ON FIXED POINTS OF GENERALIZED CONTRACTIONS ON PROBABILISTIC METRIC SPACES

Ljubomir B. Ćirić

(Communicated April 4, 1974)

1. Introduction. V. Sehgal and A. Bharucha-Reid [8] introduced a notion of a contraction mapping on a probabilistic metric space and proved fixed-point theorems which are extensions of the classical Banach's fixed-point principle and a fixed-point theorem of M. Edelstein [4].

In the present note we introduce a notion of a generalized contraction map on a probabilistic metric space and prove a fixed point theorem which is an extension of some results of [1] and [8]. Then we consider a sequence of maps on a probabilistic metric space and prove a theorem which extends some results of [3] and [5].

- **2.** Statistical or probabilistic metric spaces were introduced by K. Menger [7]. A probabilistic metric space (briefly a Pm-space) is an orderer pair (X, \mathcal{F}) , where X is an abstract set of elements and \mathcal{F} is a mapping of $X \times X$ into a collection \mathcal{L} of all distribution functions F (a distribution function F is a nondecreasing and leftcontinuous mapping of reals into [0, 1] with inf F(x) = 0 and sup F(x) = 1). The value of \mathcal{F} at $(u, v) \in X \times X$ will be denoted by $F_{u, v}$. The functions $F_{u, v}$, $u, v \in X$, are assumed to satisfy the following conditions:
 - (a) $F_{u,v}(x) = 1$ for all x > 0, if and only if u = v.
 - (b) $F_{u,v}(o) = o$.
 - (c) $F_{u,v} = F_{v,u}$
 - (d) $F_{u,v}(x) = 1$ and $F_{v,w}(y) = 1$ imply $F_{u,w}(x+y) = 1$.

The value $F_{u,v}(x)$ of $F_{u,v}$ at $x \in R$ may be interpreted as the probability that the distance between u and v is less than x.

A mapping $t:[0, 1] \times [0, 1] \rightarrow [0, 1]$ is a t-norm if it satisfies

- 1. t(a, 1) = 1, t(0, 0) = 0,
- 2. t(a, b) = t(b, a),
- 3. $t(c, d) \geqslant t(a, b)$ for $c \geqslant a, d \geqslant b$,
- 4. t(t(a, b), c) = t(a, t(b, c)).

A Menger space is a triplet (X, \mathcal{F}, t) , where (X, \mathcal{F}) is a *Pm*-space and *t*-norm t is such that the Menger's triangle inequality

(M)
$$f_{u,w}(x+y) \ge t [F_{u,v}(x), F_{v,w}(y)]$$

is satisfied for all $u, v, w \in X$ and for all $x \ge 0, y \ge 0$. A topology in (X, \mathcal{F}, t) is introduced by the family $\{U_v(\varepsilon, \lambda): v \in X, \varepsilon > 0, \lambda > 0\}$, where the set

$$U_{\nu}(\varepsilon, \lambda) = \{u \in X: F_{\mu,\nu}(x) > 1 - \lambda\}, \ \varepsilon > 0, \ \lambda > 0$$

is called an (ε, λ) -neighborhood of $v \in X$.

3. We now introduce a notion of a generalized contraction on a Pm-space.

Definition 1 A mapping T on Pm-space (X, \mathcal{F}) will be called a generalized contraction iff there exists a constant q, 0 < q < 1, such that for every $u, v \in X$,

(1)
$$F_{Tu, Tv}(qx) \ge \min \{F_{u, v}(x), F_{u, Tu}(x), F_{v, Tv}(x), F_{u, Tv}(2x), F_{v, Tu}(2x)\}$$
 for all $x > 0$.

Now we shall prove the following result.

Theorem 1. Let (X, \mathcal{F}, t) be a Menger space, where t is continuous and satisfies $t(x, x) \ge x$ for each $x \in [0, 1]$. If $T: X \to X$ is a generalized contraction on X and X is T-orbitally complete, then T has a unique fixed-point $v \in X$ and $\lim_n T_u^n = v$ for every $u \in X$.

Proof. Let $u \in X$ be arbitrary and consider the sequence:

(2)
$$u_0 = u, u_1 = Tu_0, u_2 = Tu_1, \dots, u_n = Tu_{n-1}, \dots$$

We shall show that the sequence (2) is fundamental in X, i. e., that for each $\varepsilon > 0$, $\lambda > 0$, there is an integer $K(\varepsilon, \lambda)$ such that $m, n > K(\varepsilon, \lambda)$ imply $F_{u_m, u_n}(\varepsilon) > 1 - \lambda$.

First observe that by (a)

(3) $u \neq v$ implies $F_{u,v}(qx) < F_{u,v}(x)$ for some x > 0 and that (M), 3. and $t(x, x) \ge x$ imply

(4)
$$F_{u,w}(x+y) \ge \min\{F_{u,v}(x), F_{v,w}(y)\}$$

for all $u, v, w \in X$ and for all $x \ge 0, y \ge 0$.

Suppose that in the sequence (2) $u_{n-1} \neq u_n$ for every integer n, since $u_{n-1} = u_n = Tu_{n-1}$ for some n implies immediately that (2) is fundamental. Then for u_{n-1} , $u_n \in X$ by (1)

$$F_{u_{n}, u_{n+1}}(qx) = F_{Tu_{n-1}, Tu_{n}}(qx) \geqslant$$

$$\min \{F_{u_{n-1}, u_{n}}(x), F_{u_{n-1}, u_{n}}(x), F_{u_{n}, u_{n+1}}(x), F_{u_{n-1}, u_{n+1}}(2x), F_{u_{n}, u_{n}}(2x)\}$$

$$= \min \{F_{u_{n-1}, u_{n}}(x), F_{u_{n}, u_{n+1}}(x), F_{u_{n-1}, u_{n+1}}(2x), 1\}.$$

Since by (4)
$$F_{u_{n-1}, u_{n+1}}(2x) \ge \min \{F_{u_{n-1}, u_n}(x), F_{u_n, u_{n+1}}(x)\},$$

we have

$$F_{u_n, u_{n+1}}(qx) \ge \min \{F_{u_{n-1}, u_n}(x), F_{u_n, u_{n+1}}(x)\} \text{ for all } x > 0.$$

Since we assume that $u_n \neq u_{n+1}$ for each integer n, (3) implies that

$$F_{u_n, u_{n+1}}(qx) \ge F_{u_n, u_{n+1}}(x)$$
 for all $x > 0$

is impossible. Then it follows that for each integer n,

(5)
$$F_{u_n, u_{n+1}}(qx) > F_{u_{n-1}, u_n}(x)$$
 for all $x > 0$.

For an arbitrary integer n we have by (5)

$$F_{u_n, u_{n+1}}(x) \geqslant F_{u_{n-1}, u_n}\left(\frac{x}{q}\right) \geqslant \cdots \geqslant F_{u_0, u_1}\left(\frac{x}{q^n}\right)$$

Let now ε , λ be arbitrary positive reals. Since $F_{u_0, u_1}\left(\frac{x}{q^n}\right) \to 1$ when $n \to \infty$, it follows that there exists an integer $K = K\left(\frac{1-q}{q}\varepsilon, \lambda\right)$ such that

(6)
$$F_{u_{n-1}, u_n}\left(\frac{1-q}{q}\varepsilon\right) > 1-\lambda \text{ for each } n > K.$$

Then by (5) for $n \ge K$ we have

(7)
$$F_{u_{n+p}, u_{n+p+1}}(\varepsilon) \geqslant F_{u_{n+p-1}, u_{n+p}}(\varepsilon) \geqslant \cdots \geqslant F_{u_{n-1}, u_{n}}(\varepsilon) \geqslant$$
$$\geqslant F_{u_{n-1}, u_{n}}\left(\frac{1-q}{q}\varepsilon\right) > 1-\lambda$$

for every $p \ge 0$, as F is a non-decreasing function (we may suppose that $q \ge \frac{1}{2}$).

Now we shall show that for each n > K

(8)
$$F_{u_n, u_{n+n}}(\varepsilon) > 1 - \lambda \text{ for } p = 0, 1, 2, \dots$$

Since (8) holds trivialy for p = 0, we may proceed by induction on p. Assume that (8) is valid for some fixed p. Then by definition of u_n and (1)

$$F_{u_n, u_{n+p+1}}(\varepsilon) = F_{Tu_{n-1}, Tu_{n+p}}\left(q\frac{\varepsilon}{q}\right) \geqslant$$

$$\min\left\{F_{u_{n-1}, u_{n+p}}\left(\frac{\varepsilon}{q}\right), F_{u_{n-1}, u_n}\left(\frac{\varepsilon}{q}\right), F_{u_{n+p}, u_{n+p+1}}\left(\frac{\varepsilon}{q}\right), F_{u_{n-1}, u_{n+p+1}}\left(\frac{2\varepsilon}{q}\right), F_{u_{n-1}, u_{n+p+1}}\left(\frac{2\varepsilon}{q}\right)\right\}.$$
Since by (4)
$$F_{u_{n-1}, u_{n+p}}\left(\frac{\varepsilon}{q}\right) \geqslant \min\left\{F_{u_{n-1}, u_n}\left(\frac{1-q}{q}\varepsilon\right), F_{u_n, u_{n+p}}(\varepsilon)\right\}$$

and

$$F_{u_{n-1}, u_{n+p+1}}\left(\frac{2\varepsilon}{q}\right) > \min\left\{F_{u_{n-1}, u_{n+p}}\left(\frac{\varepsilon}{q}\right), F_{u_{n+p}, u_{n+p+1}}\left(\frac{\varepsilon}{q}\right)\right\},$$

we obtain

$$F_{u_{n}, u_{n+p+1}}(\varepsilon) > \min \left\{ F_{u_{n-1}, u_{n}} \left(\frac{1-q}{q} \varepsilon \right), F_{u_{n}, u_{n+p}}(\varepsilon), F_{u_{n-1}, u_{n}} \left(\frac{\varepsilon}{q} \right), F_{u_{n}, u_{n+p}} \left(\frac{\varepsilon}{q} \right) \right\}$$

$$> \min \left\{ F_{u_{n-1}, u_{n}} \left(\frac{1-q}{q} \varepsilon \right), F_{u_{n}, u_{n+p}}(\varepsilon), F_{u_{n+p}, u_{n+p+1}}(\varepsilon) \right\}.$$

Using (6), the inductive assumption and (7) we have

$$F_{u_n, u_{n+n+1}}(\varepsilon) > 1 - \lambda$$
 for all $n > K$.

Therefore, (8) is valid for all $n \ge K$ and for every $p = 0, 1, 2, \ldots$ Hence (2) is a fundamental sequence. Since (2) is an orbit of T at $u \in X$ and X is T-orbitally complete, there is a point $v \in X$ such that

$$v = \lim_{n} u_n = \lim_{n} T^n u$$
.

We now prove that

$$(9) Tv = \lim_{n} u_{n+1} = v.$$

Let $U_{Tv}(\varepsilon, \lambda)$ be any nbd of Tv. Since $\lim_n u_n = v$ there exists an integer K such that

(10)
$$n \ge K$$
 implies $T_{u_n, v}\left(\frac{1-q}{2q}\varepsilon\right) > 1-\lambda$ and $F_{u_n, u_{n+1}}\left(\frac{1-q}{2q}\varepsilon\right) > 1-\lambda$.
Then by (1)

$$F_{u_{n+1}, T_{\mathcal{V}}}(arepsilon) = F_{Tu_{n}, T_{\mathcal{V}}}\left(q \cdot \frac{arepsilon}{a}
ight) \geqslant$$

$$> \min \left\{ F_{u_n, v} \left(\frac{\varepsilon}{q} \right), \ F_{u_n, u_{n+1}} \left(\frac{\varepsilon}{q} \right), \ F_{v, Tv} \left(\frac{\varepsilon}{q} \right), \ F_{u_n, Tv} \left(\frac{2\varepsilon}{q} \right), \ F_{u_{n+1}, v} \left(\frac{2\varepsilon}{q} \right) \right\}.$$

Since by (4)

$$F_{\nu, T\nu}\left(\frac{\varepsilon}{q}\right) = F_{\nu, T\nu}\left(\frac{1-q}{2q}\varepsilon + \frac{1+q}{2q}\varepsilon\right) \geqslant \min\left\{F_{\nu, u_{n+1}}\left(\frac{1-q}{2q}\varepsilon\right), F_{u_{n+1}, T\nu}\left(\frac{1+q}{2q}\varepsilon\right)\right\}$$

and

$$F_{u_n, T_v} \binom{2\varepsilon}{q} > \min \left\{ F_{u_n, u_{n+1}} \left(\frac{\varepsilon}{q} \right), F_{u_{n+1}, T_v} \left(\frac{\varepsilon}{q} \right) \right\},$$

we obtain, as F is nondecreasing, that

$$(11) F_{u_{n+1}, T_{\nu}}(\varepsilon) \geqslant \min \left\{ F_{u_{n}, \nu} \left(\frac{1-q}{2q} \varepsilon \right), F_{u_{n}, u_{n+1}} \left(\frac{1-q}{2q} \varepsilon \right), F_{u_{n+1}, \nu} \left(\frac{1-q}{2q} \varepsilon \right), F_{u_{n+1}, \nu} \left(\frac{1-q}{2q} \varepsilon \right) \right\}.$$

Hence and by (10)

(12)
$$F_{u_{n+1}, T_v}(\varepsilon) > 1 - \lambda \text{ for all } n \ge K, \text{ or}$$

(13)
$$F_{u_{n+1}, T_{\nu}}(\varepsilon) = F_{u_{n+1}, T_{\nu}}\left(\frac{1+q}{2q}\varepsilon_{1}\right) \quad \text{for all } n \geqslant K.$$

We proved (9) if (12) is valued. Now if (12) were false, then substituting in (11) ε by $\varepsilon_1 = \frac{1+q}{2a} \varepsilon > \varepsilon$, it would follow

(13')
$$F_{u_{n+1}, T_{v}}(\varepsilon_{1}) = F_{u_{n+1}, T_{v}}\left(\frac{1+q}{2q}\varepsilon_{1}\right) = F_{u_{n+1}, T_{v}}\left[\left(\frac{1+q}{2q}\right)^{2}\varepsilon\right], \text{ and}$$

$$F_{u_{n+1}, T_{v}}(\varepsilon) = F_{u_{n+1}, T_{v}}\left(\frac{1+q}{2q}\varepsilon\right) = F_{u_{n+1}, T_{v}}\left[\left(\frac{1+q}{2q}\right)^{2}\varepsilon\right].$$

Proceeding in this direction we would obtain that

$$1-\lambda \geqslant F_{u_{n+1}, T_{\nu}}(\varepsilon) = \cdots = F_{u_{n+1}, T_{\nu}}\left[\left(\frac{1+q}{2q}\right)^{k}\varepsilon\right] \rightarrow 1, \ k \rightarrow \infty$$

which is a contradiction. Therefore, the inequality (12) is correct, which implies (9). So we conclude that there exists a fixed point for T.

To prove the uniqueness of the fixed point v in (9), suppose that $w \neq v$ and Tw = w. Then by (1)

$$F_{\nu, w}(qx) = F_{T\nu, Tw}(qx) \ge \min \{F_{\nu, w}(x), F_{\nu, T\nu}(x), F_{w, Tw}(x), F_{\nu, Tw}(2x), F_{w, T\nu}(2x)\}$$

$$= \min \{F_{\nu, w}(x), 1, 1, F_{\nu, w}(2x), F_{w, \nu}(2x)\} = F_{\nu, w}(x)$$

for all x>0, which is a contradiction with (3). Therefore, the fixed point is unique.

Corollary 1.1. Let (M, d) be a metric space and let $T: M \rightarrow M$ be a mapping. If

(14)
$$d(Tu, Tv) \leq q \cdot \max \left\{ d(u, v), d(u, Tu), d(v, Tv), \frac{1}{2} d(u, Tv), \frac{1}{2} d(v, Tu) \right\}$$

for some q < 1 and for all $u, v \in M$ and if M is T-orbitally complete, then T has a unique fixed point $p \in M$ and $\lim_n T^n u = p$ for every $u \in M$.

Proof. The metric **d** induces a mapping $\mathcal{F}: M \times M \to \mathcal{L}$, where $\mathcal{F}(u, v) = F_{u,v}(u, v \in M)$ is defined by $F_{u,v}(x) = 0$ if $x \leq d(u, v)$ and $F_{u,v}(x) = 1$ if x > d(u, v). Further, if $t: [0, 1] \times [0, 1] \to [0, 1]$ is defined by $t(a, b) = \min\{a, b\}$, then (M, \mathcal{F}, t) is a T-orbitally complete Menger space, what is easy to prove.

Now we shall show that (14) implies (1). Put $d(a, b) = \max \{d(u, v), d(u, Tu), d(v, Tv)\}$ and $\frac{1}{2}d(c, e) = \max \{\frac{1}{2}d(u, Tv), \frac{1}{2}d(v, Tu)\}$. Suppose first that $d(Tu, Tv) \leq qd(a, b)$. Then for $x \leq d(a, b)$ one has $F_{a,b}(x) = 0$ and hence $F_{Tu, Tv}(qx) \geqslant F_{a,b}(x)$; and for x > d(a, b) it follows $qx > qd(a, b) \geqslant d(Tu, Tv)$ which implies $F_{Tu, Tv}(qx) = 1$ and hence $F_{Tu, Tv}(qx) \geqslant F_{a,b}(x)$. Therefore, $F_{Tu, Tv}(qx) \geqslant$

 $>F_{a,b}(x)$ for all x>0 when d(Tu,Tv) < qd(a,b). Suppose now that $d(Tu,Tv) < q\frac{1}{2}d(c,e)$. Then $x < \frac{1}{2}d(c,e)$ implies $F_{c,e}(2x) = 0$; and $x>\frac{1}{2}d(c,e)$ implies qx>d(Tu,Tv) and hence $F_{Tu,Tv}(qx) = 1$. Thus, $F_{Tu,Tv}(qx) > F_{c,e}(2x)$ for all x>0 when $d(Tu,Tv) < q\frac{1}{2}d(c,e)$. Therefore, we showed that if T satisfies the condition (14) on (M,d) then T satisfies the condition (1) on (M,\mathcal{F},t) , as d(f,g) = d(y,z) implies $F_{f,g}(x) = F_{y,z}(x)$ for x>0. The result now follows by our Theorem.

Corollary 1.2. ([8], Th. 3). Let (E, \mathcal{F}, t) be a complete Menger space, where t is continuous function satisfying $t(x, x) \ge x$ for each $x \in [0, 1]$. If T is any contraction mapping of E into itself, i.e. if for each $u, v \in E$

$$F_{Tu,Tv}(qx) \geqslant F_{u,v}(x)$$
 for all $x > 0$,

then there is a unique $p \in E$ such that Tp = p. Moreover, $T^n q \rightarrow p$ for each $q \in E$.

4. In this section we shall consider a sequence of maps on a *Pm*-space. We need the following definition (see [5]).

Definition 2. A sequence of maps $T_i: X \to X$ on a Pm-space X converges uniformly to a map $T: X \to X$ iff for every $\varepsilon > 0$ and $\lambda > 0$ there exists a positive integer $K = K(\varepsilon, \lambda)$ such that

$$F_{Tu, T_i u}(\varepsilon) > 1 - \lambda$$

for every $u \in X$ and all i > K.

Theorem 2. Let $\{T_i\}_{i\in N}$ be a sequence of maps on a Menger space (X,\mathcal{F},t) , where t is continuous and satisfies $t(x,x)\geqslant x,\ x\in [0,1]$ and let $T\colon X\to X$ be a generalized contraction on X and X T-orbitally complete. If each T_i $(i=1,2,\ldots)$ has at least one fixed point v_i and if the sequence $\{T_i\}_{i\in N}$ on the subset $I=\{u\in X:\ there\ is\ some\ T_i\ such\ that\ u=T_iu\}$ converges uniformly to T, then the sequence $\{u_i\}_{i\in N}$ converges to a unique fixed point v of T.

Proof. By Theorem 1 the mapping T has a unique fixed point v. To show that $v = \lim_{i} v_{i}$, let $U_{v}(\varepsilon, \lambda)$ be an arbitrary nbd of v. We must show that

$$F_{\nu_i,\nu}(\varepsilon) > 1 - \lambda$$

for almost all $i \in N$. Since $\{T_i\}$ converges uniformly to T, there exists $K \in N$ such that

(15)
$$F_{T_i u, T u}\left(\frac{1-q}{2}\varepsilon\right) > 1-\lambda \quad \text{for} \quad i \geqslant K$$

for every $u \in X$. For arbitrary $v_i \in X$ for which $T_i v_i = v_i$ we have by (4)

$$(16) \qquad F_{\nu_{i},\nu}\left(\varepsilon\right)=F_{\nu_{i},\nu}\left(\frac{1-q}{2}\,\varepsilon+\frac{1+q}{2}\,\varepsilon\right)\geqslant\min\left\{F_{T_{i}\nu_{i},T\nu_{i}}\left(\frac{1-q}{2}\,\varepsilon\right),\ F_{T\nu_{i},\nu}\left(\frac{1+q}{2}\,\varepsilon\right)\right\}.$$

Since T is a generalized contraction, v = Tv, $v_i = T_i v_i$ and F is nondecreasing, we obtain

$$F_{Tv_{i},v}\left(\frac{1+q}{2}\,\varepsilon\right) = F_{Tv_{i},Tv}\left(q\,\frac{1+q}{2\,q}\,\varepsilon\right) > 0$$

$$\min \left\{ F_{\nu_l, \, \nu} \bigg(\frac{1+q}{2 \, q} \, \varepsilon \bigg), \ F_{\nu_l, \, T \nu_l} \bigg(\frac{1+q}{2 \, q} \, \varepsilon \bigg), \ F_{\nu_l, \, T \nu} \bigg(\frac{1+q}{2 \, q} \, \varepsilon \bigg), \ F_{\nu_l, \, T \nu} \bigg(\frac{1+q}{q} \, \varepsilon \bigg), \ T_{\nu, \, T \nu_l} \bigg(\frac{1+q}{q} \, \varepsilon \bigg) \right\}$$

$$\geqslant \min\left\{F_{\nu_i,\,\nu}\left(\frac{1+q}{2\,a}\,\varepsilon\right), \quad F_{T_i\nu_i,\,T\nu_i}\left(\frac{1+q}{2\,a}\,\varepsilon\right), \quad F_{\nu,\,T\nu_i}\left(\frac{1+q}{a}\,\varepsilon\right)\right\}.$$

Using that

$$F_{\nu, T\nu_i}\left(\frac{1+q}{q}\,\varepsilon\right) > \min\left\{F_{\nu\nu_i}\left(\frac{1+q}{2\,q}\,\varepsilon\right), F_{T_i\nu_i, T\nu_i}\left(\frac{1+q}{2\,q}\,\varepsilon\right)\right\}$$

we get

$$\begin{split} F_{Tv_i,\,\mathbf{v}}\left(\frac{1+q}{2}\,\varepsilon\right) &\geqslant \min\left\{F_{\mathbf{v}_i,\,\mathbf{v}}\left(\frac{1+q}{2\,q}\,\varepsilon\right), \quad F_{T_i\,\mathbf{v}_i,\,Tv_i}\left(\frac{1+q}{2\,q}\,\varepsilon\right)\right\} &\geqslant \\ &\geqslant \min\left\{F_{\mathbf{v}_i,\,\mathbf{v}}\left(\frac{1+q}{2\,q}\,\varepsilon\right), \quad F_{T_i\,\mathbf{v}_i,\,Tv_i}\left(\frac{1-q}{2}\,\varepsilon\right)\right\}. \end{split}$$

Then (16) results in

$$F_{\nu_i, \nu}(\varepsilon) \geqslant \min \left\{ F_{T_i \nu_i, T \nu_i} \left(\frac{1-q}{2} \varepsilon \right), F_{\nu_i, \nu} \left(\frac{1+q}{2 q} \varepsilon \right) \right\}.$$

Hence and by (15)

(17)
$$F_{\nu_i,\nu}(\varepsilon) > 1 - \lambda \quad \text{for all} \quad i \geqslant K, \text{ or}$$

(18)
$$F_{\nu_i,\nu}(\varepsilon) = F_{\nu_i,\nu}\left(\frac{1+q}{2q}\varepsilon\right) \quad \text{for all} \quad i \geqslant K.$$

The assertion of Theorem follows if (17) is valid. Since $F_{\nu_l,\nu}(\varepsilon) \le 1 - \lambda$ implies (as in the proof of Theorem 1.)

$$F_{\nu_i, \nu}(\varepsilon) = F_{\nu_i, \nu}\left(\left(\frac{1+q}{2q}\right)^n \varepsilon\right) \rightarrow 1, n \rightarrow \infty,$$

which is a contradiction, we see that (17) is correct. The theorem is proved.

Corollary 2.1. ([5], Th. 21.1). Let $\{T_i\}_{i\in\mathbb{N}}$ be a sequence of maps on a Menger space (S, \mathcal{F}, t) such that $T_i s_i = s_i$ for some $s_i \in S$ and let T_0 be a contraction mapping on S with a fixed point $s_0 \in S$. If $\{T_i\}$ converges uniformly to T_0 , then the sequence $\{s_i\}$ converges to s_0 .

REFERENCES

[1] Lj. Čirić, Generalized contractions and fixed-point theorems, Publ. Inst. Math., tome 12 (26), 1971, 19-26.

[2] Lj. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267—273.

[3] Lj. Ćirić, On families of contractive maps and fixed points, Publ. Inst. Math., tome 17 (31), 1974, 45-51.

- [4] M. Edelstein, An extension of Banach's contraction principle, Proc. Amer, Math. Soc., 12 (1961), 7-10.
- [5] A. and V. Istratescu, On the theory of fixed points for some classes of mappings. VI, Rev. Roum. Math. pures et appl., tome XVII (1973), 1639—1642.
 - [6] Dj. Kurepa, Some fixed point theorems, Math. Balkanica, 2 (1972), 102-108.
- [7] K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. U.S.A., 28 (1942), 535—537.
- [8] V. Sehgal and A. Bharucha—Reid, Fixed points of contraction mappings on probabilistic metric spaces, Math. systems theory, 6 (1972), 97—102.
- [9] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 313-334.
- [10] B. Schweizer, A. Sklar and E. Thorp, The metrization of statistical metric spaces, Pacific J. Math., 10 (1960), 673—675.