PUBLICATIONS DE L'INSTITUT MATHEMATIQUE
Nouvelle série, tome 18 (32), 1975, pp. 79—84

ON A FOURTH ORDER WRONSKIAN ASSOCIATED WITH
CLASSICAL ORTHOGONAL POLYNOMIALS.

Mrinal Kanti Das.
(Received May 26, 1969)

1. Introduction. In a work by Karlin and Szegé [1], the general
Wronskian and the general Turdn expression for orthogonal polynomials have
been studied with the condition that the leading coefficient of the n-th order
classicial polynomials @, (x) is to be (—1)*K,, (K,>0). The present author
in [2] has explicitly evaluated the following fourth order Wronskian

Hn (X) Hn—l (.X) Hn~2 (x) Hn—-3 (X)
Hy(x)  Hpo1(x)  Hpp(x) Hy_3 (%)
H,(x)  Hii(x) Hy(x)  H/ 3(x)

11 rrt

H, (x) H,1(x) H,2(x) Hni(x)

W, (H,(x)=

involving Hermite polynomials H, (x) in terms of H,_,(x) and its simple zeros,
and then established the positivity of W, (H,(x)).

The purpose of this paper is to show that the fourth order Wronskian
W((D,,(n)) involving any system of classical orthogonal polynomials {®,(x)}

admits of a similar representation i.e. it can be expressed in terms of ®,_, (x)
and its simple zeros.

2. We require to mention some preliminary results which may be found
in any standard texts, viz. [3] or [4]. Notations are mostly adopted from [3].
The system of orthogonal polynomials {®,(x)} is associated with an in-
terval of orthogonality («, B) and a weight function (x), such that Rodri-
gues’ formula.
K, d°
@, () =" L (X"w ()
o(x) dx"( (
is satisfied where K, is a quantity independent of x and X=X (x). It is also
known that as {®,(x) is an orthogonal sequence, degree of X(x) must not
exceed 2 so that we may suppose

2.0 X=X(x)=ax?+bx+ec.
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Also let
8

= f{(I)n (%) 2 o (x) dx#0,

and h,=the leading coefficient of ®,(x). Besides we know the following recur-
rence relatlons which must hold for the system of orthogonal polynomials (®,(x)},

(22) An (Dn+1 (x) = (x —Bn) q)n (x) - Cn (Dn—l (x)’
(2.2) X @, (0)=[8,_,+(n—1)ax]®,_, (x)+8,_, ,_, (%),
where

An:hn/hn+1’ angnhn—1/gn—1 hn
and

b= (1= X © -y X" () =

3 x4

(2.3) By = —cm[hl K1+(n—7)x (x)]

=—C,_[h K, +(2n-3)ad],
h;,_l being the coefficient of x*~1 in ®,(x).

Let us denote the zeros of @, ,(x) by x,, (k=1,2,...,n—1); then
we know that the simple zeros x, all lie in the interval of orthogonality
(¢, §) and that

(I)::—l (x) =n—1 1
(Dn——l (x) k=1 X — X

Furthermore, we mention the following formula of Ivanoff,

(2.4)

h 0 0 - 0 g

% A0 .- 0 g

(2.5) d (£)= L |#»w 20 b -0 g
) dx" h hn+1 cee .o

n n n
" (1)}1"—1 <2)h"—2'”( 1)” £
n—

where h(")=:;!—h and h=h(x), g=g(x).
xn

Now we shall prove the following theorem:
Theorem: If x, (k=1,2,3,...,n—1) be the zeros of ®, ,(x), then
12{®,_, (0)}* 4,_, ["J X(x)
a1 41 . Co [k—_—l (x—x)?
S X {fg X (x) }2]
=1 (e=x)t st (x—x)

{®,(x)} being a sequence of classical orthogonal polynomials.

(2.6) W (®,(0)=
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3. Proof of the Theorem: Differentiating (2.2) r-times with respect to x,

we get

(3.1)

where

On using (3.1) and (2.2) for
the 4th column of W,(®,(x)), we

()] =-
W4( n(x)) C

Dr= d .
dx’

get
(I)n q)n— 1 (Dn -2
! ! ’
1 (I)n (Dn—l q)n—Z
1" n 144
n—2 <I)n (I)n—l (I)n—2
n 1 "
(I)n (Dn——l (I)n—Z

0
®,-,

20 ,|

"
30, ,

On making similar operations on the third column, we get

W (®,(x)) Co_y Cu_s L

where

(3.2)

and

Thus we get

(33) W4 ((Dn (x)) Cn_] Cn__z{q)”__]}z _ (I)" (Du

1

A, DD, (x)=(x—B,)D D,(x) —rDr-1 O (x)—-C,Dr®,_, (x),

P, D, 0 0
o, P Py Oy
W (I) X C _ C = " i ’ ’
4( n( )) n—1~n-27 1 @ o, 20, , 20, ,
" rHnr ” "
o, D, 30, 30,
® @, 0 0
§, o, O, o
_ 2 “n_l ’” " ’
P o, P 2, Oy 20y Puey
n—1
1271 " ’ 3 0‘:,_1
<I)n ®,_, 3 (I)n—l D,
20y,
7 ’
O(n_] = (Dn—l q)n—2 - (I) n—1 (I)n-z
~{D,_})? _‘_i_ <?i"_’i>
n—1
dx \®,_,
' d
Ap—1=——"—0&,_
dx n—1
o, ®,_, 0
! I’
(Dn (I)n_1 D,_, 0
’
n n—1 2 (I)n—l (I)"_l
3a
1 1" " -1
o, D, 30, 4 . @y,
Op—1
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r=1,2,3 and for »n replaced by n—2, in
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Now by (2.5), we get

o, o,_, 0 0
o o’ 0] 0
d3 (D \ 1 n n—1 n—1
(.4) __< n ) .
dx? (Dn—I‘ {(I)n—l} 0] o, , 2(I>n 1 @,
o o, 30, 3@,
@, o,_, 0
d> ; © 1 ' /
(3.5) —2( - )=h 5| On P,y Dy
a2 \®, ) {0, " ,
'l (I)n—l 2ch—1

© . from (3.3), (3.4), (3.5),

W4 ((Dn (x)) Cn =2 {(Dn 1} 4 d q)n
2o +{(Dn 1} dx?, ( )

n—1

3.6)
= {CI)n—l)3 x

3(on 1P, —2®)_y o, d;( o, )
2a,_, dx?

But we know from (3.2) that

d (D
- (Dn— 2 v n—2
=0 (G
and
(3.7) _di((D,,_z) d( - ) o 1D, 1—-2‘1),, 10,
dx? \®,_,/  dx \{®,_,}? {0}
But as from (2.2)
An——l (Dn=(x n 1) (D n 1 (Dn—Z’
S0,
(.8) An_li( 2, ):1_0,,_1—‘1—((1)"—2) and
dx \D,_, dx \D,_,

2 /0
et e )
dx \®,_, dx* \®,_,

From (3.6)
d}y o,
W4((I)n(x) Coi Coa P PP+ 20, {D,_,}* ( )=
dx3\®,
2 2 q)
=3{®”_]}6d_<%ﬁ>.d_( 'L)
dx* \®,_,/ dx*\®,_,
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which by virtue of (3.8), (3.7) becomes
0]

Wy(®@, () C_y oy {Bu_, = 3 (D, }7(5—)—"—(;;)-

) wlor)-

_2{1—An_1§;<®® )} {cb,,_l}ﬁx%(q;i")
{®, ¥ ) dx®
(3.9) { (

n—1
S W(@,)C Gy, & (cb )+ N ][ a? (
From (2.2) and (2.2'), we have the following relation
XCp g @t (X) + By Any @ (1) =Dy () [ny + My X]

where

=m—1)aCo_,+B4_,
(3.10) -==Da P

Ton_y =08y Caey = By Bny

. X_",,l(x) (I)n(x)
G X, (o TP

which along with (2.4), gives

=T, + Ay X

B Ay, 4 =G XS
n—14“tn—1 (D,,__l n—1 n—1 n—-1 A x—x,
d | O, n— 1 Jn=l ]
Bn_lAn_1—< ) My +Co lxz——-— C X' S -
dx \®,_, 1 (x — X,)? k=1 (x—x)
n—1 _ _ 2 2
A +Coy S a(x—x) +ax;k+bxk+c _
k=1 (¢ — xz)
n—1
= a(@=1)Co +Cuy S X0
L (—x?
nol X (x0)
(3.11) =Bu_y+Co_ LK by (3.10).
By 1121 —x)? (3.10)
> [ @ 1l X
@3.11) Bn—lAn—I——‘( n >=—2Cn—1 z _'—(M,
dx* \®,_, K=t (x—x)
3 n—1
3.117) p,,_,A,,_li( 2. ): —6C )
dx’> \®,_, k=1 (x—x)*

Applying (3.11), (311’) and (3.11”) to (3.9), we have
W, ((Dn (x)) sz—l Cos _
{0, ()} -
_ 12¢h ["g X(x) "D X [Tt X))
Br1 Ay, LS (x—x2 ¥S1 (x—x)* {k=1 (x_xk)3} ]

which establishes the Theorem.

6%
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Now we proceed to study the special cases

Case 1. Hermite Polynomials {H, (x)}:
For this sequence of polynomials,

B =2(1-1), and X(9)-1.
W, (H, () =S Hnor ) ["g R

(n=2)(n=1)* k=1 (x—x)* ¥51 (x—xp)*

=
k=1 (x—x;)
which is, thus, positive. This result has already been established by the author [2].

Case 2. Laguerre Polynomials {L” @)}
For this sequence of polynomials,

A,_,= —n, Cory=—(+n-1)
A, /Co_,=n[(a+n—1) is positive.

Now x,’s all lie in the interval of orthogonality (0, ) and X (x)=x,
so X (x,)=x; is positive. Hence W, (Lf,“) (x)) is positive for x in 0, ).

Case 3. Jacobi Polynomials {PS"®(x)}:

For this sequence of polynomials 4, , and C, , are both positive and
X(x)=x>—1. As x;>s all lie on the interval of orthogonality (—1, 1), so
X (x)=xx—1 is positive for k=1,2,3, ..., (n— 1). Hence W, (P ®(x)) is po-
sitive for x&(-1, 1).

As Ultraspherical Polynomials [Pf,” (x)} and Legendre polynomials P,(x) may
(@, B)

be treated as particular cases of [Py}, so these two are not considered se-
parately.

Thus for a sequence {®, (x)} of classical orthogonal polynomials, W, (®, (n))
is positive for x lying in the interval of orthogonality.

Author is thanktful to Dr. S. K. Chatterjea for his valuable help in pre-
paring this paper.
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