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There is a famous result of Bernstein in the Theory of Approximation
for which a simple proof has yet to be found. If P, is the polynomial of best
approximation to |x| on [— 1, 1], of degree <n, and

E,— max |[x]~ P, (9],

—1<x<C

then according to that result of Bernstein, lim nE, =y exists and p=0.282 +

+0.004. [1]. Bernstein noticed also, as an interesting coincidence that 12Vx=
=0.282094..., and that it would be interesting to find out whether the con-

stant @ is a new transcendental number, or p=1/2 V?c. Bernstein’s computation
of the approximate value of p is very complex. It seems that now with the
use of computers more precise computations of ¢ might indicate whether the

conjecture p.=1/2 )/ is true or false. But before the actual computations could
be carried out, it was necessary to obtain a number of purely approximation
theoretical results.

A careful analysis of Bernstein’s work shows that u/2< B, (¢), where
n ak
H—{a,+> ——*—__}|cosnt
((P() < k§14t2—(2k—1)2))

y 12
1=
X)=Xx dt,
CP( ) .[ t+1
0

and that lim B, (¢)=p/2 (see [1], p. 52).

B,(p)= int sup

Ags v v s ap t=0

and

In view of this result the approximate computation of pw is reduced to
the computation of B,(p). This computation could be essentially simplified if
we could find an extremal function

by

Ri()=by+ > —— %
@=by ,Z,4t2—(2k—1)2

2%
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which has the property that

B, (9)=sup (¢ (1) - R, (1))cosmt|.

. . . . . * .
Once we have enough information about this extremal function R,, in

particular, once we know the alternation and uniqueness properties of R, analog
to the well-known properties of polynomials of best uniform approximation on
finite intervals, we may be able to construct algorithms for the numerical com-
putation of the constants B, (q).

The function ¢ can be expressed also as an infinite integral
I
cp(x)=?f e~ '(cosh(t/2x))"1dt
0
so that ¢ is-clearly an increasing function on [0, o) with ¢(0)=0 and

lim o (x)=¢ (o0)=1/2.

X —>00

In this paper we shall consider, more generally, a non-decreasing and
continuous function f on [0, o) with f(0)=0 and 0<f ()< 0. The family
of rational functions R, is defined by

- " Yr
RCER, & RO =y, + > ——— .
)= Era—(2k— 1)

Finally, the constant B,(f) is defined by

B,(f)= inf sup0| (f@®)—R(t))cosmt|.
RE@H t= .

By using standard arguments, it is easy to see that there always exists
an extremal function

R:,(t)=xon+ Xkn
A (2k—1)
in R, such that

Bn(f)=stl>}}3|(f(t)~RZ(t)) cost].

Any point ¢, such that

B, (f)=|(f(t,)— R (t))cosm1,|

will be called, as usual, an extremal point.

Next, we shall study the alternation properties of the extremal functions.
These properties can be best illustrated by considering the graph of the error
function

g, (1) =(f ()~ Rn(t))coswt.
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Error curve 34

Beginning with the point =0, the graph of the error function g, has n+1
alternating extremal points in [0, n]. It has also the point oo as an extremal
point in the sense that

liminfg,(t)= —B,(t) and limsupg,()=B,(f).
1—o0

t-—>00

The proof of this result seems to be very complex, except when n=0.
In that case we have

Bo(f)>|f(0)_xoo'>x00 and Bo(f)>lf(m)_xool>f(°°)"xoo
so that B,(f)>f(e)/2. But, by monotonicity of f,

o0 o I
B, (f)<sup (f(t)—f( )>cos-rct < sup f(t)«f(—)l-——f(oo)/Z.
>0 2 =0 | 2
Thus
(1) By ()= f (),
It is also clear that
@) R3(3) = 330 = 5-f ().

The most difficult part of the proof of the alternation property in the

general case consists in showing that the extremal function R, has non-negative
coefficients. An elementary proof of that result would simplify considerably the
proof of the alternation theorem for any positive integer n. We mention the
following inequalities as a first step in that direction:

1
(3) Xon > ?f(°°)
and
(4) y

->0.
k=1 (2k—1)?
We have first

%f(w)=Bo ()5 B, (f) 5| £ ()~ Xon| 5 F ()~ X,

and (3) follows.
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Next

< Xkn
_x0n+ —_—
121 2k—1)?

=f(0)=R7(0)> — | f(0)—R1(0)|> — B, (f) > ——;—f(eo)

and (4) follows from (3).
The fact that the coefficients of the extremal function should be positive
was observed already by Bernstein in his computation of B, ().

Another result which is very important from the computational point of
view is the analog of a well-known theorem of de la Vallée Poussin [2]. This
result says that if we can find an error function

_ 2 Yk
& ® (70 - ey (LD

with y,<f(e), such that
&) =(=DF1x, (M>0), k=0,1,2,...,n
where ¢, =0, t,&[k—1, k], k=1, ..., n, and
lifllsuplg,,(t)|=)\°°>0,

then
B,(f)>min (A, A, ..., Ay, Ae)

In Section 1 we shall prove the alternation and uniqueness properties of

the extremal function R, for n=1. In Section 2 we shall prove the analog of the
de la Valiée Poussin’s theorem also for n=1. In a later paper we will show
that all these results are valid for any positive integer #.

As we have pointed out earlier, the basic motivation for this work is the
problem of numerical evaluation of the Bernstein’s constant . Since the con-
stant /2 is the limit of the sequence (B, (¢)), another problem which will be
considered in a later paper is to compute the terms of this sequence for suf-
ficiently large values of n. Although it is not reasonable to expect that the
first two terms of the sequence (B,(p)) would give a close approximation to
1+/2, it is interesting to observe that B,(p)=0.25 and that from the results of
this paper it follows that

(5) B, (9)=0.15149080. . .

A good approximation to the extremal error function is the function

0.1 901839456)
————— | CO0§

g(t) - (cp () — 03450919728 — nt.

421

As it is casy to verify, the error function g has the following properties:
sup [g (¢)] < 0.1549080307
[0, o)

and also
g2(0)=—0.1549080272...

2 (0.43) = 0.1549080307 . . .
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and
limsup |g (¢)| = 0.1549080272. ..
t—00

Hence we can conclude that B, ()<0.1549080307... On the other hand, in
view of the analog of the de la Vallée Poussin’s result, we have B, (p)<
<0.1549080272 and (5) follows.

1. Positivity of coefficients, alternation property and uniqueness for n=1.
Using notation from the preceding section, we shall consider here a non-de-
creasing and continuous function f on [0, o) with f(0)=0 and 0<f (o)< o,
the constant

(1.1 B, (f)= inf sup|{f(t)—R(t))cosmt|
ReR, 120

and the extremal function R*& R, defined by

(1.2) B, (f)=§gllgt(f(t)—R* (1)) cosm ¢,

By (3) and (4) we see immediately that the extremal function
x
R* (t) =xy+—1—
0)=% 421

has non-negative coefficients. More precisely, we have x,>f()/2>0 and x, >0.
We shall always write g(¢t)=~h(t)coswt, where h(¢)=f(t)— R*(¢). Then
from (1.2) follows that |g(¢)|< B, (f) for all t&[0, o). We shall often use
the inequality
(1.3) [h(o0)| =] f(0)— x| < B, ([f)
which follows from the fact that |A(k)|=|g(k)|<B,(f) for every k=1,2,...
The main result of this section may be stated as follows.
Theorem 1. The extremal error function g has the following alternation
property

() g(0)= —B, (/)
(ii) g@=8,(f) for a cc(0, 1],
(iii) liminfg(t)= —B,(f) and limsupg(t)=B, (f).

The extremal function R* is uniquely determined. We have
xy=f () =B, (f).
x,=f(»)—2B,(f).

For the proof of Theorem 1 we need the following lemma.

Lemma 1.1. If x,=0, then f(1)=0.

Proof of Lemma 1.1. Since f is non-decreasing and f(0)=0, we
afways have f(1)>0. Suppose that x, =0 and f(1)>0. Then by (1) and (2)

B, (f)=Bo(f)=%f(°°)=B
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and
R* ()= f()=B

so that g(¢)=h(t)cosnt, where h(t)=f(t)—B. We have clearly |k (t)|<B for
all &[0, o). Since g (0)= —B<0, g(1)=B—f(1)<Band |g(r)|<B|cosmt|<B
for 0<t<1, we have

(1.4) max g (t)=M<B.
{0, 1]
Let
- 3 3a
"(’)=”(’)‘°‘<”4t2_1)=f(’)‘(3+°‘+4,z_1)

and ‘
g(t)y=h(t)cosmt
where « is chosen so that

(1.5) 0<acB=M
3¢
Since for O0<t<1
O<—(1+—3——«>cosnt<(4t2—l—2) cosr? <
4121 4121

we have, in view of (1.4) and (1.5), on [0, 1],

—B<g(t)<§(t)=g(t)—oc(l + - 3 )COSTL't
4121
<M+(B*M)3n=B.
3w

Consequently, by the continuity of g it follows that
(1.6) max[§(t)|<B.
[0, 1]

The fact that the function g satisfies the same inequality on [I, o)
follows from the monotonicity of ~. We have, on [1, ),

1.7 h(ty<h(eo)=f(0)—B—a=B—a.
On the other hand, by (1.6) we have

(1.8) ht)y>h(l)= —g(1)> —B.
From (1.7) and (1.8) follows that

(1.9) [§’u£)[§(t)[<8.

Finally, from (1.6) and (1.9) we conclude that
sup [ (0] <B=B,(/),

which is impossible, Hence, Lemma 1.1 is proved.
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Proof of Theorem 1. Suppose first that x, = 0. Then B, (f) =B, (f)=f(=)/2,
R*(t)=x,=f()/2 and g(t)=(f(t)—f(o0)/2)cosmt. Hence
g(0) = —f()/2= - B, (/)
By Lemma 1.1 we have f(1)=0 and so

g =(f(1) =f(o)/2)cosw=[(0)/2=B,(f).
Finally, we have
liminfg ()= —f()/2= —B, (f)

t—>o0

and
li?liupg (1) =f(»)/2=B, (f).

Hence, Theorem 1 is proved if x, =0.
Next, suppose that x,>0.

To prove ihe alternation property (i) suppose the contrary: — B, (f)<g(0) =
=h(0). Put

- 4 a x, —4a
h(t)=h(t)~oa+————=f()—Xy+oa——1 -
(=h() A1 S (@) —x, 4771

and g(t)=h(t)cosmt. The number « is chosen so that
0<o<<min (x,/4, (h(0)+ B, ()5, B, ().

By this choice of & we have h strictly increasing on [0, 1/2) and (1/2, ).
Therefore

(1.10) ~ B, (f)<h(©)—5a=h(0)y<h(t)
on [0, 1/2), and, by (1.3),
(1.11) h(t)<h(oo)=h(w)—~a<B, (f)—a on (12, ).

Now, on [0, 1/2) we have, by (1.10),
g(ty=h(t)cosmt>—B, (f)cosmt> — B, (f)
and on (1/2, 1} we have, by (1.11),
gt)=h(t)cosmt> — (B, (f)~ ).
Since g(1/2)=(x;, —4a)w/4>0, it follows that

(1.12) g()> — B, (f) on [0, 1].
On the other hand, on [0, 1],

~ 5 cosTt

H—g)=4a|——12) "=

g()—g() (4 )412_1

so that

(1.13) g(<g ) <B,(f).
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From (1.12) and (1.13) it follows that
(1.14) max|g (1)) < B, (f).

On [1, %) we have, by (1.11) h(t)< B, (f)—a and, by (1.14),

h@®)>h(1)=-g(1)>—B,(f).

Hence on [1, «) we havoe[f.uortax)|ﬁ(t)’<81 (f) and so
(1.15) lf}lcg)lé(t)l<31 ).

Finally, from (1.14) and (1.15) we obtain

suplg (O] <B, (/)

a contradiction. Hence we must have g (0)= — B, (f).
To prove the alternation property (ii) suppose that M =max g (¢)<B, (f).
[0, 1]

Put

7 2 X, +2¢

O P GBI LSS vy
and

g,;(t) =h (Hcosmt,
where
0<e<min (% (5,1 M), B,(7)).
™

Since

~ 41241
1)=g(t)—ef——— ~|cosm t,
go=gm—<(y ")

we have, on [0, 1],

— B, (f)<g(t)<},r(t)<M+a57“<Bl(f)
so that
(1.16) %§§I§(t)l<31 ).

Since 4 is increasing on [l, o), we have
h(ty<h(w)-c<B,(f)-¢
and, by the choice of «,

FO2h0) = ~E()= =g ()= &> - M= o>~ B, (N +=
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Hence

(1.17) sup g (1)] < sup |k ()] < B, (/) —=.

From (1.16) and (1.17) follows that sup|§(t)|<B1 (f), a contradiction which
[0, )
proves (ii).
In order to prove the last alternation property (iii), observe first that
(iii) is equivalent to showing that
limsup g (£)| =11 () = x| = B, (/).

Since we always have B (f)>|f(®)~—x,|, it is sufficient to show that the
hypothesis B, (f)>|f (o) —x,| leads to a contradiction.

Suppose B, (f)>{f()—x,|. By (i) we have h(0)=g(0)= —B,(f) and
h(t)— o as t— 1/2—-0. Since the function £ is strictly increasing on [0, 1/2),
it has exactly one zero at ¢, (0, 1/2). Put

2

Fy—h()+a =0

4121
ity [ ® X141
=f() (xo 4 + 4121 )

and }(t)=ﬁ(t)cosnt. The number o is chosen so that
O<a<min(x,/(1/4—¢2), 3(B,(f)—|f(0)—x,[)/2(1—12),
4B, (f)w(1/4—17).
We shall show first that

(1.18) max |g ()| < B, (f).
[0, 11

Since the function % is increasing on [0, 1/2) and A (0)= — B, (f), we have

— B, (f)<h(0) + at 2=k (0)<h(t)
and so

(1.19) g(6)>—B,(f)cosmt=> — B, (f) on [0, 1/2).
On (1/2, ») we have
ﬁ(t)<7l(°°):f(°°)—xo+~zr.

Since :11 <(1-1¢2)/3, we have

h(t)<|f(o0)—x,|+a(l—12)/3.

In view of our choice of « we obtain finally the inequality

(1.20) h(t)<B,(f)—a(1—12)3 on (1/2, »).
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From (1.20) follows, in particular, that
(1.21) g(1)>B,(f)coswt> —B,(f) on (12, 1].
Next, to obtain the upper estimates for gf, we observe that on [0, 7],

0<t,<1/2 we have & (t)<h(t,)=h(s)=0 and so

(1.22) g(®)=h(t)cosmt<O.
On [z, 1/2) or (1/2, 1] we have (a(t>—t,2)cosm?)/(4t>*—1)<0 and so
(1.23) Z(0)=g )+ ;Zt:tl%coswt<g(t)<Bl ).

Finally, at t=1/2 we have §(1/2)=g(1/2)—a(1/4—tﬁ)%-

Since 0<x, t/4=g(1/2)<B,(f), we have, by the choice of «,

(1.24) — B, (f)<—a(1/4—t12)§<§<1/2><.31 (-

~a(1/4—t12);<31 (f).

The inequalities (1.19) — (1.24) show that (1.18) holds true.
On {1, «) we have, by the monotonicity of #,

h(t)ysh()=h(1)+a(l—123)/3
=—g(M+a(l-12/3
> =B ()+a(l—12/3.
This inequality and (1.20) show that

()| <B, (f)—a(l—1,2/3 on [1, ).
Hence

(1.25) suplg ()| < sup [ (0)] < B, (f) - (1-1,)/3.

From (1.18) and (1.25) we obtain the desired contradiction.

To complete the proof of Theorem I, we have only to show that the
numbers x, and x,>0 are uniquely determined.

Since |f(e0)—x,|=B,(f) and

=B (< —g(M=h()<h()=f()—xy<|f ()= x,| =B, (),

we have f(o0)—x,=B (f) or x,=f(«)—B,(f). Since g(0)=—B,(f), we
have — B, (f)=f(0)—x,+x, and so x,=f(e)~2B, (f).
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2. An estimate from below for B, (f).

In this secticn we shall prove the following analog of a well known
result of de la Vallée Poussin.

Theorem 2. If there exists an error function

g() :(f(t)—yo ;‘%7> cos T,

with y,<f(e), such that

) g(0)= —2,<0

(i) g(t)=%1,>0 for some t, (0, 1]
(iii) lil?j;]p'g(t)i =2e>0,

then

2.0 B, (f)=min (A, A}, }a).

Proof of Theorem 2 Let

*

g¥ ()= (f(t) xo 1 1)cos-rct
be the extremal error function. Suppose that (2.1) is not true. We have then

(2.2) sup 8* (1) = B, (/) <min (. 2. 22,
Put ’

30)-8* -5 0= e cosme
In view of (i), (ii) and hypothesis (2.2), we have
3(0)=g*(0)—g(0)= — B, (f)+2,>0
S(t)=g*(1)—g(t)< B, (f)—1,<0.

Thus 3 (c)=0 for some ¢&(0. 1), where 0<# <1. Since cosmt/(4t2—1)<0
on [0, 1], and

and

B0 = 2V () (2 Dy w0

has a zero ¢é(0, 1], the polynomial P(f)= (yo—xo) 4 t2—1)+y1—x1has Zeros

at t=c and t= —c. Since P(0)= —3(0)<<0, we must have yo—xo>0 It fol-
lows then, by (2.2)

F(0) =y, <f ()~ x0=B, (f)<heo =1 ()=,

or f(®)—y,<|f(9)—y,|. Hence we have found that y,>f (o), contrary to
our hypothesis y,<f (o). This completes the proof of Theorem 2.
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