PUBLICATIONS DE L’INSTITUT MATHEMATIQUE
Nouvelle série tome 18 (32), 1975, pp, 57—69

FIXED AND PERIODIC POINTS FOR A CLASS
OF CONTRACTIVE OPERATORS

Ljubomir B. Ciri¢
(Communicated October 29, 1974)

Introduction. Let (M, d) be a metric space. An operator A:M— M
is a contraction mapping iff for every x, y& M

)] x#y implies d(4dx, Ay)<q-d(x,y)

for some g<<1. If g=1, then A is called a contractive mapping.

A contractive mapping is clearly uniformly continuous, and if such operator
has a fixed point, then this fixed point is obviously unique. But contractivity
of A is not sufficient for the existence of a fixed point in a complete metric
space. For example, let M =[0, 0)C R and let A:M— M be defined
by Ax=x+e~* Then d(d4x, Ay)=(1—e ) d(x, y) for some c=x+1(y—x);
0<t<1. Clearly, A is contractive without a fixed point.

If M is a compact metric space, then every contractive operator on M
has a fixed point. This fact is motive for the false assertion that a
contractive mapping on a compect space is always a contraction for some ¢ (see
[10], pp 565). That this assertion is incorrect following example shows.

Let M=[0, 1]JCR and let A: M — M be defined by Ax =

X+ —
n+2 (n+1)@n+2)

for xE[ T —L] (n=1,2,3,...) and 4(0)=0. Clearly, A4 is contractive on
n+4 n
the compact space [0, 1]. But for every fixed g (0<g<1), n>12<qf
and x, y| Lo, 1|, xzy, imply d(dx, 4= -" - d(x, »)>q-d(x, ).
nt+l n n+2

M. Edelstein [6] has investigated contractive mappings on spaces which are
not necerarily compact. Edelstein has proved that the assumption that there
exists a point x M such that its sequence of iterates contains a subsequence
which converges to a point of M is sufficient for the existence of a fixed point
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of a contractive mapping, and periodic points of an e-contractive mapping,
respectivelly. Sufficient conditions for the existence of a unique fixed point
for e-contractive mappings were given by Edelstein [6], too.

D. Bailey in his doctoral dissertation [1] (see [2]) has investigated mappings
satisfying any of the following conditions:

(2) A mapping A is continuous and 0<<d(x, y) implies
An(x, )EN:d(A"x, A" y)<d(x, ).

(3) 4 is continuous and Fe>0:0<d(x, y)<<e implies
In(x, Y)EN:d(A"x, A" y)<d(x, y).

It is obvious that contractive and e-contractive operators satisty (2) or (3),
respectively, with m(x, y)= 1. Bailey has shown that on compact spaces mappings
satisfying (2) have a unique fixed point and mappings satisfving (3) have
periodic points.

In this paper we introduce the notions of the fcllowing mappings of con-
tractive type and prove several fixed-point or periodic-point theorems.

(4) A will be called an eventually conctractive operator iff for every x, y&e M
there exists m(x, y)= N such that

0<d(x, y) implies d(A"x, A" y)<d(x, y) for all n=m(x, y).

If d(A4"x, A" y)<<d(x, y) is replaced by d(A4"x, A"y)<d(x, y), then A will be
called eventually non-expansive.
(5) A will be called an eventually e-conctractive [resp. e-nonexpansive]
operator if there exist e>0 (¢ is const.) and m(x. y)&EN such that
0<d(x, y)<e implies d(4"x, A" y)<[resp<]d(x, y) for all n>m(x, y).

(6) A will be called a frequently contractive [resp. nonexpansive] operator
f for every x, y& M there exists m(x, y)& N such that

0<<d(x, y) implies d (A" x, A" yy<[resp<]d(x, y).

(7) 4 will be called a frequently c-contractive [resp. e-nonexpansive] operator
if there exist £¢>0 and m(x, y)& N such that

0<d(x, y)<e imply d(A"®Nx, A"*) y<[resp<]d(x, p).
(8) A will be called with a contractive [resp. nonexpansive] iteration at a
point it for each x&EM there exists m(x)& N such that
0<d(x, y) implies d (4" x, A" yy<[resp<]d(x, y).
(9) 4 will be called with an e-contractive [resp. e-nonexpansive] iteration
at a point if there exist €0 and m(x)& N such that
0<d(x, y)<e implies d (A" x, A" y)<[resp<]d(x, ).
It is obvious that a contractive mapping is continuous (uniformly) and
satisfies (4) with m(x, y)=1. An eventually contractive mapping is not neces-
sarily continuous, as shows the example 1 which follows Theorem 1. Mappings (6)

and (7) satisfy only the contractive condition in (2) and (3), respectively, and
they are not necessarily continuous. Example 4, following Theorem 6, shows
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that results concerning mappings (6) and (7), here presented, are indeed exten-
sion of the main results of Bailey [1], [2]. Obviously, mappings (8) and (9)
satisfy the conditions for mappings (7) and (8), respectively. As these mappings
have certain good properties, we point them ocut.

1. Fixed and periodic points of eventually contractive operators.

1. Now we shall indicate sufficient conditions for the existence of a unique
fixed point for eventually contractive operators.

Let A:M—-> M be an operator on a metric space (M, d) and let x be
in M. Denote

0(x, 4)={x, Ax, A%x, ...},
L(x, A)={pEM:p is a cluster point of 0(x, A},
LM, A)= U L(x, 4).

xEM

Recall that A4 is said to be orbitally continuous if A ccntinuous on 0(x, A)=
=cl[0(x, A)] for every x&M.

Theorem 1. Let M be a metric space and A an eventually non-expansive
operator on M. If L(x,, A) is nonempty for some x,=M and A is eventually
contractive on L(M, A) and orbitally continuous on M, then A has a unique fixed
point pC M and p =lim, A" x,,.

Proof Let pcL(x,, A). Then there exists a subsequence
N ={n i€ N}(n,<ny<<---m<---)
of N such that
p=lim, A"ix,.
By orbitally continuity of A it is easy to prove that
(10) ASp—lim, A5 4" x,=lim, A" x, for each s=1,2,3...

Assume that Ap=p. Since p, Ap& L(x,, AYCL(M, A) and A4 1s eventually
contractive on L (M, A), we may choose a positive integer r > m(p, Ap) such that

(an d(A" p, A" Ap)<d(p, Ap).

Consider A"""x, and A" "' x, tor each fixed m,&GN,. As A is even-
tually non-expansive on M, there exists an integer m (A" xy, AT xg)
such that

12 d(A" x,, A"V x) = d (A" T AT x AT AT )
0 0 0 0
<d(Ani+rX0, An,- tr+1 xo)

for all n=m (A% x,, AT x4+
For each fixed n, &N, let n, © N, be chosen such that
ny,=m (A" x, AT )
Then by (12)
n, n.+1
(13) d(A’ x,, At x)<d(A"7 xy, AT X).
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n,
We may assume that n, <n, (i=1,2,3,...). Since {4”ix,} is a subsequence
Y Ji ji+1 0 !

of {4"x,} and lim; A" x,=p it follows that lim,.Anjix(): p. Thus we obtain
(using (10)) that
lim, d(4”%x,, 4% x}—d(p, dp),
lim, d (4" "x,, A" x)=d(A p, A7 1p).
Then from (13) it follows that
d(p, Ap)<d(A'p, A"*'p)=d(A'p, 4" Ap).

This contradicts the condition (11). Thus we conclude that Ap = p. Assume now
that g=Ag and q#p. Then p, q=L(M, A) and by (4) there is m(p, 9)&EN
such that d(p, q)=d(A"p, A"q)<d(p, q) for all n=m(p, q). This contradiction
shows that p is a unique fixed point of A. Finally, to show that lim, 4" x,=p,
let €0 be an arbitrary real number. Since p& L(x,, 4), there is k&N such
that d(p, A*x,)<e. By (4)

d(p, A" x)=d(A"p, A"x))<d(p, Ap)<c

for all n>m(p, A*x,). Thus we conclude that lim, A" x,~p and the proof of
the Theorem 1 is complete. '

Corollary 1.1. If M is a compact metric space and A is a continuous
and eventually contractive mapping on M, then A has a unigue fixed point pC M
and lim, A" x =p for every x&c M.

Corollary 1.2. (Edelstein [6], Th. 1.) Let X be a metric space, f a
contractive selfmapping of X satisfying
(14) Fx(EX): {f" DLW} with Tim, [ () E X,

then £ =1lim,f"i(x) is a unique fixed point.

Observe that an eventually contractive operator is not necessarilly orbitally
continuous and may be without a fixed point, even if M is compact and con-
nected, as is shown by following example:

Example 1. Let M=[0, 1]JCR and let 4: M — M be defined by

A(©)=1 and A(x):—; , if x£0.
1 .
Then d(Ax, Ay)<-2 -d(x,y) if x-y£0 and d(4"x, A"0)<<d(x, 0) for all

4 . .
n>=m(x, O)ZE(log2 ) Thus A4 is eventually contractive on M. But A has
x

no fixed point and A4 is not orbitally continuous on M, because for
x#0:0=1im,A"x and A4 (0)=1lim, 44" x=0.

The following example shows that it is quite easy to exibit spaces which
admits eventually contractive mappings which are not contractive (even are not
locally contractive).
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Example 2. Let
M={(x, y):x=cost, y=sint, 0<t<2m}
be the subset of the euclidean plane and let 4: M — M be defined by

Ar=21¢, if 0<z<—’23,

t .
Z_2‘+-rc, if t<t<2m

In that example A and M satisfy all hypotheses of theorem 1, even of Corol-
lary 1.1, but A4 is not locally contractive at the point (1,0).

Note that in the above example the following condition, required in
[9] and [12], is not satisfied.

There exists a nbd V(p) of a unigue fixed point pEM such that for
every nbd U (p) there exists n[U (p)]& N such that

AV (PICU(p) for all n>n[U(p)].

The following example serves to show that the hypothesis in Theo-
rem 1, and Corollaries 1.1. and 1.2. do not imply the convergence of
{A" x}pen for every xEM.

Example 3. Let M={0}U[2,;—, cevs 1+71—, } and let A:M—> M

n
be defined by A(1+L)=I+ !
n+1

and A(0)=0. Then A is a contractive
n

operator (1) with a fixed point p=0, but for every x=0 the sequence {4" x},cn
does not contain a convergent subsequence.

2. In this section we bring sufficient condition for existence of periodic
points under eventually e-contractive operators.

Theorem 2. Let M be a metric space and A an eventually e-non-expan-
sive selfmapping of M. If L(x,, A) is nonempty for some x,&M and A is even-
tually e-contractive on L(M, A) and orbitally continuous on M, then each
pEL(x,, A) is a periodic point of A and 0(p, A)=L(x,, A). Furthermore, if
k& N is such that d(A"x,, A" *x)<e for some nEN, then each p&L(x,, A)
has a period at most equal to k and lim A™ x,c L (x,, A).

Proof. Let p be a point in L(x,, 4) and let N, ={n}CN be such that

lim,; 4" x, = p.
Hence a subset K of the positive integers N, defined by
K={r:d(4"x,, A"*" x,)<e for some nCN}
is nonempty. Put k=min K and let s©N be such that
(15) d(A°x,, A *x)<e.
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We shall show that p is a periodic point of a period equal to k, i.e. A*(p)=p.
By (15) and eventual e-nonexpansivity of 4
(16) d(A" Xy, APF X)) = d (A5 A5 x5 ATS 45K xp) <d (A X,, ASTH xp) <e
for all n>m(A4°x,, A***x,)+ 5. Hence
d(A"i x,, A" x)) <d (45 x,, A *x,)
for all sufficiently large n,&N,. Then by (10)

nt+k

(17) d(p, A*p)=lim;d (A" x,, A" xp)<e.

Assume that A*p=p. Since p, A*p& L(x,, A), by (17) and (5) there exists an
integer r=m (p, A¥ p) such that

(18) d(Ar p, 4" A*p)<d(p, A* p).

By (16) for each fixed n,CN, and n,>m(A°x,, A**¥x))+s—r we have that

n+rtk

d(A"" " x,, AT x)<e.

Then by (5)
d(Alx,, A Fx)=d(A " A x,, AT AT )

ntr+k

<d A" x,, A" X <e
for all I>m (A" x,, A"""* x,)+n,+r. Hence we may choose sufficiently large
n;=N, such that
ntr n+r+k

d( A% xg, AT x)<d (A" x,, A
Then, as {4%x,}C{4"x,}, by (10)
lim, d (4% x,, A" x)=d(p, A*p)<d (4" p, A"+*p)=
— lim, d (4" x,, A" * x)),

which is a contradiction with (18). Therefore, we conclude that 4¥p=p.
Now we shall show that lim, A" x, L (x,, 4) and L(x,, 4)={p, 4p, ...,

k—1
A=1pY As {A"x }pen= U {A™ " x}aen and pEL(x,, A), it follows that p is a
0 0 0. 0

X,)-

cluster point of a subsequence {A"k"'oxo},,gN for some r,, 0<ry<k—1. Thus,
for arbitrary 8, 0<8<e, there exists s& N such that

d(p, A o x)<S<e.
Then, by eventual s-nonexpansivity of A4,

sk-r sk—r

d(Aip, A A% Tox)<d(p, A Toxp) for all i>m(p, A "o xy).
Hence, for i=nk we obtain (as p= A" p)
d(p, A™ 4% Tox)<3 for all n>%m(p, A*0x),
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i.e.
. k- . k- . ke —
(19) p—lim, 4™ A% "o x, —lim, A”"* o x, = lim, A™ o x,.

Since A4 is orbitally continuous, it follows from (19) that

nk+i-r

0 xy = A (lim, A™ "o x,) = A pE L (x,, A);
i=0,1,...,r,..., k—1.

lim, 4

Hence L(x,, A)={p, Ap, ..., A¥"1p} and lim, 4™ x,= A" p L (x,, A).

The proof of the Theorem is complete.
_ Corollary 2.1. If M is a compact metric space and A is an orbitally
continuous and eventually e-contractive operator on M, then a set P of periodic
points of A is non void and d(A*x, AS** xy<<e for some s, k&N, x& M, implies
lim, A% x=p&P and A*p=p.

Corollary 2.2. (Edebtein [6], Th. 2.). Let X be a metric space, [ an

e-contractive selfmapping of X satisfying (14), then £ =1im,f"i(x) is a periodic
point.

The following result gives some informations on the set of all periodic
points.

Theorem 3. Let M be a metric space and A an eventually s-contractive
and orbitally continuous selfmappings of M. Then the set P of all periodic poinis of A
is closed and p, q= P, p+q, implies d(p, q)>¢c. If M is compact, then P is non
void and for every x&M there exists a positive integer k such that lim, A™ x E P.

Proof. Assume that P is non void. Since p& P implies pc L(p, A)C
CL(M, A), and by Theorem 2 p& L(M, A) implies pC P, it follows that
P=L(M, A).

Let p,g&P and 0<d(p, q)<<e. Then p=A¥p and g=A*q for some,
k,sc N, and by eventual e-contractivity of 4 we obtain

d(p, g)=d(A™ p, A™sq)< d(p, q) for all n> % m(p, q)

a contradiction. Thus, d(p, g)<<e implies p=g. Suppose now that p’ is a
cluster point of P and let 3<e be any positive real number. Then there

3 .
exists p& P such that 0<d(p/, p)<5 and p=A¥p for some k& N. Since 4

is eventually e-contractive, it follows that

AU, AP~ d (%', P <d (7', p) < for all m=—m (P )

and hence and by d(p’, p)<%

3 93 1
d(p', A% p)y<d(p'p)+d(p, A""p’)<?+?=8 for all n>;fﬂ(p’,p)~
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Therefore, p'&€ L(p’, ACL(M, A)=P and p'=p as d(p’, p)<e. Thus, we
conclude that P is cluster points free.

If M is compact, then P=L (M, 4A) is non void, and by above, P is
finite. Since L(x, 4) is non empty for every xE M, by Theorem 2. there
exists kC N such that lim, A" xc L (x, A)C P, as asserted.

3. In this section we bring sufficient conditions for the existence of a
fixed point under eventually e-contractive operators.

Theorem 4. Let M be a metric space, A an eventually e-contractive
and orbitally continuous selfmapping of M and let L(M, A) be non void. If for
every p, q=L(M, A) there exists an e-chain p=v,, v,, ..., v,=q such that.

Q0) S d@.-,, v,.)—inf{
=1

n
d_,, w):p=uy, u,...,u,=q an s-chain},
i =1

then A has a unigue fixed point.

Proof. By Theorem 2 each pcL (M, A) is a periodic point of 4. We
shall show that L (M, A) is a singleton.

Assume . hat p, g L(M, A) and p+#q, and let p=vy, v,,...,v,=q be
an e-chain with a property (20). Then A/p=p, A'q=gq for some j, [N and
hence A*p=p and A*q=gq for k=jl. Since 0<d(v,_,, v)<e for each i=1,
2,...,r,and 4 is eventually e-nonexpansive, for every v;_;, vvEM (i=1,2,...,r)
there exists a positive integer m(v,_,, )& N such that

d(A"v;,_,, A"v)<d@,_, v;) for all n>m@;,_;,v) (=1,2,...,r)

Put m=max {m(vy, v)),m®¥,, v,), ..., m(@,_;, v,)}: Then
d(A%v,_,, A%v)<d(@,_,, v;) for all s>%m (i=1,2,...,r).

Thence, as A%v,=A%p=p, A%y, =A% q—gq, the e-chain
0 r

p=Akyy, Ay ..., A%y, =¢q
has a property

> d(A%y,_,, A%< > d(vi_y> V)
=1 i

i=1

which is a contradiction with (20). Therefore, g=p and we proved that
L(M, 4)={p}. Since pc L (M, A) implies Ap L (M, A), we conclude that Ap=p,
as asserted.

Corollary 4.1. Let M be a convex metric space and A an eventually
e-contractive and orbitally continuous selfmapping of M. If L(M, A) is non void,
then A has a unique fixed point.

Proof. By convexity of M for every x, y&M there exists uC M such
that d(x, ) =d(u, y)=%d(x, ¥). Let 0<d(x, y)<2e¢. Then there is u& M such

that d(x, uy<e, d(u, yy<eand d(x, u) + d (u, ) =d (x, ). Let now 2 e < d (x, y) <4 e.
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Then there exist #,, u,, u;&M such that d(x, u,)<e, d (u,, uyy<e, d(u,, u;)<e,
d(uy, yy<eand d(x. u)+d(u,, u))+du,, u) +d(u;, y)=d(x, y). As for every
x, YEM there exists n(x, ¥)C N such that d(x, y)<<2"* ¢, by convexity of M
there exist an e-chain x=v,, v,, ..., v,2"*” =y such that

P (x,%)

d(vi—] s vi) = d(x’ y)
=1

I
and we may apply Theorem 4.

Theorem 5. Let M be an e-chainable metric space, A an orbitally con-
tinuous and eventually c-contractive selfmapping of M satisfying that L(x,, A)
is non void for some x,CM. If pEL(M, A) and {A"x},cn has a cluster point
whenever d(p, x)<e, then p is a unique fixed point of A and p=lim, A" x when-
ever L(x, A) is non void.

Proof We shall show that L(M, A) is a singleton {p}. Suppose that
g&=L(M, A) and let p=v,, v;, ..., v,=q be an e-chain from p to g. By Theo-
rem 2, p and g are periodic points of A, consequently there exists k&N such
that 4*p—p and A*q=gq. As A is eventually e-contractive (and we may assume
that v,_,v;ii=1, 2, ..., r),

d(A™v,_,, A"v)<d(@,_,,v;) for all n>m(i=1,2,...,7r),
where m=max{m(p, v,), m(@,, v,), ..., m(¥,_;, q)}. Hence

i-12

@1 d(A%v,_,, A%v)<d(v,_,, v) for all j>%(i=1, 2, ..., 1)

As d(p, v;)<e by assumption {4"v,},cn has a cluster point p'EM. Then
p' is a cluster point of {4™ oy };cx for some integer s,; 0<s,<k—1. Hence,
as A is orbitally continuous, p”’ =4%p’ is a cluster point of {4%v };cn, and, as
in Theorem 2, p”=lim;A%*y,. Since p=v,=A4*v, for each j&N, by (21)
d(p, p')<e and by Theorem 3 p" =p.

Therefore,
(22) p=lim; 4%y .

By (21) for i=2 and by (22) we conclude that d(p, Ajokv2)<s for some

JoEN. Then by assumption {4" A'* 9} cnC{A" v }nen has a cluster point in M.
Then, as above, we obtain the following relation

p=lim; A%y,
which is analogous to the relation (22).
Proceeding in this manner and using that A%*v,=A4/*g=gq, we obtain
p=lim; 4%y =lim; 4%y, = - . . =lim; 4%y, =gq.

Therefore, g L (M, A) implies ¢=p and hence Ap=p.
Let now xEM be such that L(x, 4) is non void. Then L(x, 4)={p}
and by Theorem 2 (as k=1)

p=lim, A" x,
as asserted.
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Corollary 5.1. Let M be an e-chainable compact metric space and A
orbitally continuous and eventually e-contractive selfmapping of M. Then A has
a unigue fixed point pc M and p=1lim, A" x for each xC M.

Corollary 5.2. (Edelstein [6], Th. 3). Let X be an e-chainable metric
space, [ an e-contractive selfmapping of X satisfying (14). If &=lim, f"i(x) has
a compact spherical neighbourhood K (&, p) of radius p>c then % is unique fixed
point.

2. Fixed and periodic points of frequently contractive mappings and mappings
with a contractive iteration at a point.

4. In this section we bring sufficient conditions for existence of a unique
fixed point under frequently cotractive operators and operators with a contractive
iteration at a point.

Theorem 6. Let M be a metric space and A a frequently non-expansive
selfmapping of M. If 0 (xy> A) is compact for some x,=M and A is an orbitally
continuous and frequently contractive operator on L(M, A), then A has a unique
fixed point.

Proof. Since d and the vestriction of A to 0(x,, 4) are continuous,
the mapping B:0(x,, 4)—> [0, + ), defined by B(x)=d(x, Ax), is continuous.
As 0(x, A) is compact by assumption, there is p€6(xo, A) such that B(p) is
infimum of B on ﬁ(xo, A). Assume that B(p)=d(p, Ap)>0. If pcL(x,, A)
then Ap=L(x,, A) and, as A is frequently contractive on L (M, A),

B (A" (749 p) = d (4™ (P40 p, A™ (247} Ap) < d (p, Ap) = B (p)

contradicts the choice of p (4"* 40 pc0(x,, A) by orbital continuity of A).
Therefore, B(p)=d(p, Ap)=0. The uniqueness of the fixed point p follows
immediately by frequent contractivity of 4 on L(M, A).

Now we shall show that p=0(x,, 4) and B(p)=inf{B(x):x€0(x,, 4)},
imply Ap —p and hence p& L (M, A). Suppose that p€ 0 (x,, 4). Then by frequent
nonexpansivity of A4 there is a subset N, ={m,} of the set N such that

d(p, Ap)=d(A™p, A" Ap)>d(A™ p, A™2Ap)> - - - >d (A" p, A" Ap)> - - .

As {Amip} C 0(x,, A), we may assume that {4™ip}—> g&L(x,, A)CO(x,, 4).
Then {4™i Ap} — Aq, d(q, Ag)<d(p, Ap) and consequently B(q)—= B(p). There-
fore, for the point ¢ we have that g& L(x,, A) and B(g)=inf {B(x): xC0(x,, A)}.
This implies, as above, that B(gq)=0 and hence B(p)=0. Thus we conclude
that Ap=p.

The proof of the Theorem is complete.

Corollary 6.1. Let M be a compact metric space and A a frequently

contractive selfmapping of M. If A is orbitally continuous, then A has a unigue
fixed point.

Corollary 6.2. (Bailey [2], Cor. 1.2)). Let M be a compact metric space
and A a selfmapping of M satisfying (2). Then there exists a unique fixed point in M.
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The following example shows that there are non compact spaces which
admit a frequently contractive mapping, not necessarily continuous, and which has
a unique fixed point.

Example 4. Let R? be the euclidean plane and let
E,={(0,27):j=1, 2, 3, .. .}U{(0, 0)},
E’.:{(z_i’ 2_j):j= 19 25 37 ey I}U{(z_la 0)}9 l= 1, 2, ey

S—UEUE,.
i=1

Define A on R? as follows:
Al(x, M =(x, 2y) if (x, y)&S and y(2y—1)70,
1 1
={—x, 0}, if (x, )&S and y=—,
(2 ) x, ») y=
—(x, %), if (x, )ES and y=0,
1
=(7, 0), if (x, Y)ERNS and y rational,

z(%, %), if (x, )& R\ S and y irrational.

Then A is orbitally continuous and frequently contractive on R?, and for each
XER? the set 0(X, A) is compact. The point 0=(0, 0) is the unique fixed
point of 4, and if X& E,, then lim, A" X does not exist.

For mappings (8) we have the following result.

Theorem 7. Let M be a matric space and A a selfmapping of M with

a nonexpansive iteration at a point. If 6(x0, A) is compact for some x,&M and
A is an orbitally continuous mapping with a contractive iteration at a point
on L(M, A), then A has a unique fixed point p& M and lim, A" x,=p.

Proof By Theorem 6, A has a unique fixed point p in M. To show
that lim, 4" x,=p, let >>0. Since p is a cluster point of 0(x,, A), there exists
A5 x,E0(x,, A) such that d(p, 4°x;)<3. Then by (8), as p=Ap=A"Pp,

8>d(p, Asx0)>d(p, A”(l’)AsxO)> - =d(p, Aintp) Asx0)> ...
Hence
lim, AP A4° x, = p.
As {A" A Xo}nen = nL(j){A("—l)"(l’)*' A x.licxy and, by orbital continuity of A,
lim; AG-D# D+ g5 xro:; Arp=p for each r=1, 2, ..., n(p), it follows that
p=1lm, A" A5 x,=1lim, A" x,,

as asserted.

5%
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Corollary 7.1. Let M be a compact metric space and A an orbitally
continuous selfmapping of M with a contractive iteration at a point. Then A has
a unigue fixed point pEM and lim, A" x=p for each xC M.

5. In this section we bring sufficient conditions for existence of periodic points
of mappings (7) and (9).

Theorem 8. Let M be a metric space and A a frequently e-nonexpan-
sive selfmapping of M. If 0(x,, A) is compact for some xM and A is an
orbitally continuous and frequently e-contractive operator on L(M, A), then a set
of periodic points of A is not void.

Proof. If 0(x,, 4A)={x,, Ax,, A*x,, ...} is finite, then x, is a periodic

point of A. Suppcse otherwise and let g be a cluster point of {x,, Ax,,
A%x,, ...}. Then a subset K of the positive integers N, defined by

K={r:d(4"x,, A"*" x)<e for some nc N}
is not void. Put k=min K and let s&N be such that

d(A° xy, A* A5 x3) = d (A4° x,, A*T* x,)<e.

Since d and the restriction of A* to 0(x,, A) are continuous, the mapping
B:0(x,, A)— [0, + ), defined by B(x)=d(x, 4*x) is continuous. As 0 (x,, 4)
is compact, there exists p& 0 (x,, 4) such that

B(p)=int {B(x): x=0 (x,, A)}.

Then B(p)<B(A°x,)<e. Assume that B(p)>0. If pcL(x,, A), then Akpc
& L(x,, A) by orbital continuity of 4. Then 0<B(p)=d(p, A*p)<ec and fre-
quent es-contractivity of 4 imply that

B (4 (240 p) =d (Am (2 45D p, gm (1. 450) g p) <d (p, A p)= B (p).

This contradicts the choice of p. Therefore, B(p)=0 and hence 4*p=p.

If p=0(x,, A), then B(p)=d(p, A*p)<e and frequent e-nonexpansivity
of A imply that there exists a subset {m;} of N such that

d(p, A p)y>d(Amp, A A pY> « - >d(A"p, A" A p)> - - -,

As {A™ p},enCO(x,, 4), we may assume that {4™ p}-—> p'©L(x,, A). Then
{A4™i Ak p} — A¥p’, d(p’, A*p")<d(p, A*p) and consequently B (p') = B(p). There-
fore, we again have p'&cL(x,, A) and B(p')=inf{B(x):x<0(x,, 4)}, which
imply B(p')=0. Thus, B(p)=B(p’)=0 and we conclude that A*p=p, as as-
serted.

Corollary. 8.1. Let M be a compact metric space and A a frequently
e-contractive selfmapping of M. If A is orbitally continuous, then a set of periodic
points of A is non void and finite.

Corollary 8.2. (Bailey [2] Cor. 2.2.). Let M be a compact metric space
and A a selfmapping of M satisfying (3). Then there exists a non-null finite set
of periodic points.
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Corollary 8.3. Let M be a metric space and let A be a selfmapping

of M with an e-nonexpansive iteration at a point. If 0(x,, 4) is compact for some
x,&M and A is an orbitally continuous mapping with e-contractive iteration at
a point on L(M, A), then a set of periodic points of A is not void.
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