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Let G be a graph with n vertices and the adjacency matrix 4. The po-
lynomial

Q)] PN =detAI—A)=N+a "1+ - +a,

is called the characteristic polynomial of G. The roots 2, ,, ..., A, 0of Po()=0
are called the eigenvalues of G. The “system of numbers® [A;, 2,, ..., }A,] is
called the spectrum of the graph G and will be denoted also by G. Note that
some A; can be mutually equal.

Since A4 is a symmetric matrix, the eigenvalues of G are real. The maximal
number in the spectrum of G is called the index of the graph G and is deno-
ted by A(G)=A.

Relations between the structure of a graph and its index were the topic
of several investigations [1 —3]. In particular, J. H. Smith [1] was able to deter-
mine the set % of all graphs having A<2. The connected graphs from 7
are shown in Fig 1.
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In this paper we shall study the properties of the spectra of graphs
from .%. It will be shown that the condition A <2 demands a particular algeb-
raic form of the eigenvalues of these graphs. In addition, a procedure for
deciding whether a system of numbers is a spectrum of a graph from % or
not will be described. Moreover, all graphs, having the spectrum equal to a
given system of numbers, can be determined by this procedure.
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The spectrum of the union of two graphs (for definitions not given here
see [4]) is obviously the union of their spectra (having in view the multipli-
cities of the eigenvalues). The expression G,+G, will denote the union of the
graphs G, and G, and G,+G, the union of their spectra. kG (k G) denotes the
union of k copies of G(G). If G,CG,, the expression G, — G, denotes the dif-
ference of systems of numbers G, and G,.

The spectra of graphs from Fig. 1 can be easily obtained and so we have:

P, = 2 cos 1" ji=12,...,n|,
n+1

Z,=|2c0s CIED™ 0 o 1 a4,
2(+1)

W,=|2cos/™ |j=1,2, ..., n|+[2, 0,0, —2],
n+1

C, =[200s 217 |1, 2,...,n],
n

T, = 2cosfl—72c j=1,4,51,8, 11],

T, = 2cos—;t 1=1,5,7,9, 11, 13, 17],

T, :(20032—3 j=1,7,11,13, 17, 19, 23, 29],

T, - [2000 22 'j=1,2, 3,4, 5, 6]+[0L

-
T, — 2cos§{j—l,2, 3]+[2, 1,0, —1, —2],

[ ch
T, - 2cos?‘j:1, 2, 3, 4]+[2, 1,0, -1, -2

Spectra of the path P, and the circuit C, are well known [5], while the spectra
of Z, and W, can be easily obtained and are given in [6] and [7]. The vali-
dity of the given spectra for T, — T can be checked by direct calculation, al-
though this is not simple in all cases.

From the quoted facts the following theorem is evident.

L

Theorem 1. 1° All eigenvalues of any graph from ¥ are of the form
ZCOS—I-)— 7, where p and q are integers and q+0. The index of a graph from &
q
is either equal to 2 or is of the form 2cos - where g is a natural number.

q
Only graphs from & have these two properties.
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2° The set of eigenvalues of all graphs from % is equal to the set of all

numbers of the form ZCosiw, where p and q are integers and q==0.
q

Since |2cos@]<2, it is clear that the result which is summarized in The-
orem 1 is intimately related to the condition A<2. It is to be expected that
in the spectra of graphs with the property A<2+¢ for any €>0, numbers are
contained having a different (probably much more complicated) algebraic form.
In connection to this we mention that graphs P,, Z, and W, are the only three
graphs of the form from Fig. 2 the spectrum of which is known in a closed

Fig. 2

analytical form. According to the results obtained by Hoffman [2], the spectrum
of the graph from Fig. 3 would be of a special interest.

1 2 nl on
—
et 2 2n-1 2n

Fig. 3

If graphs G, and G, have the same spectra, we shall write G,=G,.
Thus G, and G, are isospectral. A pair of isospectral nonisomorhpic graphs Wlll
be called a PING Now we shall list some PING’s from the set .%. As it will
be shown later, the following relations enable the generation of all PING’s con-
tained in . We have

(2a) Z,+P,=P,, .  +P,

(2b) Ww,=C,+P,,

(20) C,,+2P =C,+2P, |,

(2d) T,+P,+P,=P,+P,+P,,

(2¢) T,+P,+P,=P_ +P,+P,

(2f) T,+P,,+P,+P, =Py +P,+P,+P,
(22) T,+P,=C,+2P,,

(2h) T,+P,=C,+P,+P,,

(2i) T,+P,~C,+P,+P,.

For n—1 relation (2b) yields the PING shown in Fig. 4. This is the
unique PING with graphs with 5 vertices. There is no PING with graphs

with less than 5 vertices [8].
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Let S;, S,. ..., S, be some systems of numbers and ¢,, o, ..., o, inte-
gers such that the expression

3) 6,8,+6,8,+---+¢,8S,,

can be calculated in at least one way by successive performing the quoted ope-
rations. Then (3) defines a systems S and we shall say that S is a linear
combination of S,,8,,...,8

e

Theorem 2. The spectrum of any bipartite graph from ¥ can be re-
presented in a unique way as a linear combination of the form

4 6,C,+0, P +o,P,+... +0,P,.

The number m is bounded by a function of the number of vertices. o, is always non-
negative and the non-vanishing coefficient o; with the greatest i is positive.

Proof. From the relations (2) we see that the spectrum of each connec-
ted bipartite graph from % can be expressed as a linear combination of
C,, P, P,, Py, ....Since the spectrum of a disconnected graph is a linear combina-
tion of spectra of some connected graphs, the last statement can be immediately
extendend to every bipartite graph from .%. For example, we have

Zn:PZnAI‘Pn-*_Pl’
T,-P,-P,-P,—P,+P,+P,+P,.

There exists no PING whose graphs contain only paths and circuits C, as com-
ponents. This follows from the fact that no two graphs C,, P,, P,, P, ... have
the same index. According to this, two linear combinations ¢,C,+ ¢, P, +06, P, +
+-+-+0,P, and 60C,+0P, +62P,+ - - - +0,,P, are equal if, and only if
Gy =G0, 0;=01, 0,=02, ..., G, =0Cpy.

This completes the proof of the Theorem 2.

One of the fundamental problems in the spectral graph theory is the
following one. Let a system of numbers be given. The question arises whether
there exists a graph (from a given class of graphs) or not, the spectrum of
which is equal to the given system of numbers.

Of course, for a given system S, containing » numbers one can check all
graphs with »n vertices in order to answer the above question. Nevertheless, we
would like to present a more effective procedure which enables the determi-
nation of all graphs having the spectrum equal to a given system of numbers

of the form 2cos - .
q
Let first consider only bipartite graphs from 5. As it is well known,
bipartite graphs have a symmetric spectrum with respect to the zero point.
Given a symmetric system S of numbers* of the form 2COS£TC, we try to

q
represent it as a linear combination of C,, P,, P,, ... . If this is not possible,

* This means that if a number « belongs to S with the multiplicity p, then -a also
belongs to S with the same multiplicity p.
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S is not a spectrum of any graph (according to Theorems 1 and 2). In the case
such a representation is possible, the mentioned linear combination is unique.
Principles of finding the corresponding coefficients are clear since among
C,, P,,P,,... no two systems have the same greatest element.

Let now S be represented as
&) S=6,Cy+0, P, +6,P,+ .- +05,P,.

Suppose that S is the spectrum of a graph. Presenting it as a linear combina-
tion of spectra of the components we get

6) S=p, P, +p, P, +p s+ - +2 L 2, L, +2,Ly+ - -
+w, W +w, Wt w, Wyt e +6,Ci+6Cot - -
+t, T+, T+ t; T34+ 1, T+ £, T+ 1T

for some non-negative integers

7 DisDas Py - vvs Zys 23 Zys v v s Wiy Wy, Wiy oty €35 €35 v e

s by, by by, By L.

Using the relations (2) one can express the eq. (6) in the form

®) S=F,C,+F, P, +F,P,+ -,

where the coefficients F;(i=0, 1, ...) in (8) are functions of variables (7). Hence,

(®a) Fy= W+ Wy bWyt - )+ (et eyt - )+
Fl gt
(9b) F=p —z,+w +2¢,+(z,+2,+2+ )~

~2(cyt eyt ) F Lt
and for i>1 and i#£2,3,4,5,8,9, 11, 14, 17, 29

(9¢c) F—F,
where
(9d) F:{pi ~z;+w+2¢,,, [ even

pitziot =z WA 26, 1 odd
2

for the excluded values of {
%) Fi~Fovh,

where
hy=t +t,+t,+2 1t +t+ 15,

hy=—t, +t5, hy=1t3+1,
of)
hy=—t,—t,—ty, hy=—1t,, hy=—1,

hu:tn h14=—t3’ h17=t2’ h29:t3~
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Comparing (5) and (8) we get the following system of linear algebraic equations
in unknowns (7):

(10) Fi=o; i=0,1,2,...,m
Now we can formulate the following theorem.

Theorem 3. Let S be a symmetric system of numbers of the form

2 cos L where p, q, are integers and q+0. A necessary condition for S to be

q
a graph spectrum is that S can be represented in the form (5). In this case, to

every solution of the system of equations (10) in unknowns (7), these quantities
being non-negative integers, a graph corresponds, the spectrum of which is S.
All graphs having the spectrum equal to S can be obtained in this way.

If S is not symmetric and is the spectrum of a graph, this graph neces-
sarily contains some circuits of odd lengihs as components. According to a the-
orem due to H. Sachs [9], the length of the shortest odd circuit in a graph is
equal to the index f of the first non-vanishing coefficient among a,, a,, a,, ...
from the correspoding characteristic polynomial (1) and the number of shortest
odd circuits is equal 1o —a./2.

Hence, we have to determine the polynomial whose zeros are the num-
bers from S. The coefficients of this polynomial must be integers. If so, we
find f and —a;/2=k, (k must be an integer), and S must contain k times
the spectrum of a circuit C,. If this is not true, S is not a graph spectrum.
In the other case we remove from S all eigenvalues belonging to k circuits C;
and get a new system S'. If §’ is symmetric, we apply Theorem 3. If not, the
above described procedure is to be applied on S’ etc.

Theorem 4. Let S be a non-symmetric system of numbers of the form

2cos 2 w, where p, q are integers and q+0. A necessary condition for S to be

q
a graph spectrum is that S can be represented as a union of a symmeltric system

and a linear combination of spectra of some circuits of odd lengths. This linear
combination (if it exists) can be uniquely determined from S.

Theorems 3 and 4 solve entirely the problem of deciding whether or not
is a given system of numbers of the form 2cos L equal to the spectrum of
some graph. Moreover, using these theorems all qgraphs having the spectrum
equal to S can be determined

Corollary. All PING’s from . can be generated using relation (2).

REFERENCES

[11 ). H. Smith, Some properties of the spectrum of a graph, Combinatorial struc-
tures and their applications, New York — London — Paris 1970, 403—406.

[2]1 A. J. Hoffman, On limit points of spectral radii of non-negative symmetric integral
matrices, Graph theory and applications, Berlin—Heidelberg—New York 1972, 165—172.

[31 L. Lovasz, J. Pelikan, On the eigenvalues of trees, Periodica Math. Hungarica
3 (1—2) (1973), 175—182.



On spectral structure of graphs having the maximal eigenvalue... 45

[4] F. Harary, Graph theory, Reading 1969.

[5] L. Collatz. U. Sinogowitz, Spektren endlicher Graphen, Abh. Math. Sem.
Univ. Hamburg 21 (1957), 63—77.

[6] . Gutman, N. Trinajstié, Violation of the Dewar-Longuet-Higgins Conjec-
ture, Z. Naturforsch. 29 a (1974), 1238.

[71 D. Cvetkovi¢, I. Gutman, N. Trinajstié, Conjugated molecules having
integral graph spectra, Chem. Phys. Letters, 29 (1974), 65—68.

[8]1 D. M. CvetkovVi¢, Graphs and their spectra, Univ. Beograd, Publ. Elektrotehn.
Fak. Ser. Mat. Fiz. Ne 354--356 (1971), 1—350.

[9] H. Sachs, Beziehungen zwischen den in einem Graphen enthaltenen Kreisen und seinem
charakteristischen Polynom, Publ. Math. (Debrecen) 11 (1963), 119--134.



	39.tif
	40.tif
	41.tif
	42.tif
	43.tif
	44.tif
	45.tif

