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1. Introduction. V. Sehgal and A. Bharucha-Reid [8] introduced a
notion of a contraction mapping on a probabilistic metric space and proved
fixed-point thecrems which are extensions of the classical Banach’s fixed-point
principle and a fixed-point theorem of M. Edelstein [4].

In the present note we introduce a notion of a generalized contraction
map on a probabilistic metric space and prove a fixed point theorem which
is an extension of some results of [1] and {8]. Then we consider a sequence
of maps on a probabilistic metric space and prove a theorem which extends
some results of [3] and [5].

2. Statistical or probabilistic metric spaces were introduced by K. Men-
ger [7]. A probabilistic metric space (briefly a Pm-space) is an orderer pair (X, .% ),
where X is an abstract set of elements and ,# is a mapping of X x X into a
collection & of all distribution functions F (a distribution function F is a
nondecreasing and leftcontinuous mapping of reals into [0, 1] with inf F(x)=0
and sup F(x)==1). The value of ;¥ at (4, V)X x X will be denoted by F, ,
The functions F, ,, u, vE- X, are assumed to satisfy the following conditions:

(a) F,,(x)=1 for all x>0, if and only if u=v.
(b) F,,(0)=o.

© F,,=F,,

(d) F,,(x)=1and F, ,(»=1 imply F, (x+y)=1.

The value F,  (x) of F,, at xcR may be interpreted as the probability that

the distance between u and v is less than x.
A mapping 7:[0, 1]1x[0, 11— [0, 1] is a t-norm if it satisfies
l. t(a, 1)=1, (0, 0)=0,
2. i(a, by=t(b, a),
3. t(c, d)>t(a, by for c>a, d=b,
4. t(t{a, b), c)=t(a, t(b, 0)).
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A Menger space is a triplet (X, ¥, t), where (X, .7 ) is a Pm-space
and t-norm ¢ is such that the Menger’s triangle inequality

M) Juw(X+3) > 1[F, (0, F,, ()]

is satisfied for all u, v, wE€ X and for all x>0, y>0. A topology in (X, .7, £)
is introduced by the family {U, (¢, A):vE X, £>0, x>0}, where the set

U,(e, V={ucX:F, ,(x)>1-2%}, >0, A>0
is called an (g, A)-neighborhood of v& X,
3. We now introduce a notion of a generalized contraction on a Pm-space.

Definition 1 A mapping T on Pm-space (X, .5 ) will be called a
generalized contraction iff there exists a constant g, 0<<g<1, such that for
every u, v X,

(1) FTu, Tv (qx) > min {Fu,v(x)’ Fu, Tu (X), Fv, Ty (X), Fu, Tv (2 X), Fv, Tu (2 .X')}
for all x>0.

Now we shall prove the following result.

Theorem 1. Let (X, .7 ,t) be a Menger space, where t is continuous
and satisfies t (x, x) = x for each x[0, 1). If T: X— X is a generalized contraction
on X and X is T-orbitally complete, then T has a unique fixed-point vEX and

lim ,Ty=v for every ucX.
Proof Let ucX be arbitrary and consider the sequence:
) ug=ut, u,=Tuy, uy=Tu, ..., u,=Tu

FETTE
We shall show that the sequence (2) is fundamental in X, i.e., that for each
e>0, A>0, there is an integer K(g, A) such that m, n>K(e, ») imply
Fum’ u, (€)> 1 -
First observe that by (a)

3) uzv implies F, ,(qx)<<F, ,(x) for some x>0 and that (M), 3. and
t(x, x)>x imply

@ F,,(x+y)>min{F,, ), F,, ()}

for all u, v, w&E X and for all x>0, y>0.

Suppose that in the sequence (2) u,_,=4u, for every integer n, since
U, =u,=Tu, , for some n implies immediately that (2) is fundamental. Then
for u, ,, u,cX by (1)

Fu,,, up4-1 (qx) = FTu,,_l, Tup (qx) >
min{F, ., () Fp 0,y Fupiy s Fypl g0, (2X), F, o, (2%)})

=m0 {Fyy 10D Fop iy O Fop i @), 13,

Since by (4)
Fun_l s Up-1 (2 x) = min {Fun_l s Up (X), Fun, Unt1 (X)},
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we have
Fypup i1 (@%) > min {Funtrun (¥ Fup, iy (¥)} for all x>0.

Since we assume that u,5u,,, for each integer n, (3) implies that
Fu,,,u,,+1(‘1x)>Fu,,,u,,+1(x) for all x>0

is impossible. Then it follows that for each integer n,

(5) Fopuny1 @0)>F,, ., ,,(x) for all x>0.

For an arbitrary integer n we have by (5)

X X
Irlln'unJrl(x)>F‘“n—l»"n<_)> tee >I‘ruoyu1 <_)
q q°
ugo U

Let now ¢, A be arbitrary positive reals. Since F, (i)» 1 when n— oo,
qn

. . . 1-
it follows that there exisis an integer K=K (__q_ g, 7\) such that
q

(6) F

Un—1s Un

(l;qs)>1—7\ for each n> K.
q

Then by (5) for n> K we have

Q) F“n+p’"n+p+l(s)>F"n+p—l’ Untp @@= >F, ,06)>

I—
SO R R
q

. . . 1
for every p>0,as F is a non-decreasing function (we may suppose that g > 3)

Now we shall show that for each n> K
(8) F, (>1—x for p=0,1,2,...

Up> Uptp

Since (8) holds trivialy for p=0, we may proceed by induction on p. Assume
that (8) is valid for some fixed p. Then by definition of u, and (I)

ol
Fun: un4-p+1 (S) = FTu,,*l, Tup1p (q’q-> >

. = € € 2¢e
min {Flln—l s Untp (;)’ Fun»l’ un (;)’ Fun+p> untp+1 (_q_)’ Fun—l sUntp+1 <—) 2

q
2¢
o)
q
Since by (4)

€ . I—gq
Fun—lx Unp (;) = min { Fun~1 s Un (Aq_ s)’ Fun’ Unp (s)}
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and

2¢ . I3 €
Fun._l s Untp+1 (;) = min [Fun——l’ Un+p (;)7 Fun-{»ps un+p+1<‘;>] s

we obtain
. l—-g £
Fun, Upipa1 (E) = min Fungl s Up V—éA* gl E!n, und.p (E)’ Fu,,fl s Un (q;) H

€ 2
Fuppounipin (q)’ Fyy, tntp (;)}

. l—g¢g
> min [Funfl’ un (7qf E), Fun»”n«{»[) (5)7 F"n+[)’ untp+1 (E)]

Using (6), the inductive assumption and (7) we have

Frpruns ppy ©>1-1 for all n>K.

Un

Therefore, (8) is valid for all #> K and for every p=0, I, 2, ... Hence
(2) is a fundamental sequence. Since (2) is an orbit of T at u<X and X is
T-orbitally complete, there is a point v&<X such that

v=lim,u,=lim, T" u.
We now prove that
) Ty=Ilim,u,.  =v.

Let Uy, (g, 2) be any nbd of Tv. Since lim,u,=v there exists an integer K
such that

(10) n> K implies Tun’v(1—€€>>1_;\ and Fun,un+,(L~q€)>l~k.
2q 24
Then by (1)
€
F“n+l,Tv (E):FTu,,, T (q- ————) >

Ups> v Ups U4 vy Tv up> Iy Upt1,v
q q q q q

Since by (4)

1 — I+ . 1 — 1 4
Fv, Tv (jf) - Fv; Tv(ﬁf 9 e+ 'ﬁiqf 8) = min {Fv, un+1< o g 8)7 F‘u,H,[, Tv(ihiiiq' €>]
q 2q 2q 2q 2q

2¢ € e
E, 1 />>min[Fun,un ( ,)’ F, .., V<, )},
s T (q +1 q +1. T q

we obiain, as F is nondecreasing, that

. I —q l—gq l—-¢q
11 F, ,(€)>min{F, ~el, F, e, F o),
( ) ,,.H,T() [ e ( 2q ) n HH( 2q ) n+1 ( 2q )

I+gq )]
F, . -]l
n+1- T ( 2q

/
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Hence and by (10)

(12) ot y(©>1-2 for all n> K, or
1
(13) Fun+1,n(s):Fun+l,Tv<;’q‘]sl) for all n> K.

We proved (9) if (12) is valued. Now if (12) were false, then substitu-

ting in (11) £ by sl=~1-;—L--q e>¢, it would follow
q

, l+g¢g 1 +4g\2
(13) Fu,,+1,Tv(€1):Fun+1,Tv (72717 al)ZFu,H.l, TV[(Z) €1, and

l+qg 1+4¢\2
i@ P o) B 5]

Proceeding in this direction we would obtain that
1+ g\
1—7\>Fun+l’ Tv(a): st _Fun+1rTv[< 2q > E]—)l, k— o0

which is a contradiction. Therefore, the inequality (12) is correct, which implies
(9). So we conclude that there exists a fixed point for T.

To prove the uniqueness of the fixed point v in (9), suppose that wzv
and Tw=w. Then by (1)

Fv, w (qx) = FTv, Tw (qx) > min {Fv, w (x)’ Fv, Ty (X)’ Fw, Tw (x)9 FV, Tw (2 x)’ Fw, Ty (2 X)}
=min {Fv,w(x)’ L 1, Fv,w(2 x), F,, (2 x)}:Fv,w(x)

for all x>0, which is a contradiction with (3). Therefore, the fixed point is

unique.

Corollary 1.1. Let (M, d) be a metric space and let T:M—->M be a
mapping. If

(14) d(Tu, Tv) < q. max [d (u, v), d(u, Tu), d(v, Tv), ;— du, Tv), ; d{v, Tu)}

for some q<<1 and for all u,v&M and if M is T-orbitally complete, then T has
a unique fixed point p&M and lim, T"u=p for every ucM.

Proof The metric d induces a mapping ¥ :Mx M—_%, where
F (u,v)=F, (u, v&©M) is defined by F, ,(x)=0 if x<d(u,v) and F, ,(x)=1
if x>d (u, v). Further, if £:[0, 1]1x [0, 1]--[0, 1] is defined by ¢(a, b) = min{a, b},
then (M, . % , 1) is a T-orbitally complete Menger space, what is easy to prove.
Now we shall show that (14) implies (1). Put d(a, b) = max {d (u, v), d (u, Tu),

d(v, Tv)} and ; d(c, e):max[; du, Tv), ; d(v, Tu)]. Suppose first that

d(Tu, Tv)<gqd(a, b). Then for x<d(a, b) one has F,,(x)=0 and hence
Fro..1,(gx) > F, , (x); and for x>d(a, b) it follows gx>gqd(a, b) > d(Tu, Tv) which
implies Fy, iy, (qx)=1 and hence Fr, r,(gx)>F, ,(x). Therefore, Fg, r,(gx)>
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>F, ,(x) for all x>0 when d(Tu, Tv)<qd(a, b). Suppose now that d(Tu, Tv)<
< q% d(c, e). Then x< ;_ d(c, e} implies F,, (2x)=0; and x>% d(c, e) im-
plies gx>d(Tu, Tv) and hence Fy, r,(gx)=1. Thus, Fy, 5, (gx)>F, ,(2x) for
all x>0 when d(Tu, Tv)<q—;~ d(c, e). Therefore, we showed that if T satisfies

the condition (14) on (M, d) then T satisfies the condition (1) on (M, 7, 1),
as d(f g)=d(y, z) implies Fy  (x)=F, ,(x) for x>0. The result now follows
by our Theorem.

Corollary 1.2. ([8], Th. 3). Let (E,, ¥ ,t) be a complete Menger
space, where t is continuous function satisfying t(x, x)>x for each x=[0, 1). If
T is any contraction mapping of E into itself, i.e. if for eoch u, vE E

Fro,r,(@)>F, ,(x) for all x>0,

then there is a unique pC E such that Tp=p. Moreover, T"q—>p for each ¢ E.

4. In this section we shall consider a sequence of maps on a Pm-space.
We need the following definition (see [5]).

Definition 2. A sequence of maps T;:X—>X on a Pm-space X con-
verges uniformly to a map 7: X— X iff for every £>0 and A>0 there exists
a positive integer K= K (g, A) such that

FTu,T,'u(E)>1—)\
for every uc X and all i> K.

Theorem 2. Let {T;}icn be a sequence of maps on a Menger space
(X, .F,t), where t is continuous and satisfies t(x, x)=>x, xC[0, 1] and let
T:X—X be a generalized contraction on X and X T-orbitally complete. If each
T, (i=1,2,...) has at least one fixed point v; and if the sequence {T}icn on
the subset I={u&X: there is some T, such that u=T,u} converges uniformly
to T, then the sequence {u;};cn converges to a unigue fixed point v of T.

Proof. By Theorem 1 the mapping T has a unique fixed point v. To
show that v=lim,v,, letU, (e, 2} be an arbitrary nbd of v. We must show that

F, ,(&)>1-2

for almost all {&N. Since {7T;} converges uniformly to 7, there exists KC N
such that

(15) FT,-u,Tu(leq€>>1~7\ for i=K

for every u& X. For arbitrary v;&X for which T;v,=v, we have by (4)

l—q l+gq . l—gq I+g¢q
(16) Fvi,v(s)=Fvi,v(Ts+ ; a>>m1n {FTivi,Tvi(Te), FTvi,v( ) a)}
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Since T is a generalized contraction, v=7v, v;=T;v; and F is nondecreasing,

we obtain
l+g¢ l+g
Fp, |—¢<|=Fp,, e)>
Tv,,( 5 ) T,Tv<‘1 24 )

min {F(l_u) F(H_q) Fm(liis), F“Tv(l_w_ s), Tw(uqs)}
"\ 2¢q T 2¢q 2q ! q \ q
. l+¢q l+g l+gq
=>min [Fv,-,v< 2q 8), FTiv;,Tvi<3;‘ E), Fv,Tvi ( T )
FV,TV,<—1ﬂ a>>min Fw,(lﬂs>, FT,V,,TV,<1 qs)}
H q 1 2q 1" 1 2 q
l+g¢ . 1+¢q l+gq
oot fmin (s () Frn (551}
. 1+¢q l—¢q
> min {Fyi’v (*Tq—‘ €> ) FTivi’ Ty; (T E\] .

/
Then (16) results in

. l1—¢q 1+4q
Fv‘-,v(a)>m1n [FTiv,-.Tvi< 2 8)’ Fvi.v( 2q s)]
Hence and by (15)

Using that

we get

17 F,,,(&>1—x for all i>K, or
(18) Fv_,v(s)=Fv,,v<12+qs) for all i>K.
i i q

The assertion of Theorem follows if (17) is valid. Since F, ,(e)<1-2 implies
(as in the proof of Theorem 1.)

Fvi’v(s)=Fvi,v((1+q) s)—>1, > oo,
2q

which is a contradiction, we see that (17) is correct. The theorem is proved.

Corollary 2.1. ({5}, Th., 21.1). Let {T;};cy be a sequence of maps on
a Menger space (S, 7 , t) such that T;s;=s; for some s,CS and let T, be a
contraction mapping on S with a fixed point s, S. If {T;} converges uniformly
to T,, then the sequence {s;} converges to s,.
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