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The field g of Mikusinski operators is the extension of the integral domain
€ [6]. The relative poor topological structure of Mikusinski operators field 7 [1],
[13] is the reason that it is difficult to investigate the differential equations in
especially nonlinear [4], [7], [8], [10], [11]. In this paper we prove a theorem
for diffcrential equations in _j/ and apply it to a nonlinear differential equa-
tion and to a system of linear differential equations.

As the field 4/ contains the integral operator /, the differential operator s
and the translation operator, the differential equations in _#/ cover some clas-
ses of partial differential equations, integral equations, difference equations and
their combinations for numerical functions and are interesting for applications.

1. Let 7=[0, o0) and f={f(¢)} be the representation of f(t1)=Cg in C.
Let _7(») be the vecior space of mappings which maps the interval Q=[0, A]
into g and € ()) be the subspace of _7(») of those elements which can be
written in the form f(A) ={f(% 1)}, where f(A, )ECqo. 7. In C() is defi-
ned an ordering relation <:f{N<7g(2) & f(h H<g®, 1), &, )EQ IO, T];
similar () =0,[g(»)]. The absolute value is also intrcduced in (M) :|f(})| =
={|f(, £)|}. An element f(A)&C (1) is equal to zero if and only if f(3, £)=0,
O, HEQ xJ. Let v, be a saturated family of semi-norms in € (»):

v [fM]= Max |fQ )|=fr 0<T<o.
(. HEQXIO, T]

In [] @) the family of semi-norms is:
Nz[x(M)]= Max vy [x; M)]=x.

\l\

where x(3) ={x, (M), x,(), ..., x,,(0)}. In the same manner we have: |x(})|=
={lx, W], ..., %, M|} and xM <y & x;MN<y; M), i=1,2,...,m

Let x,c]]_# and the family (q,), %, be from _g. By definition
D) is a subset of [[_s () for which: 1. x,&D(); 2. For every a & and
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ad), bMNEDR), g,la (7\)~b()\)]eﬁ€(7\). In 2 () we suppese a famly of
pseudodistances d, to be defined [2], [5]: d,[a(®), b(N)]=]g.[a()=b®)]| In

our case d,, «a=F, maps DM x D) into [[@ () and induces in D) a
convergence class: a, (A)&<D()) converges to a(N)CD(A) if and only if for

every ac, d,[a,(2), a®)] = 0 in [[ (). The detined limit is un'que.
The definition of the derivative and the integral in %) () is this induced from

Hﬂ{(k). The relation beiwen the convergence class cc/ [ (1), _# (})] induced
from _j/(3) into 5 (2) and that defined by the pseudod'siances cc/[D (1), d,]
is: ccl[DO), d,] Zeel[D (M), A (W], so that every sequence which converges in

[ (), d,], converges in [ () too.

Theorem. Let K (k) be a sequentially complete subspace of ) (\) and ¢
a mapping of ¢ into G. We suppose that for every ACQ, «&=F and x(3),
YMEX M)

1. f maps QxF () into DO);
A
2. The mapping R:Rx(N)=x,+ f flu, x (@) du maps K (2 into K (7).
0

3. There exists r(x) CE™" so that:

() dor—1y { f[1, x(A)], O} <v () 3 La, , (M)

where SCRY, v()GRY, a. ,0VET]CF ).
4. For every x(3), y(WEK () and « & exists a sequence of matrices
{B;(M)} over C* () of a type m < m with the property:

k—1
I1 B, (w)={b5, )}, O<u,<A, b, )< CrxTek+1)
n=1

where B<1, CER", and so that:

Ayt LS Ix O ST ¥ (O]} < “—g‘)- By, () dyis o [X (), ¥ (W), 0 (@)ER.

The majorant of b,»lf i (&) does not depend on x(») and y()) when they belong
to the sequence {x,(N)}, x, (\)=Rx,_, (M.

Then there exists one and only one solution of the differential equation:
(D W=/ xM], x (0 =x,CHK®)

in the subspace ¥ (\) and this solution can be constructed by the sequence {x,(\)}.
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Proof. Over the space & (») the differential equation (1) and the in-
tegral equation:

A
2) x(W)=x,+ [[lu, x(w)]du
0

are equivalent. We shall prove this.

Let us suppose that we have a solution x(A) in K (») of the equation (2).
According to the definiticn of the integral in _#/ () there exists g& _// such

that gf (A, x(W)]=FQ)E& fI € (») and

A A

[f[u, x(u)du~—i{fF(u, t)du}.
; q
0 0

The equation (2) can bes written now in the form:

A
qx(k):qxo—i»{fF(u, t)du}.
0

%
The func.ion given by fF(u, t)du has a continuous partial derivative in A
0

over Cqa,J and this derivative equals F (), t). Then x(A)=x, has a derivative
in () oo and for this derivative is:

[x () —xg] =¥ () - é FO, 1)} =fD x ()]

hence x () satisfies also the equation (1).

Let us suppose ihe opposite, i.e. that the equation (1) has a solution
x(M)EFK (M. By the definition of the derivative in 7/ (), there exists an ele-

ment p& /) such ihat pr\)=F()\)€H€(7\) and F(, t) has a continuous
partial derivative in A To the equations (1) corresponds the equation

{FA0u )} =pfDh x(M]EC ).
Afier a formal integration in € (A): |
X
{F(h, )}—{F 0, )} = [ pflu, x(w)]du
0

hence

A
x(N)=x,+ ff[u, x (w)] du
0
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Let us construct now the sequence x, M=Rx,_,(»), k=1,2,... This
sequence belongs to ¥ (A) because x,EFK (A) too. We shall show that it is a
Cauchy sequence:

do[x, V), %y W] =du[Rx;_, (), R, (M)] <

A
< [ dulf (W, X, W), [, X, (u))] du
0

A
< &(SL) f B, () dy o [%1_, (W), X, _, (w)]du
0

A e

k—1 k—1
< LE:;l(:‘jl f dul wew I:Il Bn (un) d¢k—1 () [xl (uk—l)a xo] duk-1

0

and
r (oc) deok—l(a) [x1 (uk—l)a xo] =r (O‘) dqak_‘(a) [R Xo5 xo]

L

<[ 7 (o) dofe—1.(ay { f Tt %), O} d
0

% () 81 (@xy, o (V)7 ;-
Now for every « =G and T< oo there exists ¢>0, such that

1
da[xk (;‘)’ Xi—y (;\)] :OT(zk)y Zk’i:@, i=1,...,m

After this inequality it is easy to show that the sequence x,(A) is a Cauchy
sequence. Let x () be its limit. We shall show that x(A) is the demanded
solution of the equatfon (2), respectively equation (1).

The initial value x(0)=x, is satisfied because it is satisfied by every
member of the sequence x, (). For every a cF

dy[x (2), Rx(N]<dy[x (), X (W)]+d, (x, (2), Rx (V)]

<d,[x(), x, W)]+d,[R x_, (), Rx(W)]
A
<dy[x (), % ()] + % / B, () dyo Lt ), % ()] dit
0

We know that the first and the second operation in 4 are continuous so the
second part of this inequality tends to zero when k-»oo. It fullows that
x(A)=Rx(n).
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It remain only to prove that the found solution is unique in K (}).
Let us suppose that we have at least two solutions in & (2): x(A) and y (}), then:

dy[x (), y(MN]=d:[Rx (), Ry (V)]

A
< [da{fu, x (@), flu, y )]} du
0

A
< & (a) [ B] (u) dw (@) [x (u)’ y (u)] du
0

3
g A Uk 1 %
" 3
< P*Si ) f du, . . / }:[1 B, (u,) dok @ [x (), ¥ ()] iy
0 0 h
" A "k—xk
4
< Hsi ) f du, ... f E B, (u,) {dok oy [x (uz), x,]+
0 0o
+ dok o [Xg, ¥ ()]} duy,
2
=072, zZp;i=—>s i=1,...,m, >0, T<co,
(@), Zx, *)

whence x(A)=y (D).

2. We shall now apply our theorem to two special cases stressing the
nature of the conditions supposed in it. Both families of these equations
have their own sense.

Proposition 1. The nonlinear differential equation

8
3 YW=sLa@y™t ), yO)=I"®), m>1, >0
I
has a unique solution in the set y,I"[I+CM)] if ymaMESCM); 1 is the

unique element in /.
1

Proof. — We shall introduce the change of variables: y(}) = m™ YoXx ()

and the equation (3) will obtain the form:
1 B

4 X () =sfw @) xm 1), x(0)=m ™Im=x,
where w(A) =ma()) y,"EC ().
Before applying our theorem we shall prove three lemmas:
Lemma 1. Let S,(x) be the numerical sum:

1
S,=m 3 ")

k=0 F(k+l)F( 1) ’

m

xk, m>1, x>0, pc/f,
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1
and Sp (x)=S5, (x)—m ™. The following inequality is valued:
8 A B
241 m =
) I wr [ ST wpul) du<im S, 1y, We kD),
0

where wy is a nonnegative number and | an integral operator in j.

Proof. Using the known relation:

©) k MG+ Pk—i+B) _ I'tk + o+ B)
Zo D+ () L'k—i+ 1HT(P) F'k+DI'(a+P)
we have
2
2 2p F(k+7n~)

S,(x)S,(x)<m m K,

"=°F(k+1)r(%)

With the same procedure we have:

k+ .’t’lﬂ>

mit miDp F( m

syt em 3 T
k=0 I‘(k+1)I‘( i )
m
'k !
_1 mip+t ( +;;)
<m ™ _I—kx"‘l.
k=1
F(k+1)I‘(E>
Now
1
B, . 1 B 1 peminpit F("JFE)
I wa Sy (wrluydu < 1m m > i k=t (wp 1) du
- k=1
§ o I‘(k+l)F<E
I'(k :
81 (minptt ( +n'1)
<Imm (wy kD,

=Dk 1)1“(«’%)

Lemma 2. Let w(A)&C(\) and _F be the set of those elements

1B
m [+ f)], fO)ECH), m=1, B0,

1
for every of which there exists a number p>1 so that: m ™ f W) < S, (wrrl).
T
Then the mapping R:
e 2
Rx(N)=m ™ [m + f S8 w (u) x"+1 (u) du
0

maps ¥ into F.



Theorem on differential equations for Mikusinski operators 187

Proof. — Let x() be from _#:

_te 2
Rx()—m m 17 = [sBw(u)xm+1 (u) du
0

A 8 1
< [ Wl I"m ™7 I+ f (@) "1 du
To

B2
<I™ [wr ISyt (wpul)du
T o

B
<;1m S(n+1)p+1 (WTA])-

We used here proposition of the lemma 1.

1
Lemma 3. There exists FO)EC (V) such that S,(werl)<m ™ F()) for

all pecfy.
Proof. —
. r(kﬂ-)
S, werly=m ™ 3 _—’"—L— (wy A DY,
= F(k+l)I‘(E)

This series converges in € ()) and represents an element of € (2).
Now we can apply our theorem to the equation (4).

The sequentially complete space F (A) is the space of elements which
has the form:

1B
m I [I+gM)], gl ).
B.
The family (g,) reduces to one element s” and &=1. The space V()=

uM)KM), u()E(@UI. We shall show that the conditions of our theorem
are satisfied:

I. The function f[A, x (A\)]=sw (X)) x"+t1 () gives for x WEK ()
B _mil
I xW]=w@imm ™ [I+gM]" D).
2. The mapping R maps K () into K (A): For x(W)EFK )
1B A
ReW=m " Im {1+ [w@ym ' [I+g @] du} EH ().
- 0
L2 _ L

3 0sm D xW]=|m ™ w(Q)[I+g()]"+1| whence

m+1

vi@=m ", r(@=1 a, ,N)={wQUI+g®]"+ €l M.
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~ & —d B
4. For x(W)=m ™I"[I+gM)] and y(\)=m ™ I" [I+h())] the sequence
of matrices {B;(A)} is a stationary sequence of elements of € (A):

B =m=1 w(@®) 20[1+g(1)]"[1+h0\)]'""‘
k=
and
B Tk-1
k et e

BE®s vo—n:
Using lemmas 2 and 3 we have for x()) and y (), when they belong to the
constructed sequence Xx,(A):

BM)<m=t(m+1)|w ) [[+FO)]".

So we have all the suppositions of our theorem satisfied and the propo-
sition 1 is proved.

Before we apply our theorem to a system of linear differential equations
we rshall give properties of scme sets and functions we need.

Finite set of real numbers. Let us consider the set of m2 m<2, non-
negative numbers B, ;, 1<i, j<m. Let (i, iy, ..., 1) be a subset of first m
integers such that i, =iy; i, #1i;, k+#j#a. We denote by o, (B;,;) the sum

a—1
Cq (ﬂi,j) = kZO Bix kgt

The number of such sums is finite. Let { be the maximum value of the quo-
k-1

tients o, (B; )/« for all sums o, (8, ;). Every sum Zﬁxp,ip 1 k>m may be ex-
=0

panded into a finite sum of o,—sums and a remainder P whose number of
elements in the sum is less than m [3], and we have:

k—1 r
> Bty = 3 ot Pl
i=1

p=0

o, +P<Ck+y,
1

r

i

where y is a constant independent of k.
The function F, ,(t). We shall use a special function:

1 k integer

t P 1D —p, —o0; ——t“’), t>0 ’
F,,,k(t)J ( # 2% PER

0 , t=0) 0<o<l,

where @ is the known function of E. M. Wright [14]. The properties of this
functions, we need, are [12]:

1. F,,€€6 2. F,,>0; 3. 8F, =F, 015 4 Fp i Fprny =

p+a k;
k

—1 k=1 ]
— -1 — e~ -0 .
> I F"””“{t (D(O’ G2 ! >]
pt+l1

i=1

Pl 1
6. le.k(t)1<2"( )NPI‘(p+

), N depends only on o,

G
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The space C*()\). Let us consider in _# (M) such elements as for every k
integer have a representative in the equivalence class of the form:

o, (A)
0, k

The subset of such elements we note by @*(A). It is a vector space and is
not empty; we know that €(A)CC*(») and s* € (W) CC* (1), BCR. For every k
integer F,, C* ()\)C@()\) and we can define a family of pseudodlstances d, in
C*(): dfay), bW]=|F, [a()—b()]|. Our space C*(2) is sequentially com-
plete [4]. We shall prove 1t

Let u,(2) be a Cauchy sequence of €*(2), i.e. for every k integer:

, o MECM.

vrl[Fo, k(W) —Fo, kM W] 0, 1, m—co.

It follows that F, ,m,(2)=y, (%) is a Cauchy sequence in € (}) for every fixed k.
As @(2) is complete, there exists o, (A& () which is the limit of this se-
quence for every k.

o (2)

Let us consider the element n(A)= . We shall show that this ele-

ment belongs to the set €* (A), i.e. o (}) FOO,’ : =w,(N)F,
Ve [y, p 0 (N —Fys 0, M)] <
<vrlFy, p kW —=F,, , Fo, k0, W]+ [Fy, p Fo, 10, ) — Fy, @, (V)]
<Tvr(Fy, ) Ve (0 W) —=Yn, .k W) + TV (Fy, ) Ve (Vy, , W)=, ().

The second part of this inequality tends to zero when n— oo, for every k,p
integers and T< o0, and the proof is finished.
k

In the product J] @*(2) we can bring over the structure of the vector
space and the convergence class induced by the family 4, as it becomes custo-
mary, applying to coordinates.

Now we can prove the following proposition for a system of linear dif-
ferential equations:

Proposition 2. Let us suppose:
Loa, ;(0)=s%iw, ;(0), o,,0cCO), 1<ij<m
2. b,NEC*R), i=1,...,m

3. {=Max (ig"'i)<2.
o
Then the system:
(7 XMW= 2a,;0x5®)+b,0), i=1,2,...,m
j=1

with the initial conditions x;(0)=x; ,EC*(\), i=1, ..., m, has a unique solution

in ﬁ C* ().
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Proof. The system (7) can be written in the vector form:
® XM)=AMxM)+b®)

A () is the matrix {a; ;(M}, xW)={x,}), ..., x, W}, bQ)={b, M), ..., b, (M)}
and X, ={X,, 4, .-+ » Xp» o}
We shall show that the conditions of our theorem are satisfied.

Let & (») be in this case H@*()\) and the family (g,) be (F, ), k
mteger the mapping ¢: ¢ (k)=k -+ 1.

S xMN)]=4M) x(M+b(). From the property 4 of the function
F, . follows:

Fo kAW xMN+F  bMN=Fy ., AW F, 1, x(W)+F, kbO\) Hé(k)-
X
2. The mapping R is: Rx(k):x0+fA(u)x(u) du -+f b(u)du. We know
0 0

that x, and & (») belong to [ [ @* (). It remains to show that
A m
[A@x@duc]] €* ).
0

For this it is enough to see that:
R W, (1) ; Wi k
> sty ;) LS duc O (0, j=1,...,m, xX;=~L5
Jj=1 Fo,k Fo,k

Let B be B= max B, ;. Using the properties of the function F, . we have:

1<, j=m

fZSﬂu(o () qOPS

~ﬂ,k

fZS«s B oy (u) - Wi

rrrrrr f Z s7C=BL ) @, ;W) w; () Fy, y du.
Fy ko
The function given by the integral belongs to €(}).

3. Let B= max f,;, r(x)=F, ,, « integer, then

1<<i,ji<<m
o o Fo apk i TG XMW =1 Fy aii AW () + Fy, oy By ()
= Fag, oy | [IPAQ)we )+ 18 b, (1) <

B+ s
<2 ”NH‘(%J)jlﬂA(A)wa(k)»f—lﬁba(x);'

g1 Brt,
$=2 0, v(w)-2° N5F<B:;—l)

whence



Theorem on differential equations for Mikusifiski operators 191

and
@, ()= IP AW W)+ 1B, ;. wa)=F, ox (), by(N)=F, o b().
4 | Fy i [AMW x ) =AMy W <{[Fs aiis @, ; M)} X
X | Fysapiv [EM)—y M]].
The sequence of matrices {B,(A)} can be now: B,(\)—{|Fy,q, ;5% e, ; (3]}

Bti
and pw(x)=2 ° . We see that B, (1) does not depend on x(») or y A)EX (M) and

k—1 m

& -

bi,j:Fo,aHFo’a+p }_ Zazp 2apk2pk 1"'“?1,1'
p=1 Pk_2=1 Pl*l e T

We shall fix the number ¢ in the function F, , so that {/c<2. Using the
properiies 3, 5 and 6 for the function F, , and the inequality

k

T'(k—1)

(W) <o F
T

we have for bf;: bf; =Or[F,, (k)] B<l.

3. As an illustration of our proposmon 2. let us consider the diffusion
partial differential equation:

ou t) 62u(7\ t) ou(r, t)
® Y =AMN—/; B(X)a—a)\ .

We know that A(A)>0 for 0 <A< A. To this equation corresponds in _g (A):

Pue) | BOY ) Lo T

(10)
dn? AQ)  dx AQ) A

where u,(2) = 1im+u (7, t). The equation (10) is equivalent to the system:
t—0

«(‘>=slu2(x)
(i) ks BO\)
=52 by )~y )

U, (h) =52
A() A() AR

in which B, ,=—o,8,,=1,8,,=2,8,,=1; whence C—%—<2 If we suppose

that A()) and B(A\)& (g, the proposition 2 asserts the existence of the unique
solution with the initial condition: % (0, t) and % (0, ¢) from C* (). The con-
struction of the solution is given by the sequence {x,(A)}.

Let us remarque that the derivatives and limits are in the sense of
operators and they have not to exist in the classical sense.
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