ON A FOURTH ORDER WRONSKIAN ASSOCIATED WITH CLASSICAL ORTHOGONAL POLYNOMIALS.

Mrinal Kanti Das.

(Received May 26, 1969)

1. Introduction. In a work by Karlin and Szegö [1], the general Wronskian and the general Turán expression for orthogonal polynomials have been studied with the condition that the leading coefficient of the *n*-th order classicial polynomials $\Phi_n(x)$ is to be $(-1)^n K_n$, $(K_n > 0)$. The present author in [2] has explicitly evaluated the following fourth order Wronskian

$$W_{4}(H_{n}(x)) = \begin{vmatrix} H_{n}(x) & H_{n-1}(x) & H_{n-2}(x) & H_{n-3}(x) \\ H'_{n}(x) & H'_{n-1}(x) & H'_{n-2}(x) & H'_{n-3}(x) \\ H''_{n}(x) & H''_{n-1}(x) & H''_{n-2}(x) & H''_{n-3}(x) \\ H'''_{n}(x) & H'''_{n-1}(x) & H'''_{n-2}(x) & H'''_{n-3}(x) \end{vmatrix}$$

involving Hermite polynomials $H_n(x)$ in terms of $H_{n-1}(x)$ and its simple zeros, and then established the positivity of $W_4(H_n(x))$.

The purpose of this paper is to show that the fourth order Wronskian $W(\Phi_n(n))$ involving any system of classical orthogonal polynomials $\{\Phi_n(x)\}$ admits of a similar representation i.e. it can be expressed in terms of $\Phi_{n-1}(x)$ and its simple zeros.

2. We require to mention some preliminary results which may be found in any standard texts, viz. [3] or [4]. Notations are mostly adopted from [3].

The system of orthogonal polynomials $\{\Phi_n(x)\}$ is associated with an interval of orthogonality (α, β) and a weight function $\omega(x)$, such that Rodrigues' formula.

$$\Phi_n(x) = \frac{K_n}{\omega(x)} \frac{d^n}{dx^n} (X^n \cdot w(x))$$

is satisfied where K_n is a quantity independent of x and X = X(x). It is also known that as $\{\Phi_n(x) \text{ is an orthogonal sequence, degree of } X(x) \text{ must not exceed 2 so that we may suppose}$

$$(2.1) X = X(x) = ax^2 + bx + c.$$

Also let

$$g_n = \int_{\alpha}^{\beta} \{\Phi_n(x)\}^2 \omega(x) dx \neq 0,$$

and h_n = the leading coefficient of $\Phi_n(x)$. Besides we know the following recurrence relations which must hold for the system of orthogonal polynomials $(\Phi_n(x))$,

(2.2)
$$A_n \Phi_{n+1}(x) = (x - B_n) \Phi_n(x) - C_n \Phi_{n-1}(x),$$

$$(2.2') X \Phi'_{n-1}(x) = [\delta_{n-1} + (n-1) ax] \Phi_{n-1}(x) + \beta_{n-1} \Phi_{n-2}(x),$$

where

$$A_n = h_n/h_{n+1}$$
, $C_n = g_n h_{n-1}/g_{n-1} h_n$

and

$$\delta_n = (n-1) X'(0) - \frac{1}{2} X''(x) \frac{h'_{n-1}}{h_{n-1}},$$

(2.3)
$$\beta_{n-1} = -C_{n-1} \left[h_1 K_1 + \left(n - \frac{3}{2} \right) X^{\prime\prime}(x) \right]$$
$$= -C_{n-1} \left[h_1 K_1 + (2n-3) a \right],$$

 h'_{n-1} being the coefficient of x^{n-1} in $\Phi_n(x)$.

Let us denote the zeros of $\Phi_{n-1}(x)$ by x_k , $(k=1, 2, \ldots, n-1)$; then we know that the simple zeros x_k all lie in the interval of orthogonality (α, β) and that

(2.4)
$$\frac{\Phi'_{n-1}(x)}{\Phi_{n-1}(x)} = \sum_{k=1}^{n-1} \frac{1}{x - x_k}.$$

Furthermore, we mention the following formula of Ivanoff,

(2.5)
$$\frac{d^{n}}{dx^{n}} \left(\frac{g}{h}\right) = \frac{1}{h^{n+1}} \begin{vmatrix} h & 0 & 0 & \cdots & 0 & g \\ h' & h & 0 & \cdots & 0 & g' \\ h'' & 2h' & h & \cdots & 0 & g'' \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ h^{n} \begin{pmatrix} n \\ 1 \end{pmatrix} h^{n-1} \begin{pmatrix} n \\ 2 \end{pmatrix} h^{n-2} \cdots \begin{pmatrix} n \\ n-1 \end{pmatrix} h' g^{(n)}$$

where $h^{(n)} = \frac{d^n}{dx^n} h$ and $h \equiv h(x)$, $g \equiv g(x)$.

Now we shall prove the following theorem:

Theorem: If $x_k (k=1, 2, 3, \ldots, n-1)$ be the zeros of $\Phi_{n-1}(x)$, then

$$(2.6) W_4(\Phi_n(x)) = \frac{12 \{\Phi_{n-1}(x)\}^4}{\beta_{n-1}^2 A_{n-1}^2} \cdot \frac{A_{n-1}}{C_{n-2}} \left[\sum_{k=1}^{n-1} \frac{X(x_k)}{(x-x_k)^2} \times \sum_{k=1}^{n-1} \frac{X(x_k)}{(x-x_k)^4} - \left\{ \sum_{k=1}^{n-1} \frac{X(x_k)}{(x-x_k)^3} \right\}^2 \right],$$

 $\{\Phi_n(x)\}\$ being a sequence of classical orthogonal polynomials.

3. Proof of the Theorem: Differentiating (2.2) r-times with respect to x, we get

(3.1)
$$A_n D^r \Phi_{n+1}(x) = (x - B_n) D^r \Phi_n(x) - r D^{r-1} \Phi^n(x) - C_n D^r \Phi_{n-1}(x),$$

where

$$D^{r} \equiv \frac{d^{r}}{dx^{r}}.$$

On using (3.1) and (2.2) for r=1, 2, 3 and for n replaced by n-2, in the 4th column of $W_4(\Phi_n(x))$, we get

$$W_{4}(\Phi_{n}(x)) = \frac{1}{C_{n-2}} \begin{vmatrix} \Phi_{n} & \Phi_{n-1} & \Phi_{n-2} & 0 \\ \Phi'_{n} & \Phi'_{n-1} & \Phi'_{n-2} & \Phi_{n-2} \\ \Phi''_{n} & \Phi''_{n-1} & \Phi''_{n-2} & 2\Phi'_{n-2} \\ \Phi'''_{n} & \Phi'''_{n-1} & \Phi'''_{n-2} & 3\Phi''_{n-2} \end{vmatrix}.$$

On making similar operations on the third column, we get

$$W_{4}(\Phi_{n}(x))C_{n-1}C_{n-2} = \begin{vmatrix} \Phi_{n} & \Phi_{n-1} & 0 & 0 \\ \Phi'_{n} & \Phi'_{n-1} & \Phi_{n-1} & \Phi_{n-2} \\ \Phi''_{n} & \Phi''_{n-1} & 2\Phi'_{n-1} & 2\Phi'_{n-2} \\ \Phi'''_{n} & \Phi'''_{n-1} & 3\Phi''_{n-1} & 3\Phi''_{n-2} \end{vmatrix}$$

$$W_{4}(\Phi_{n}(x))C_{n-1}C_{n-2} = \frac{2\alpha_{n-1}}{\{\Phi_{n-1}\}^{2}} \begin{vmatrix} \Phi_{n} & \Phi_{n-1} & 0 & 0 \\ \Phi'_{n} & \Phi'_{n-1} & \Phi_{n-1} & 0 \\ \Phi''_{n} & \Phi''_{n-1} & 2\Phi'_{n-1} & \Phi_{n-1} \\ \Phi'''_{n} & \Phi'''_{n-1} & 3\Phi''_{n-1} & \frac{3\alpha'_{n-1}}{2\alpha_{n-1}}\Phi_{n-1} \end{vmatrix}$$

where

(3.2)
$$\alpha_{n-1} = \Phi_{n-1} \Phi'_{n-2} - \Phi'_{n-1} \Phi_{n-2}$$
$$= \{\Phi_{n-1}\}^2 \frac{d}{dx} \left(\frac{\Phi_{n-2}}{\Phi_{n-1}}\right)$$

and

$$\alpha'_{n-1} = \frac{d}{dx} \alpha_{n-1}.$$

Thus we get

$$(3.3) \quad \frac{W_4(\Phi_n(x)) C_{n-1} C_{n-2} \{\Phi_{n-1}\}^2}{2 \alpha_{n-1}} = \begin{bmatrix} \Phi_n & \Phi_{n-1} & 0 & 0 \\ \Phi'_n & \Phi'_{n-1} & \Phi_{n-1} & 0 \\ \Phi''_n & \Phi''_{n-1} & 2 \Phi'_{n-1} & \Phi_{n-1} \\ \Phi'''_n & \Phi'''_{n-1} & 3 \Phi''_{n-1} & \frac{3 \alpha'_{n-1}}{2 \alpha_{n-1}} & \Phi_{n-1} \end{bmatrix}$$

Now by (2.5), we get

(3.4)
$$\frac{d^3}{dx^3} \left(\frac{\Phi_n}{\Phi_{n-1}}\right) = -\frac{1}{\{\Phi_{n-1}\}^4} \begin{vmatrix} \Phi_n & \Phi_{n-1} & 0 & 0 \\ \Phi'_n & \Phi'_{n-1} & \Phi_{n-1} & 0 \\ \Phi''_n & \Phi''_{n-1} & 2\Phi'_{n-1} & \Phi_{n-1} \\ \Phi'''_n & \Phi'''_{n-1} & 3\Phi''_{n-1} & 3\Phi'_{n-1} \end{vmatrix}$$

(3.5)
$$\frac{d^2}{dx^2} \left(\frac{\Phi_n}{\Phi_{n-1}}\right) = \frac{1}{\{\Phi_{n-1}\}^3} \begin{vmatrix} \Phi_n & \Phi_{n-1} & 0 \\ \Phi'_n & \Phi'_{n-1} & \Phi_{n-1} \\ \Phi''_n & \Phi''_{n-1} & 2\Phi'_{n-1} \end{vmatrix}$$

. \cdot . from (3.3), (3.4), (3.5),

(3.6)
$$\frac{W_4(\Phi_n(x)) C_{n-1} C_{n-2} \{\Phi_{n-1}\}^2}{2 \alpha_{n-1}} + \{\Phi_{n-1}\}^4 \frac{d^3}{dx^3} \left(\frac{\Phi_n}{\Phi_{n-1}}\right) = \{\Phi_{n-1}\}^3 \times \frac{3(\alpha'_{n-1} \Phi_{n-1} - 2\Phi'_{n-1} \alpha_{n-1})}{2 \alpha} \cdot \frac{d^2}{dx^2} \left(\frac{\Phi_n}{\Phi_n}\right).$$

But we know from (3.2) that

$$\alpha_{n-1} = \{\Phi_{n-1}\}^2 \frac{d}{dx} \left(\frac{\Phi_{n-2}}{\Phi_{n-1}}\right)$$

and

(3.7)
$$\frac{d^2}{dx^2} \left(\frac{\Phi_{n-2}}{\Phi_{n-1}} \right) = \frac{d}{dx} \left(\frac{\alpha_{n-1}}{\{\Phi_{n-1}\}^2} \right) = \frac{\alpha'_{n-1} \Phi_{n-1} - 2 \Phi'_{n-1} \alpha_{n-1}}{\{\Phi_{n-1}\}^3} .$$

But as from (2.2)

$$A_{n-1} \Phi_n = (x - B_{n-1}) \Phi_{n-1} - C_{n-1} \Phi_{n-2},$$

so,

(3.8)
$$A_{n-1} \frac{d}{dx} \left(\frac{\Phi_n}{\Phi_{n-1}} \right) = 1 - C_{n-1} \frac{d}{dx} \left(\frac{\Phi_{n-2}}{\Phi_{n-1}} \right) \text{ and}$$

$$A_{n-1} \frac{d}{dx} \left(\frac{\Phi_n}{\Phi_{n-1}} \right) = -C_{n-1} \frac{d^2}{dx^2} \left(\frac{\Phi_{n-2}}{\Phi_{n-1}} \right).$$

From (3.6)

$$W_4 \left(\Phi_n(x) \ C_{n-1} \ C_{n-2} \left\{ \Phi_{n-1} \right\}^2 + 2 \ \alpha_{n-1} \left\{ \Phi_{n-1} \right\}^4 \ \frac{d^3}{dx^3} \left(\frac{\Phi_n}{\Phi_{n-1}} \right) =$$

$$= 3 \left\{ \Phi_{n-1} \right\}^6 \frac{d^2}{dx^2} \left(\frac{\Phi_{n-2}}{\Phi_{n-1}} \right) \cdot \frac{d^2}{dx^2} \left(\frac{\Phi_n}{\Phi_{n-1}} \right)$$

which by virtue of (3.8), (3.7) becomes

$$W_{4}(\Phi_{n}(x)) C_{n-1} C_{n-2} \{\Phi_{n-1}\}^{2} = 3 \{\Phi_{n-1}\}^{6} \frac{d^{2}}{dx^{2}} \left(\frac{\Phi_{n-2}}{\Phi_{n-1}}\right) \cdot \frac{d^{2}}{dx^{2}} \left(\frac{\Phi_{n}}{\Phi_{n-1}}\right) - 2 \left\{1 - A_{n-1} \frac{d}{dx} \left(\frac{\Phi_{n}}{\Phi_{n-1}}\right)\right\} \times \{\Phi_{n-1}\}^{6} \times \frac{d^{3}}{dx^{3}} \left(\frac{\Phi_{n}}{\Phi_{n-1}}\right) \\ \cdot \cdot \cdot \frac{W_{4}(\Phi_{n}(x)) C_{n-1} C_{n-2}}{\{\Phi_{n-1}\}^{4}} = -2 \frac{d^{3}}{dx^{3}} \left(\frac{\Phi_{n}}{\Phi_{n-1}}\right) + A_{n-1} \left[2 \frac{d^{3}}{dx^{3}} \left(\frac{\Phi_{n}}{\Phi_{n-1}}\right) \cdot \frac{d}{dx} \left(\frac{\Phi_{n}}{\Phi_{n-1}}\right) - 2 \left\{\frac{d^{2}}{dx^{2}} \left(\frac{\Phi_{n}}{\Phi_{n-1}}\right)\right\}^{2}\right].$$

$$(3.9)$$

From (2.2) and (2.2'), we have the following relation

$$XC_{n-1}\Phi'_{n-1}(x) + \beta_{n-1}A_{n-1}\Phi_n(x) = \Phi_{n-1}(x)[\pi_{n-1} + \lambda_{n-1}x]$$

where

(3.10)
$$\lambda_{n-1} = (n-1) a C_{n-1} + \beta_{n-1}$$

$$\pi_{n-1} = \delta_{n-1} C_{n-1} - B_{n-1} \beta_{n-1}$$

$$\vdots C_{n-1} X \frac{\Phi'_{n-1}(x)}{\Phi_{n-1}(x)} + \beta_{n-1} A_{n-1} \frac{\Phi_n(x)}{\Phi_{n-1}(x)} = \pi_{n-1} + \lambda_{n-1} \cdot x$$

which along with (2.4), gives

$$\beta_{n-1} A_{n-1} \frac{\Phi_{n}}{\Phi_{n-1}} = \pi_{n-1} + \lambda_{n-1} x - C_{n-1} X \sum_{k=1}^{n-1} \frac{1}{x - x_{k}}$$

$$\therefore \beta_{n-1} A_{n-1} \frac{d}{dx} \left(\frac{\Phi_{n}}{\Phi_{n-1}}\right) = \lambda_{n-1} + C_{n-1} X \sum_{k=1}^{n-1} \frac{1}{(x - x_{k})^{2}} - C_{n-1} X' \sum_{k=1}^{n-1} \frac{1}{(x - x_{k})} = \lambda_{n-1} + C_{n-1} \sum_{k=1}^{n-1} \frac{-a(x - x_{k})^{2} + ax_{k}^{2} + bx_{k} + c}{(x - x_{k})^{2}} = \lambda_{n-1} - a(n-1) C_{n-1} + C_{n-1} \sum_{k=1}^{n-1} \frac{X(x_{k})}{(x - x_{k})^{2}} = \beta_{n-1} + C_{n-1} \sum_{k=1}^{n-1} \frac{X(x_{k})}{(x - x_{k})^{2}}, \text{ by (3.10)}.$$

(3.11')
$$\qquad \qquad \therefore \quad \beta_{n-1} A_{n-1} \frac{d^2}{dx^2} \left(\frac{\Phi_n}{\Phi_{n-1}} \right) = -2 C_{n-1} \sum_{k=1}^{n-1} \frac{X(x_k)}{(x-x_k)^3},$$

(3.11")
$$\beta_{n-1} A_{n-1} \frac{d^3}{dx^3} \left(\frac{\Phi_n}{\Phi_{n-1}} \right) = -6 C_{n-1} \sum_{k=1}^{n-1} \frac{X(x_k)}{(x - x_k)^4}.$$

Applying (3.11), (311') and (3.11'') to (3.9), we have

$$\frac{W_4\left(\Phi_n(x)\right)C_{n-1}^2C_{n-2}}{\left\{\Phi_{n-1}(x)\right\}^4} = \frac{12C_{n-1}^2}{\beta_{n-1}^2A_{n-1}} \left[\sum_{k=1}^{n-1} \frac{X(x_k)}{(x-x_k)^2} \cdot \sum_{k=1}^{n-1} \frac{X(x_k)}{(x-x_k)^4} - \left\{\sum_{k=1}^{n-1} \frac{X(x_k)}{(x-x_k)^3}\right\}^2\right]$$

which establishes the Theorem.

Now we proceed to study the special cases

Case 1. Hermite Polynomials $\{H_n(x)\}$:

For this sequence of polynomials,

$$A_{n-1} = \frac{1}{2}, \quad C_{n-2} = n - 2,$$

$$\beta_{n-1} = 2 (n-1), \quad \text{and} \quad X(x) = 1.$$

$$W_4(H_n(x)) = \frac{6 \{H_{n-1}(x)\}^4}{(n-2)(n-1)^2} \left[\sum_{k=1}^{n-1} \frac{1}{(x-x_k)^2} \cdot \sum_{k=1}^{n-1} \frac{1}{(x-x_k)^4} - \left\{ \sum_{k=1}^{n-1} \frac{1}{(x-x_k)^3} \right\}^2 \right]$$

which is, thus, positive. This result has already been established by the author [2].

Case 2. Laguerre Polynomials $\{L_n^{(\alpha)}(x)\}$:

For this sequence of polynomials,

$$A_{n-1} = -n$$
, $C_{n-2} = -(\alpha + n - 1)$
 $A_{n-1}/C_{n-2} = n/(\alpha + n - 1)$ is positive.

Now x_k 's all lie in the interval of orthogonality $(0, \infty)$ and X(x) = x, so $X(x_k) = x_k$ is positive. Hence $W_4(L_n^{(\alpha)}(x))$ is positive for x in $(0, \tilde{\infty})$.

Case 3. Jacobi Polynomials $\{P_n^{(\alpha,\beta)}(x)\}:$

For this sequence of polynomials A_{n-1} and C_{n-2} are both positive and $X(x) = x^2 - 1$. As x_k 's all lie on the interval of orthogonality (-1, 1), so $X(x_k) = x_k^2 - 1$ is positive for $k = 1, 2, 3, \ldots, (n-1)$. Hence $W_4(P_n^{(\alpha, \beta)}(x))$ is positive for $x \in (-1, 1)$.

As Ultraspherical Polynomials $\{P_n^{(\lambda)}(x)\}$ and Legendre polynomials $P_n(x)$ may be treated as particular cases of $\{P_{n(n)}^{(\alpha,\beta)}\}$, so these two are not considered separately.

Thus for a sequence $\{\Phi_n(x)\}$ of classical orthogonal polynomials, $W_4(\Phi_n(n))$ is positive for x lying in the interval of orthogonality.

Author is thanktful to Dr. S. K. Chatterjea for his valuable help in preparing this paper.

REFERENCES

- [1] Karlin, S. & Szegö, G.: On certain Determinants whose elements are orthogonal polynomials. Technical Report № 1 (1960).
- [2] Das, M. K.: On certain Determinants for the Classical orthogonal Polynomials, Jour. Annamalai Univ. Vol 26 (1965).
 - [3] Rainville E. D.: Special Functions, (Mcmillan, New York, 1960).
 - [4] Erdélyi, A. &c.: Higher Transcendental Functions 2. (McGraw-Hill, New York.)

Centre of Advanced Study in Applied Mathematics 92, Acharya Prafulla Chandra Raad, Calcutta-9, INDIA