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Let % denote the set of real-valued functions on R* ={¢:¢#>C} which
are bounded on every finite interval, and let _% denote some linear subspace
and sublattice of .% . (The order relation in ¥, f<g, is defined by f()<
<g(@®)Vt&Rt)

Let A be a linear operator defined on _# with values in % . It will be
convenient to use the following notations. If g=A (f), then A(f, x) or A(f(?), x)
will denote the value at x of the function g. If f(¢, x) is a function in _& for
each fixed value of x>0, and g, is its image by operator A, then A(f(t, x), x)
will denote the value of g, at x.

A linear operator A is called regular on _& if one of the following
p-operties, which are equivalent, is satisfied.

(i AN =4, (-4, (), vfeL,

where A; are two positive linear operators on S, ie.
5, 8€ L f<g = A(f)<A:(g);

(i) Vi(f, x)<o, VxCR*, VfC P,

where

V.(f, x)=sup{|A(g, »)|:g€ L, |gl<|f]}

Regular operators on partially ordered linear spaces have bee studied in
[1], [2] and [3]. A proof of equivalence of the two possible definitions is sketched
in [4]. Most common examples of regular operators are integral transforms of
functions

(1.1) A(N)=[ K(x, nf@)dt
0

where

Valf, )= [ |K(x, 0)||f@)| dt< oV xERY,
0
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or (when _# is replaced by the set of all real-valued sequences) matrix tran-
sforms of sequences

(1.2) 4G =3 ()5,
k=0
where

V(s x)= i la, (X)] | 8| <0, YXxER®,
k=0

It is a natural problem to investigate whether classical results on asymptotic
behavior of transforms of type (1.1) and (1.2) can be extended to regular linear
operators. In [4] the authors have obtained generalizations of classical Abelian
theorems, two of which are quoted here (Th. I, §2 and Th. II, §3). In this
paper, two typ.cal Tauberian theorems, one relative to the convergence of functions
at infinity, the second relative to slowly varying functions, will be established
(Th. 1, §2 and Th. 2, §3); in some sense, they are converse of the theorems
established in [4].

2. A Tauberian Theorem for Convergence

In [4], the authors have proved the following result, which is an extension
of the theorem of Toeplitz and Schur for transforms (1.2) [5, Th. 2, p. 43] and
of Raff for transforms (1.1) [6].

Theorem I. Let A be a regular operator on the space jJC.F of
measurable functions. Then,

f(x)>c(x—>mx) > A(f, X) >c(x—©)

if and only if the following three conditions are satisfied:

2.1 A(1, x) >1(x— x),

A (), x)=0(1) (x—> ) for every bounded measurable set ECR*, and
(2.2) W,(1,x)=0(l) (x—>o),

where

(2.3) Wa(f, x)=sup{|A(g, x)|:gEM, [g|<|f], g(x)=0(f(x)(x—>0)}.

Theorem 1 below gives a converse of this theorem. At the same time, it
generalizes Tauberian theorems for special transforms of the form (1.1) given by
J. Karamata and G. E. Peterson, which will be quoted first.

In [7, Th. A p. 14; see also Th. I p. 26], J. Karamata has proved the
following.

Let A be a continuous monotone function on R+ such that A (x) — co(x—> 0),
and let y=y(x) be

(2.4) continuous, monotone on R* and y(x)— co(x— ).

Suppose
) M
K(x,)>0, [ K@x,ndi=1, [ K(x,t)dt=0(l) (x— o)
0 0
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for every M >0, and

(2.5) K(x, 1)
f

2| e N
log)\(y) dt=0(1) (x->0).

If fis of bounded variation on every finite interval of R*, then

(2.6) [ K@ 0 ftydi=0(1) (x>®) = f(x)=0(1) (x—>o)
0

whenever

1 X
2.7) mfx(x)df(:):o(l) (x > ).
0

Peterson’s result can be stated as follows.
Let ¢ be such that

@ (x) is non decreasing on R*,

2™ _o1) @),

@(x/2)

(2.8) >

D (x)= f A exists for all x>0,
! ¢ ()

()P (x)=0(x) (x—>0).

Let p be an increasing differentiable function which maps [c, co) onto [0, c0).
¢>0. Let also y be a function that satisfies the conditions

y(x) — 0 (x - 00),
Vv M>0, 3K>0 such that (K, ©)Cy([M, «)).

Suppose that transform (1.1) carries functions converging to a finite limit into
functio1s converging to the same limit, and suppose that

(2.9) [

s2(x)= [ (e ()—o (M) |K(x, 1) dt

exists for every large x and

(2.10) s (x)=0( () (x—o).
If

f=[a@ar,
0
then, (2.6) is true whenever

Q.11 a(x):o(f(';%) (x - o).
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Karamata’s condition (2.7) is more general than Peterson’s condition
(2.11). However, Karamata’s hypothesis that K(x, #)>0 and condition (2.5) are
clearly stronger than condition (2.10).

In all applications of either theorem, the function y(x) defined by con-
dition (2.4) or (2.9) is replaced by y(x)=x. Also, the proofs of the theorems
are essentially the same, whether y (x) satisfies one of the more general conditions or
is equal to x. As a consequence, the case y(x)=x will be prefered in this pa-
per. Except for this simplification, the following result for arbitrary regular ope-
rators contains both Karamata’s and Peterson’s theorems as special cases.

Theorem 1. Let ¢ satisfy condition (2.8) and let o be differentiable on
R*, p(©)=0 on [0, t)], o' (1)>0 for t>1t,, and p(t)— o0 (t—>o0). Suppose that
A is a regular linear operator satisfying the conditions of Theorem 1, with W,
defined as in (2.3). Suppose also that

(2.12) Wil (t)—p(x), )=0(((x)) (x—o0).
If f is of bounded variation on every finite interval of R*, then

A(f, x)—>¢c (x>) > f(x)—>c(x—©)

whenever

1 X
. —_— df (t) = —
2.13) ux)of”’) F()=0(1) (x—>o0)
where
(2.14) A (x) =exp (D (p (x))).

The Tauberian condition (2.13) is satisfied whenever (2.11) holds. Indeed,
from the properties of ¢ follows that

(2.15) D (x) 7 0(x —0)

(see [8, proof of Lemma 2]), so that A(x) 7o (x->o0). On the other hand,
(2.11) and (2.14) imply that

1 . 1 .
—— | A df () =—— N (2)dt,
7\(35)‘0/‘ ) df ) 6[3() () dt

where ¢(x)=o0(1) (x —>c). From those two statements, (2.13) follows. Further-
more (2.13) cannot be improved in the sense that it is already a necessary con-
dition for f to tend to a limit (see [7, p. 15—16]).

The theorems of Karamata and Peterson remain true if “o* is replaced
by ”0O* in the conditions (2.7) or (2.11) as well as in the conclusion (2.6).
Theorem [ can be modified in a similar way. In this new version, A(f, x)=
=0(1) (x—>o) implies f(x)=0O(1) (x->c0) whenever condition (2.13) is
satisfied with o‘ replaced by “O%. The proof of those results is similar to the
proof of the corresponding >o*-theorems.



Elementary Tauberian Theorems for Regular Linear Operators 211

3. A Tauberian Theorem for Slowly Varying Functions

A function f on R* is said to be slowly varying if it is measurable,
positive, bounded away from 0 and oo in every finite interval and satisfies the
condition

3.1 FOX) | (x> 00), ¥A>0.

fx)
The class . of slowly varying functions has been been introduced by Karamata
[9], [10] (see also [11; chap. 7, §8, 9)).

Since % is an extension of the class of functions converging to a finite
positive limit at infinity, a natural problem is to find Abelian and Tauberian
theorems relative to the class .. An Abelian theorem has been established in
[12] and [13] for transforms of the form (1.1) and (1.2), and has been ge-
neralized to regular operators in [4]. The result is quoted below. A Tauberian-
-type result is established in Theorem 2 for regular operators; it generalizes a
similar result obtained by H. Baumann [14] for special transforms (1.2).

It will be convenient to introduce the notation

tn_{min{l, m}, for 0<t<1,
tn, for t>1,

and to make use of the asymptotic relation f(x)~g(x) (x—o0), which means
f(X)/g (x) =1 (x— ).

The result proved in [4] may be stated as follows.

Theorem II. Let A be a regular operator on the linear space M C.F
of measurable functions. Then A(f, x)~f(x) (x— ) for every slowly varying
function f if and only if the following conditions are satisfied

(3.2) Wi, x)=0 ") (x— ),
for all v in some interval (—1,, 7,), and
3.3) AL, x)—>1 (x—0).
A converse of Theorem II is proved here in the following form.

Theorem 2. Let A be a regular operator satisfying the condition of
Theorem 11. If f is a strictly positive, measurable function which is bounded in
every finite interval and s is a slowly varying function, then

(3.4) A(f, )=s(x) (x—>0) => f(x)~s(x) (x—>0)
whenever
(3.5 max M:o(l) (x— 00)

x<t<Aix s(x)

for some x> 1.

11*



212 M. Vuilleumier

Note that condition (3.5) is necessary in order that statement (3.4) be true.
Indeed, this last relation implies that fc.%, and a well-known property of
functions of % is that limit (3.1) is uniform with respect to A in any finite
subinterval of (0, o); thus

FAU)

S ()
and (3.5) follows.

Regularly varying functions are defined as functions of the form x°s(x),
with s&.% and <R (see [9], [10]). Let R, denote the class of such functions
for a fixed value of o. It is easy to extend the results of Theorem II and
Theorem 2 to the class R,. Indeed, let 4 be a regular linear operator and
define B(f(?), x)=x"°A(t°f(t), x). Operator B is again a regular linear ope-
rator, and it will carry functions of . into asymptotically equivalent functions
whenever operator A transforms functions of R, into asymptotically equivalent
ones. This leads to the following results.

Let A be a regular operator on the linear space (.7 of measurable
functions. Then A(f, x)~f(x)(x— o0), for every f&R,, if and only if

A@°, x)~x° and W, (t", x)=0(x") (x—o0)
Jor all m in some interval (c—1,, c+mn).
Conversely, suppose operator A satisfies the preceding conditions. Then, if

seS

max

x<<t<Ax

—lr—>0 (x—c0)

A(f, x)=x°s(x)(x—>0) = f(xX)=x95(x) (x—>0)
whenever f satisfies the Tauberian condition
max l(%tﬁ(ﬂ’i—_i‘ =o(l) (x—o0).
x<t<Ax s(x)

Particular cases of these statements for matrix transforms of sequences
are found in [13] and [14].

Proof of Theorem 1. In order to prove that f(x) —c (x—> ), it is sufficient

to show that

4.1 A, )—f(x) A1, x)! =0(1) (x—>o0).
Indeed, the assertion will then follow from (2.1) and the hypothesis thar
A(f, x) >c (x— 0).

Let

1 X
(4.2) 8(x)=—);~6 f X () df (u).
0
Then

X X

1
r@-10= [ @@~ [ 1w dw-

- Fdn )
i = 5 ) LW
f @) d@ @)\ () =38 (x) +0 f (w) ()
0
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and by (2.14).

0)+5 sw 29 4
() =1 (0)+ (x)+f W E
Let alse
?(p(x) e’ (u)
du, t+
at, y)=1le®— p(X)If ¢ (e () ¥

0, rt=x.
Then. by linearity of A4,

|4(f, )=f() A1, )| =4 (F(O)—f(x), )| <

<IAG @), 0|+ (5|4, 9|+ |4 (H(t xy e 0= @] x)]
| )

By (4.2), (2.13) and Theorem I, it follows that
lp()—p ()]
Al B, 0 BETEI
(e

It will now be shown that H(¢, x)=0(1) (x->o0), uniformly in t&ER*.
Suppose first that p(#)<p(x)/2. Then

) o' () d“
BA=2 s f()@(p(u))"

Since p(x) 1s monotone, let (x)=|8(p~!1(x))|. Then

4.3) 1AW, x)—fx) A, x)|<o()+

, x) l, (x— o0).

P (x)
¢ (p(x) !f ) —& O (\sggp(X)) @ L

p(x) P (e (u) p(x) ‘ ® ()

P (x)
44 <<p(p(x))®(p(X)) s 4 _ ().
@4 o () @(p(x))f u=m

P (u)

Theretore ‘
H(t, 0)|<4n, (), if p(t)<p(®)/2.
But, the first tactor of (4.4) is bounded in view of the last part of (2.8); and
the second factor goes to zero by the definition of @ (x), (2.15) and the fact
that e(@)—> 0 (u—>). Hence, 7, (x)=0(1) (x—0).

Suppose now that p(¢f)>p (x)/2. Then

H(t, x)|< ¢ () 1 l s conlor (<
a e(p(x)/2) [p(®)—p (x)] f‘ (u)IP (u) du
(4.5)

< L(eﬁ))_sup{w(u)]:u}‘,—l@ (X)/2)} =1, ().

To(e(x)/2)
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The first factor of (4.5) is bounded, by (2.8), and the second goes to zero, by
(4.2) and (2.13). Hence, 7, (x)=0(1) (x—0). Thus, for any ¢>0,
(4.6) H(t x)|[<4n,()+n,(0)=0(1) (x—0).

Also, for every fixed x>0, and ¢>x,
t
1 ,
D)<~ [ P@I¢ @dio(1) (o),
p(®)—p(x) J

Thus, by (4.6) and definition (2.3), inequality (4.3) becomes

]A(f,x)—f(x)A(l,x)]<o(l)+o(1)WA(p—C(PIZ—P_(z—)(){)—,x) (x = o).

Result (4.1) now follows from hypothesis (2.12).

Proof of theorem 2. A slowly varying function s(x) can be written as

X

)
s(x)=exp{n(x)+ —e——dt,
[

where v (x), €(x) are measurable and bounded on R*, % (x) > c&R, ¢(x)— 0,
(x> o0), and €(x)=0 in some neighborhood of 0. It is easy to deduce from
this representation that, given any 3>>0, there exists M; such that

.1 s <Msx3t78 for O<t<x, x>1,
5 (x)

and

(5.2) —s—(Q<M5x_sts, for 1<x<t.
s(x)

In order to prove (3.4), in view of (3.3) and the linearity of A, it is
sufficient to prove that

P (f(t) £
s (x)
Let «=(0,1) and define

(5.3)

; x)l=o(1) (x — 0).

I,(x)=4 (ﬂ%ﬂ 20,3 (), x)
d
o FO—1()
Ja (x) =A (T Al x, o0) (t)a x) &
Then
(5.4) lA(i(‘Lf(_xl, x) <L ()] + [ ().
5 (x)
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Hence, in order to prove (5.3), it is sufficient to show that

lim lim sup (| L, (x)| + |/ (x)|) = 0.

a—>0 x—ow

To this end, we shall evaluate the expression (f(¢) —f(x))/s(x) for ¢ in the two
intervals [0, x) and [x, o). To simplify the computation, let us introduce the
notation

(5.5) o, ()= max SO-1@l

x=<t=<{MAx S(X)

Suppose first that z<<x and x>1. Let A>1 be such that condition (3.5)
be satisfied. Let ¢ be defined by A~°x=max{z, 1}, and let

fO-r

if 0<r<l,
N x)= 5 (x)
0 if >1.
Then
SO-TE) 0 34 L0000 s077)
s (x) s(A°x) 5(x)
lol=1 f(A~loltk x) - f (A-lol+k+1 x) 5 (\~lol+k x)
i o s (N loltk x) 5(x)
where the last sum is zero if 0<o<1. Hence, by (5.5)
(5.6) M<1N(t, xX)|+ (6] +1) sup w, () sup s @)

<u<x téugxs(x).

s(x)

Let 7, be defined by the conditions of Theorem II, and let 7& (0, 7). Since,
on [0, 1], f is bounded and s is bounded away from O, one cau write, for
O0<t<x, and x>1.

(5.7 |N(t, x)| <M, x"

On the other hand, since o= (logx —log(max (¢, 1)))log='2, for t<x and x>1
there is a constant M’ such that

[6] + 1 < M’ x0~3¢~(=9),

where 8 (0, ). Hence, by (5.1), there exists a constant M" such that

(5.8) ([6]+1) SO _agrr g,
5(x)
Therefore, by (5.6), (5.7) and (5.8), there is a constant M, such that, for x>1,
(5.9) VO-SOL_pr (14 sup o), 0<t<1,
S(X) t<Su<<x
and
(5.10) POy ontn sup w (@), 1<t

5(x) r<u<<x
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Suppose next that £>x. Let A be as above and let r=2x, ie. o=
=(logt/x)/log. Then, by a chain of arguments similar to the above, using (5.2)
instead of (5.1), one obtains, for % (0, No)s

(5.11) M<M3x‘“t” sup oy (u), for 1<x<r.
s (x) x<u<t
Note that
(5.12) M:o(m) (t— ).
5 (%)

Indeed, it follows from the fact that (5.11) is also true if % is replaced by 7,
where 0<n'<n.

Now, let r<<ax, and ax>1. By (5.9), (5.10) and the fact that o, (x) is

bounded,
()~ ()]
5 (x)
Let y& (0, n—m,). Then, for all >0 we have

SO —f )]
5 (x)

<M, x"t-n,

X00, axy (1) < M (XYY XVFY 77T 0 4 0 (£) <

<M oY xntren-y,
It follows that :
| I, (X)| < My« x"FY W, (t=5-7, X).

Hence, by hypothesis (3.2)

(5.13) limsup | I, (x)| < M o,

Next, by (5.10) and (5.11), one has, for all >0,

LOZTOL 5y (1) = My Gt 4 x-707) sup e, (1),
s(x) oax<-u

Hence, by (5.12),
o ()| < My (x" W, (", x)+x"" W, (17, X)) sup o, (u).

axs=lu

It follows, by (3.2), (5.5) and (3.5), that
(5.19) limsup |/, (x)| = 0.

X—>00

Finally, (5.3) follows from (5.4), (5.13) and (5.14), by taking « arbitrarily
small.
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