right|^{k} \right\}^{1/k}.
\]

(iii) If a sequence \(\{ s_n \} \) is summable \([C, p, \beta]_k \), then \(T_{n, \beta}^{k} = o(1) \), as \(n \to \infty \).

(iv) \[
\text{Sup}_{n} \left| T_{n, \beta}^{k} \right| < D(k, p, q, \beta) \text{Sup}_{n} \left\{ \left(N + 1 \right)^{-1} \sum_{n=0}^{N} \left| T_{n, \beta}^{p} \right|^{1/k} \right\}^{1/k}.
\]

Theorems 2 and 3 can be proved by the arguments similar to that of Theorems 2 and 3 of T. M. Flett [4].

Remark. From theorems 1 and 3 we get that a sequence \(\{ s_n \} \) is summable \(\{ C, *, \beta \}_{\infty} \) if and only if it is summable \(\{ C, *, \beta \} \).

3.4. Theorem 4. Let \(p > -1, q > 0, \alpha > -1, \beta > -1, p + \beta > -1 \) and \(1 < k < \infty \).

(i) If a sequence \(\{ s_n \} \) is summable \(\{ C, p, \beta \}_k \) to the sum \(s \), then it is summable \(\{ A_{\alpha}; C, q, \beta \}_m \) to the same sum \(s \) for every \(m (1 < m < \infty) \).

(ii) If a sequence \(\{ s_n \} \) is summable \(\{ C, p, \beta \}_k \), then it is summable \(\{ A_{\alpha}; C, q, \beta \}_m \) for every \(m (1 < m < \infty) \).

Proof of Theorem 4. If a sequence \(\{ s_n \} \) is summable \(\{ C, p, \beta \}_k \) to the sum \(s \), by Theorem 3 (i), it is summable \(\{ C, p' \} \) where \(p' > p + 1/k \) if \(1 < k \) and \(p' = p + 1 \) if \(k = 1 \), to the same sum \(s \) and hence it is summable \(\{ A_{\alpha} \} \) to \(s \) by the following Lemma 1.

Lemma 1. (see D. Borwein [2].) If a sequence \(\{ s_n \} \) is summable \(\{ C, p \} \) \((p > -1) \) to the sum \(s \), then it is summable \(\{ A_{\alpha} \} \) \((\alpha > -1) \) to the same sum \(s \).

Now by the following Lemma 2 we observe that \(\{ s_n \} \) is summable \(\{ A_{\alpha}, C, q, \beta \} \) to \(s \), since \(\{ C_{n, \beta} \} \) is a regular Hausdorff transform of \(\{ s_n \} \).

Lemma 2. (see A. Amir Jakimovski [1]). Let \(\alpha > -1 \) be a real number. If a sequence \(\{ s_n \} \) is summable \(\{ A_{\alpha} \} \) to the same sum \(s \) and \(\{ h_n \} \) is a regular Hausdorff transform of \(\{ s_n \} \), then \(\{ h_n \} \) is summable \(\{ A_{\alpha} \} \) to the same sum \(s \).

Hence by Theorem 1 (ii) with \(k = \infty \), we get that the sequence \(\{ s_n \} \) is summable \(\{ A_{\alpha}; C, q, \beta \}_m \) to the same sum \(s \) for every \(m \). Hence (i) is proved and (ii) follows from (i) applied to the sequence \(\{ n(s_n - s_{n-1}) \} \).

The special case \(q = 0, \alpha = 0 \) and \(\beta = 0 \) of this theorem is a known result of T. M. Flett ([4] p. 120, Theorem 4). The known result of D. Borwein ([2] p. 320, Theorem 4) which is used to prove this theorem is a special case of this theorem with \(q = 0, \beta = 0 \) and \(k = m = \infty \). This theorem also includes the known result of B. P. Mishra ([6] p. 316, Theorem 6) as a special case with \(\alpha = 0, \beta = 0 \) and \(q = p, k = m \). And further the known result of B. P. Mishra ([7] p. 125, Theorem 5) is a particular case of this theorem with \(\beta = 0 \) and \(q = 0 \).

Theorem 4 establishes the connection between summability \(\{ C, p, \beta \}_k \) with summability \(\{ A_{\alpha}; C, q, \beta \}_m \) and summability \(\{ C, p, \beta \}_k \) with summability \(\{ A_{\alpha}; C, q, \beta \}_m \). We have also the following convexity theorem.
3.5. Theorem 5. Let \(q > p > -1, \beta > -1, p + \beta > -1 \) and \(1 < k < \infty \).

(i) If a sequence \(\{s_n\} \) is bounded \(\{C, p, \beta\}_k \) and summable \(\{C, *, \beta\}_k \) or\((C, *, \beta) \) to the sum \(s \), then it is summable \(\{C, q, \beta\}_k \) to \(s \).

(ii) If a sequence \(\{s_n\} \) is bounded \([C, p, \beta]_k \) and summable \([C, *, \beta]_k \), then it is summable \([C, q, \beta]_k \).

The proof of this theorem follows by an argument similar to that of Theorem 5 of T. M. Flett [4] using the following Lemmas 3, 4 and 5.

Lemma 3. Let \(p > -1, \beta > -1, p + \beta > -1, \delta > 0 \) and \(1 < k < \infty \). If a sequence \(\{s_n\} \) is bounded \(\{C, p, \beta\}_k \) and summable \(\{C, p + 1, \beta\}_k \) to the sum \(O \), then it is summable \(\{C, p + \delta, \beta\}_k \) to \(O \).

Lemma 4. (see A. Zygmund [9]). If \(p > -1, \beta > -1 \) and \(p + \beta > -1 \), then the summability methods \((C, p, \beta) \) and \((C, p) \) are equivalent.

Lemma 5. (see E. Kogbetliantz [5]). Let \(q > p > -1 \). If a sequence \(\{s_n\} \) is bounded \((C, p) \) and summable \((C) \) to the sum \(s \), then it is summable \((C, q) \) to the same sum \(s \).

The implications between the two types \{\} and \[\] of strong summability methods are established in the following theorems.

3.6. Theorem 6. Let \(p > -1, \beta > -1, p + \beta > -1 \) and \(1 < k < \infty \). If a sequence \(\{s_n\} \) is summable \(\{C, p, \beta\}_k \) to the sum \(s \), then it is summable \([C, p + 1, \beta]_k \).

The proof of this theorem follows by an argument similar to that of Theorem 6 of T. M. Flett [4].

3.7. Theorem 7. Let \(p > -1, \beta > -1, p + \beta > -1 \) and \(1 < k < \infty \). If a sequence \(\{s_n\} \) is summable \(\{C, *, \beta\}_k \) to the sum \(s \) (or summable \(\{C, *, \beta\}_k \) to \(s \)) and is summable \([C, p + 1, \beta]_k \), then it is summable \(\{C, p, \beta\}_k \) to \(s \).

Proof of Theorem 7. Let \(1 < k < \infty \). Without loss of generality we may assume that the sum \(s = 0 \). From Theorem 2(i) we get that if a sequence \(\{s_n\} \) is summable \(\{C, *, \beta\}_k \) to the sum \(O \), then it is summable \(\{C, p + \gamma, \beta\}_k \) for some integer \(\gamma \) to \(O \). And from Theorem 2(ii), we get that if a sequence \(\{s_n\} \) is summable \([C, p, \beta]_k \), then it is summable \([C, p + \gamma, \beta]_k \). Hence by the repeated use of the following Lemma 6, the result follows.

Lemma 6. Let \(p > -1, \beta > -1, p + \beta > -1 \) and \(1 < k < \infty \). If a sequence \(\{s_n\} \) is summable \(\{C, p + 1, \beta\}_k \) to the sum \(O \) and is summable \(\{C, p + 1, \beta\}_k \), then it is summable \(\{C, p, \beta\}_k \) to \(O \).

This can be easily proved using (1.7) and Minkowski’s inequality.

Consider the case \(k = \infty \). From (1.3) we get for \(\gamma > 2 \)

\[
(3.7.1) \quad T_{n, \beta}^{p + \gamma} = \frac{1}{E_{n, \beta}^p} \sum_{r=1}^{n} E_{n-\beta}^{\gamma} E_{r, \beta}^{p+1} T_{r, \beta}^{p+1} \text{ where } \gamma = \gamma - 1.
\]

From (3.7.1) we get that

\[
(3.7.2) \quad T_{n, \beta}^{p+1} = o(1), \text{ as } n \to \infty \text{ implies } T_{n, \beta}^{p+\gamma} = o(1), \text{ as } n \to \infty.
\]
From (1.7) we have \(C^{p+\gamma-1}_{n, \beta} = (\rho + \beta + \gamma)^{-1} T^{p+\gamma}_{n, \beta} + C^{p+\gamma}_{n, \beta} \).

Hence whenever \(T^{p+\gamma}_{n, \beta} \to 0 \) and \(C^{p+\gamma}_{n, \beta} \to s \), as \(n \to \infty \),

\[
(3.7.3) \quad C^{p+\gamma-1}_{n, \beta} \to s, \quad \text{as} \quad n \to \infty.
\]

Therefore when \(k = \infty \), the result follows from (3.7.2) and the repeated use of (3.7.3). This completes the proof of Theorem 7.

Remark. The conditions in Theorem 7 are also necessary. This follows from Theorems 2 (i) and 6.

Theorem 7 is a Tauberian theorem of 'o' depth. The corresponding Tauberian theorem of 'O' depth is the following theorem.

3.8. Theorem 8. Let \(q > p > -1, \beta > -1, p + \beta > -1 \) and \(1 < k < \infty \).

If a sequence \(\{s_n\} \) is summable \(\{C, *, \beta\}_k \) to the sum \(s \) (or summable \(\{C, *, \beta\} \) to \(s \)) and is bounded \(\{C, p + 1, \beta\}_k \), then it is summable \(\{C, q, \beta\}_k \) to \(s \).

Proof of Theorem 8. If a sequence \(\{s_n\} \) is summable \(\{C, *, \beta\}_k \), then by Theorem 6 it is summable \(\{C, *, \beta\}_k \). Now since it is also bounded \(\{C, p + 1, \beta\}_k \), by Theorem 5 (ii) it is summable \(\{C, q, \beta\}_k \) for every \(q > p + 1 \). From this and Theorem 7 the result follows.

Remark. As a consequence of Theorem 7 and 3 (i) we get that if a sequence \(\{s_n\} \) is summable \(\{C, *, \beta\}_k \) and summable \(\{C, p, \beta\}_k \), then it is summable \(\{C, p\} \). Further as a consequence of Theorem 8 and Theorem 3 (i) we get that if a sequence \(\{s_n\} \) is summable \(\{C, *, \beta\}_k \) and bounded \(\{C, p, \beta\}_k \) for \(k > 1 \), then it is summable \(\{C, p\} \), and as a consequence of Theorems 8 and 2 (i) we get that if a sequence \(\{s_n\} \) is summable \(\{C, *, \beta\}_1 \) and bounded \(\{C, p, \beta\}_1 \), then it is summable \(\{C, p, \beta\}_m \) for every finite \(m > 1 \).

The case \(\beta = 0 \) of this theorem is a known result of T. M. Flett [4]. The case \(\beta = 0 \) and \(k = \infty \) of Theorems 6, 7 and 8 are well known results in the theory of ordinary Cesàro summability ([5] pp. 15, 30 and 31).

Now we shall investigate the corresponding results for the generalized Abel — \(\{C, p, \beta\} \) method \(\{A_\alpha; C, p, \beta\} \).

3.9. Theorem 9. Let \(p > -1, \alpha > -1, \beta > -1 \) and \(p + \beta > -1 \).

(i) If a sequence \(\{s_n\} \) is summable \(\{A_\alpha; C, p, \beta\}_k \) to the sum \(s \) and is also summable \(\{A_\alpha; C, p, \beta\}_k \), where \(k > 1 \), then it is summable \(\{A_\alpha; C, p, \beta\} \) to the same sum \(s \).

(ii) If a sequence \(\{s_n\} \) is summable \(\{A_\alpha; C, p, \beta\}_k \) to the sum \(s \) and is also bounded \(\{A_\alpha; C, p, \beta\}_k \), where \(k > 1 \), then it is summable \(\{A_\alpha; C, p, \beta\} \) to the same sum \(s \).

(iii) If a sequence \(\{s_n\} \) is summable \(\{A_\alpha; C, p, \beta\}_1 \) to the sum \(s \) and is also bounded \(\{A_\alpha; C, p, \beta\}_1 \), then it is summable \(\{A_\alpha; C, p, \beta\}_m \) to the same sum \(s \) for every finite \(m > 1 \).

Proof of Theorem 9. Since \(A^{(p, \beta)}_\alpha(x) \) is a power series, \(A^{(p, \beta)}_\alpha(x) - s \) vanishes only at a finite number of points in \(0 < x < R < 1 \), so that \(|A^{(p, \beta)}_\alpha(x) - s| \)
is differentiable in \((0, R)\) except at a finite number of points. Hence we have for any \(k \geq 1\), by integration by parts,

\[
\int_0^R \left| A^{(p, \beta)}_\alpha(x) - s \right|^k (1-x)^{-2} \, dx = \left[\left| A^{(p, \beta)}_\alpha(x) - s \right|^k (1-x)^{-1} \right]_0^R \\
- k \int_0^R \left| A^{(p, \beta)}_\alpha(x) - s \right|^{k-1} (1-x)^{-1} \frac{d}{dx} \left| A^{(p, \beta)}_\alpha(x) - s \right| \, dx.
\]

Since

\[
\left| \frac{d}{dx} \left| A^{(p, \beta)}_\alpha(x) - s \right| \right| \leq \left| \frac{d}{dx} \left(A^{(p, \beta)}_\alpha(x) - s \right) \right| = \left| A^{(p, \beta)'}_\alpha(x) \right|
\]

whenever the left side exists, (3.9.1) gives

\[
\int_0^R \left| A^{(p, \beta)}_\alpha(R) - s \right|^k \leq (1-R) \left| A^{(p, \beta)}_\alpha(0) - s \right|^k + (1-R) \int_0^R \left| A^{(p, \beta)}_\alpha(x) - s \right|^{k-1} (1-x)^{-1} \left| A^{(p, \beta)'}_\alpha(x) \right| \, dx.
\]

From (3.9.2) with \(k = 1\), it follows that if a sequence \(\{s_n\}\) is summable \(\{A_\alpha; C, p, \beta\}_1\) to the sum \(s\) and summable \([A_\alpha; C, p, \beta]\), then it is summable \((A_\alpha; C, p, \beta)\) to the sum \(s\) and that if it is summable \((A_\alpha; C, p, \beta)\) to the sum \(s\) and bounded \([A_\alpha; C, p, \beta]\), then it is bounded \((A_\alpha; C, p, \beta)\). Now for \(1 < m < \infty\), we have

\[
(1-R) \int_0^R \left| A^{(p, \beta)}_\alpha(x) - s \right|^m (1-x)^{-2} \, dx \leq \\
\leq \left\{ \sup_{0 < x < R} \left| A^{(p, \beta)}_\alpha(x) - s \right|^{m-1} \right\} (1-R) \int_0^R \left| A^{(p, \beta)}_\alpha(x) - s \right| (1-x)^{-2} \, dx.
\]

From (3.9.3) we get that if \(\{s_n\}\) is bounded \((A_\alpha; C, p, \beta)\) and summable \(\{A_\alpha; C, p, \beta\}_1\) to \(s\), then it is summable \(\{A_\alpha; C, p, \beta\}_m\) to \(s\) for every finite \(m > 1\). Hence if the sequence \(\{s_n\}\) is summable \(\{A_\alpha; C, p, \beta\}_1\) and bounded \([A_\alpha; C, p, \beta]\), then it is summable \(\{A_\alpha, C, p, \beta\}_m\) for every finite \(m > 1\). Therefore the results (i) with \(k = 1\) and (iii) are proved. Now for \(k > 1\), we have

\[
(1-R) \int_0^R \left| A^{(p, \beta)}_\alpha(x) - s \right|^{k-1} \left| A^{(p, \beta)'}_\alpha(x) \right| (1-x)^{-1} \, dx \leq \\
\leq \left\{ (1-R) \int_0^R \left| A^{(p, \beta)}_\alpha(x) - s \right|^k (1-x)^{-2} \, dx \right\}^{1/k'} \\
\cdot \left\{ (1-R) \int_0^R (1-x)^{k-2} \left| A^{(p, \beta)'}_\alpha(x) \right|^k \, dx \right\}^{1/k}
\]
by Hölder's inequality. If a sequence \(\{s_n\} \) is summable \(\{A_{\alpha}; C, p, \beta\}_k \) to \(s \) and bounded \(\{A_{\alpha}; C, p, \beta\}_k \) (or summable \(\{A_{\alpha}; C, p, \beta\}_k \) for \(k > 1 \)), we obtain from (3.9.4) that

\[
(1 - R) \int_0^R |A^{(p, B)}_{\alpha}(x) - s|^{k-1} (1 - x)^{-1} |A^{(p, B)}_{\alpha}(x)| \, dx = o(1) \quad \text{as} \quad R \to 1 - 0.
\]

Hence the results (i) with \(k > 1 \) and (ii) follow from (3.9.5) and (3.9.2) and the proof is completed.

The special case \(p = 0 \) and \(\alpha = 0 \) of this theorem is a known result of T. M. Flett ([4] p. 122, Theorem 9). Theorem 9 (i) includes a known result of B. P. Mishra ([6] p. 313, Theorem 1) as a special case with \(\alpha = 0 \) and \(\beta = 0 \), since by a known result ([6] p. 314, Theorem 4), summability \(\{A; C, p\}_k \) and summability \(\{A; C, p\}_k \) are necessary and sufficient for summability \(\{A, C; p - 1\}_k \).

And further Theorem 9 (i) includes a known result of B. P. Mishra ([7] p. 120, Theorem 1) as a special case with \(p = 0 \), since by a known result ([7] p. 120, Theorem 3), summability \(\{A_{\alpha+1}\}_k \) implies summability \(\{A_{\alpha}\}_k \), and by another known result ([7] p. 122 Theorem 4), summability \(\{A_{\alpha+1}\}_k \) implies summability \(\{A\}_k \).

Because Theorem 4 of [7] is

"The necessary and sufficient conditions for the sequence \(\{s_n\} \) to be summable \(\{A_{\alpha+1}\}_k \) to the sum \(s \) are that it be summable \(\{A_{\alpha}\}_k \) to \(s \) and

\[
\int_y^Y |y T_{\alpha}'(y)|^k \, dy = o(Y), \quad \text{as} \quad Y \to \infty.
\]

where

\[
T_{\alpha}(y) = (1 + y)^{-(\alpha + 1)} \sum_{n=0}^{\infty} E_n \frac{s_n y^n}{(1 + y)^n}.
\]

Hence \(y T_{\alpha}'(y) = x (1 - x) A_{\alpha}'(x) \) where \(y = \frac{x}{1 - x} \), and

\[
\int_0^1 |y T_{\alpha}'(y)|^k \, dy = \int_0^1 x^k (1 - x)^{k-2} |A_{\alpha}'(x)|^k \, dx.
\]

Hence

\[
\int_0^R |y T_{\alpha}'(y)|^k \, dy = o(Y), \quad \text{as} \quad Y \to \infty,
\]

is equivalent to

\[
(1 - R) \int_0^R x^k (1 - x)^{k-2} |A_{\alpha}'(x)|^k \, dx = o(1), \quad \text{as} \quad R \to 1 - 0,
\]

which is equivalent to

\[
(1 - R) \int_0^R (1 - x)^{k-2} |A_{\alpha}'(x)|^k \, dx = o(1), \quad \text{as} \quad R \to 1 - 0.
\]

Hence by definition \(\{s_n\} \) is summable \(\{A\}_k \).

We shall now pass on to the generalization of the 'o' and 'O' Tauberian theorems for \(\{A_{\alpha}; C, p, \beta\}_k \) method.

3.10. Theorem 10. Let \(p > -1 \), \(q > 0 \), \(\alpha > -1 \), \(\beta > -1 \), \(p + \beta > -1 \) and \(1 < k < \infty \). If a sequence \(\{s_n\} \) is summable \(\{A_{\alpha}; C, q, \beta\}_k \) to the sum \(s \) and is also summable \(\{C, p+1, \beta\}_k \) to \(s \), then it is summable \(\{C, p, \beta\}_k \) to \(s \).
Proof of Theorem 10. Since \(\{s_n\} \) is summable \([C, p + 1, \beta]_k\) we obtain by Theorem 4 (ii) that, it summable \([A_{\alpha}; C, q, \beta]_k\). By hypothesis it is also summable \([A_{\alpha}; C, q, \beta]_k\) to the sum s. Hence we get by Theorem 9 (i) that, it is summable \([A_{\alpha}; C, \alpha, \beta]\) to the same sum s.

Since \(\{s_n\} \) is summable \([C, p + 1, \beta]_k\), from Theorem 3 (iii) we get

\[
T_{n, \beta}^{p_1} = n \left(C_{n, \beta}^{p_1} - C_{n-1, \beta}^{p_1} \right) = o(1), \quad \text{as } n \to \infty, \quad \text{for } p' > p + 1, \text{ i.e.}
\]

(3.10.1) \[
(C_{n, \beta}^{p_1} - C_{n-1, \beta}^{p_1}) = o(n^{-1}), \quad \text{as } n \to \infty, \quad \text{for } p' > p + 1.
\]

Now summability \((A_{\alpha}; C, q, \beta)\) of \(\{s_n\} \) to the sum s and (3.10.1) imply that it is summable \((C, \alpha, \beta)\) to the same sum s. This follows from the following Lemma 7 which is proved by the author in [10] since the condition (3.10.1) implies the condition (3.10.2) of Lemma 7.

Lemma 7. Let \(p' > -1, \quad q > -1, \quad \alpha > -1, \quad \beta > -1, \quad p' + \beta > -1 \) and \(q + \beta > -1 \). If a real sequence \(\{s_n\} \) is summable \((A_{\alpha}; C, q, \beta)\) to the sum s and

(3.10.2) \[
\lim_{n \to \infty} \left(C_{n, \beta}^{p_1} - C_{m, \beta}^{p_1} \right) > 0
\]

when \(n > m, \quad m \to \infty \) so that \(n/m \to 1 \), then \(\{s_n\} \) is summable \((C, p', \beta)\) to the same sum s.

Hence by Theorem 7 we obtain that the sequence \(\{s_n\} \) is summable \([C, p, \beta]_k\) to the sum s. Thus the theorem is established.

Remark. This theorem is stronger than Theorem 7 which is used in the proof. The conditions of this theorem for summability \([C, p, \beta]_k\) are also necessary. This part follows from Theorems 4 (i) and 6.

The special case \(q = 0, \alpha = 0 \) and \(\beta = 0 \) of this theorem is a known result of T. M. Flett ([4] p. 122, Theorem 10). The special case \(k = \infty \) of this theorem is the following result in ordinary summability.

3.11. Theorem 11. Let \(p > -1, \quad q > -1, \quad \alpha > -1, \quad \beta > -1, \quad p + \beta > -1 \) and \(q + \beta > -1 \). If a sequence \(\{s_n\} \) is summable \((A_{\alpha}; C, q, \beta)\) to the sum s and \((C_{n+1, \beta}^{p_1} - C_{n, \beta}^{p_1}) = o(n^{-1}) \) as \(n \to \infty \), then \(\{s_n\} \) is summable \((C, p, \beta)\) to the same sum s and hence it is summable \((C, p)\) to s.

In Theorem 11, we have \(q > -1 \) instead of \(q > 0 \), since by Lemma 2 summability \((A_{\alpha}; C, q, \beta) (q > -1, \beta > -1 \) and \(q + \beta > -1 \)) implies summability \((A_{\alpha}; C, q', \beta) (q' > q)\), as \(\{C_{n, \beta}^{p_1}\} \) is a regular Hausdorff transform of \(\{C_{n, \beta}^q\} \). The last part of Theorem 11 follows from Lemma 4.

Remark. When \(q > 0 \), the conditions for summability \((C, p)\) are also necessary. This follows from Theorems 4 (i) and 6 with \(k = m = \infty \).

We have also the following Tauberian theorem which is an immediate consequence of Theorems 10 and 3 (i).
3.12. Theorem 12. Let \(p > -1, \ q > 0, \ \alpha > -1, \ \beta > -1, \ p + \beta > -1 \) and either \(q' > p + 1 \) and \(k > 1 \) or \(q' = p + 1 \) and \(k = 1 \). If a sequence \(\{ s_n \} \) is summable \(\{ A ; C, q, \beta \}_k \) to the sum \(s \) and is also summable \(\{ C, p + 1, \beta \}_k \), then it is summable \(\{ C, q', \beta \}_k \) to the same sum \(s \) and hence it is summable \(\{ C, q' \}_s \) to \(s \).

Theorem 10 can be deduced from the following 'O' Tauberian Theorem 13, but it is more elementary than Theorem 13.

3.13. Theorem 13. Let \(p' > p > -1, \ q > 0, \ \alpha > -1, \ \beta > -1, \ p + \beta > -1 \) and \(1 < k < \infty \). If a sequence \(\{ s_n \} \) is summable \(\{ A ; C, q, \beta \}_k \) to the sum \(s \) and is either bounded \(\{ C, p', \beta \}_k \) or bounded \(\{ C, p + 1, \beta \}_k \), then it is summable \(\{ C', p', \beta \}_k \) to the same sum \(s \).

Proof of Theorem 13. By the analogue of Theorem 6 for boundedness, we obtain that, if a sequence \(\{ s_n \} \) is bounded \(\{ C, p, \beta \}_k \), then it is bounded \(\{ C, p + 1, \beta \}_k \). Hence it is bounded \(\{ A ; C, q, \beta \}_k \) by the analogue of Theorem 4(ii) for boundedness. By hypothesis it is summable \(\{ A ; C, q, \beta \}_k \) to \(s \). Hence by Theorem 9(ii), for \(k > 1 \), we get that, it is summable \(\{ A ; C, q, \beta \}_k \) to \(s \).

Now boundedness \(\{ C, p + 1, \beta \}_k \) implies by Theorem 3(iv) for \(p' > p + 1 \)

\[
(C_{n-1}^{p'} - C_n^{p'}) = O(n^{-1}), \text{ as } n \to \infty.
\]

Hence boundedness \(\{ C, p + 1, \beta \}_k \) and summability \(\{ A ; C, q, \beta \} \) of \(\{ s_n \} \) to the sum \(s \) imply that it is summable \(\{ C, *, \beta \} \) to \(s \). This follows from Lemma 7, since the condition \((3.13.1) \) implies the condition \((3.10.2) \). Hence the result of the theorem for the case \(k > 1 \) follows from Theorem 8.

If \(k = 1 \), then by Theorem 9(iii) we obtain that the sequence \(\{ s_n \} \) is summable \(\{ A ; C, q, \beta \}_m \) to the sum \(s \) for every finite \(m > 1 \). By the analogue of Theorem 2(iii), we get that boundedness \(\{ C, p + 1, \beta \}_m \) implies boundedness \(\{ C, *, \beta \}_m \) for every finite \(m > 1 \). Hence it implies boundedness \(\{ A ; C, q, \beta \}_m \) by the analogue of Theorem 4(ii). Now the result for the case \(k = 1 \) follows from the result for the case \(k > 1 \). Hence the theorem is established.

Remark. Theorem 13 is stronger than Theorem 8 which is used in its proof.

The special case \(q = 0, \ \alpha = 0 \) and \(\beta = 0 \) of this theorem is a known result of T. M. Flett ([4] p. 122, Theorem 11). The special case \(k = \infty \) of this theorem is the following result in ordinary summability.

3.14. Theorem 14. Let \(p' > p > -1, \ q > -1, \ \alpha > -1, \ \beta > -1, \ p + \beta > -1 \) and \(q + \beta > -1 \). If a sequence \(\{ s_n \} \) is summable \(\{ A ; C, q, \beta \} \) to the sum \(s \) and is either bounded \(\{ C, p, \beta \} \) or \((C_{n-1}^{p+1} - C_n^{p+1}, \beta) = O(n^{-1}) \), as \(n \to \infty \), the \(\{ s_n \} \) is summable \(\{ C, p', \beta \} \) to the same sum \(s \) and hence it is summable \(\{ C, p' \} \) to \(s \).

In Theorem 14, we have \(q > -1 \) instead of \(q > 0 \), since by Lemma 2, for \(q' > q > -1, \ \beta > -1 \) and \(q + \beta > -1 \), summability \(\{ A ; C, q, \beta \} \) implies summability \(\{ A ; C, q', \beta \} \), as \(\{ C_{n}^{q'} ; \beta \} \) is a regular Hausdorff transform of \(\{ C_{n}^{q} ; \beta \} \). The last part of Theorem 14 follows from Lemma 4.

We have also the following Tauberian theorem which is an immediate consequence of Theorems 13 and 3(i).
3.15. **Theorem 15.** Let \(p' > p > 1, \ q > 0, \ \alpha > -1, \ \beta > -1, \ p + \beta > -1 \) and either \(q' > p' + \frac{1}{k} \) and \(k > 1 \) or \(q' > p' + 1 \) and \(k = 1 \). If a sequence \(\{s_n\} \) is summable \(\{A_x; C, q, \beta\}_k \) to the sum \(s \) and is either bounded \(\{C, p, \beta\}_k \) or bounded \(\{C, p+1, \beta\}_k \), then it is summable \((C, q', \beta) \) to the same sum \(s \) and hence it is summable \((C, q') \) to \(s \).

The inequality form of Theorems 10 and 13 is the following Theorem 16 which can be proved by an argument similar to that of Theorem 10.

3.16 **Theorem 16.** Let \(p > -1, \ q > 0, \ \alpha > -1, \ \beta > -1, \ p + \beta > -1 \) and \(1 < k < \infty \). Then

\[
\sup_N \left((N+1)^{-1} \sum_{n=0}^{N} \left| C_{n, \beta}^p \right|^k \right)^{1/k} < D(k, p, \beta) \sup_N \left((N+1)^{-1} \sum_{n=1}^{N} \left| T_{n, \beta}^{p+1} \right|^k \right)^{1/k}
\]

\[
+ D(k, q, \alpha, \beta) \sup_R \left((1 - R) \int_0^R \left| A_x^{(q, \beta)}(x) \right|^k (1-x)^{-2} \, dx \right)^{1/k}.
\]

The special case \(q = 0, \ \alpha = 0 \) and \(\beta = 0 \) of this theorem is a known result of T. M. Flett ([3] p. 73, Theorem 5 and [4] p. 122, Theorem 12).

The author is greatly indebted to Dr. V. Ganapathy Iyer for his help in the preparation of the paper.

REFERENCES

Annamalai University, Annamalainagar, India.