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Introduction

Gale [1] and Kelley and Morse [3] have given two different characteri-
zations of compact sets in function spaces. The main purpose of this paper
is to present a new such characterization (Theorems 2.7 and 3.3). Further-
more, Proposition 1.3 and Theorem 2.5 characterize evenly continuous families.
In section 4, from Theorem 3.3, we derive Gale’s theorem.

Notation, basic definitions and some known results. If X and Y are two
arbitrary topological spaces, let ¥X denote the space of all continuous functions
from X into Y with the compact-open topology, which, we recall, has as a
subbasis the totality of all sets (K, U)={fcY*|f(K)CU}, where KCX is
compact and UCY is open.

Further, for any given point aC X, let p,: Y¥->Y denote the continuous
[2, p. 165] function (called the projection determined by a) defined by p,(f)=
=f(a) for every fC¥Y*

Also, we say that a family FCYX is evenly continuous [3, p. 309} iff
for each x in X, each y in Y, and each open neighborhood ¥ of y there
exists an open neighborhood U of x and an open neighborhood W of y such
that if f&F and f(x)EW then f(U)CV.

A space X is said to be a k-space [5, p. 285] iff the following condition
holds: AC X is open iff ANC is open in C for each compact CCX.

We will use the following two remarkable theorems in the proof of
both of our basic theorems (4 denotes the closure of A4):

Theorem K. (Kelley and Morse [3]) Let X be a locally compact
regular space, Y a regular Hausdorff space and ¥ a subset of YX. Then F is
compact if and only if the following conditions are satisfied:

(A1) F is closed in Y7,
(A2) p—x(ﬁ is compact in Y for each xC X,
(K3) F is evenly continuous.
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Theorem M. (Kelley and Morse [3]) Let X be a Hausdorff k-space,
Y a regular Hausdorff space and F a subset of YX. Then ¥ is compact if and
only if the conditions (Al), (A2) and

(M3) F|C={f|C|fEF} is an evenly continuous family in Y€ for every
compact set C in X,
are satisfied.

Further, throughout this paper, P(Y) denotes the partitive set of ¥
taken with the Vietoris topology in which subbasic open sets are of the form

(Uy={SEP(Y)|S=U} and YU{—={SEP(Y)|SNU*p},

where U is an open set in Y. By 2% we denote the subspace of P(Y) consis-
ting of all closed subsets of Y.

Finally, we recall that, by definition, a function F from X into P(Y)
(or 2%) is upper semi-continuous (u.s.c.) if F~1(5B{) is closed in X whenever
B is closed in Y, or equivalently [4, vol. I, p. 185], if whenever x& X, VCY
is open and F(x)CV, there exists in X an open set U x such that a<=
implies F(a)_V.

1. Some preliminary propositions

In this first section a simple characterization of evenly continuous family
of functions and a remark on Theorems K and M are given.

Lemma 1.1. Let F be an evenly continuous family in YX and C an
arbitrary subset of X. Then F|C={f|C|fcF} is also an evenly continuous
Sfamily in Y€,

Proof. Let x&C, y&Y and an open set ¥>Syp be given. Since F is
evenly continuous, there are in X and Y, respectively, open sets GDx and
H>Sy such that
(1) JEFAf()EH = f(G)TV.

Put U=GNC, W=H.
Then U is an open neighborhood of x in C. Let
g<F|C, and g(x)=W.

Then there exists f&F such that f|C=g. From x&C and f|C=g it follows
that f(x)=g(x) and, therefore, f(x)& H. Consequently, by (1), f(G)CV and so
f(U)ZV. Since UCC and f|C=g, we have, finally, g(U)CV.

Thus, F!C is an evenly continuous family in Y€,

Lemma 1.2. Let X be a locally compact space and F Y. If F|C is
an evenly continuous family in YC for every compact set C in X, then F is an
evenly continuous family in YX.

Proof Let x&X, y&Y and an open set VSy be given. Since X is
locally compact, there exists a compact set C such that xcint(C). Since ¥|C
is evenly continuous, there are in C and Y, respectively, open sets N=
=GN C3x (G open in X) and H>Sy such that

(2) gCFICAg(x)EH = g(N)CV.
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Put
U=Gint(C), W=H.

Obviously, UCGNC=N. Let fCF and f(x)EW. Put g=f C. Then g&€F|C,
f(x)=g(x) and hence g(x)& H. Thus, by (2), g(N)CV and, therefore, g (U)CV.
Since UC.C and g=f|C, we have, finally, f(U)CV.

Lemmas 1.1 and 1.2 imply

Proposition 1.3. Let X be a locally compact space and ¥ YX. Then
F is an evenly continuous family in Y* if and only if ¥|C is an evenly conti-
nuous family in Y€ for every compact set C in X.

Remark 1.4. It is known that every locally compact space is a k-space
{5, p. 285]. But, obviously, a locally compact regular space need not be a
Hausdorff space. Thus, in general case, Theorems K and M are independent.
If, however, X is a locally compact Hausdorff space then, by Proposition 1.3,
Theorem K follows from Theorem M.

2. A function related to even continuity

Let X and Y be arbitrary topological spaces and let an arbitrary sub-
set F of Y¥ be given. Then every subset ® of F induces a natural function
Fp: X2

defined by . _
Fo(x)=p.(P)

for each x& X (i.e., ﬁQ(x)={f(x)|fE®?). This function plays a very impor-
tant role in all ours considerations.

Lemma 2.1. Let C be an arbitrary subset of a space X and a any
point in C. Then

(a) The diagram*

commutes,
(b) Functions Feic and Fo!|C are equal.

Proof. (a) For fc Y%, we have
(4a010) () =4.(f1C)=([]C) (@) =f(a) =p. (/)
and so p,=¢q,orc.
(b) Let x&C be arbitrarily given. Then, by (a),
Foc() = 4,(®] C) = 4,[rc(®)] =, (®) = Fo () = (F | C) ().

* Here p,, g, denote projections and rg:YX - YC is defined by rc(f)=f| C for
every fCYX,
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Lemma 2.2. Let X be an arbitrary and Y a regular topological space and

let FCYX If 1,5’0 is upper semi-continuous for every closed subset ® of ¥, then F
is an evenly continuous family.

Proof. Let x&X, y&Y and an open set V=y be arbitrarily given.
Since Y is a regular space, there exists in ¥ an open set G such that

yEG, GCU.
(I)=(x’ 6) NF
is closed in F [4, vol. II, p. 85, Theorem 1]. Obviously, px(q))Cé This

implies I:“q,(x)cé- and hence, clearly, I;q,(x)c V. Therefore, since Fy is u.s.c,
there exists in X an open set U=x such that

acU = Fy(@)CV.
Put W=¢G and let us show that

FO(x, W)U, V).
Let fEFN(x,W) and acU. Then f&® and, thus, p,(f)Ep,(P). Hence
f(@)Ep,(P) =1§’¢(a). Since I%(a)cV, we have f(a)cV and, therefore, f(U)CV
i.e., f&(U, V). This shows that F is evenly continuous.

As an immediate consequence of 2.2 and [S, p. 286, Theorem 43.14]
we have the following proposition:

Thus,

Proposition 2.3. Let X be an arbitrary and Y a regular topological

space and let FCYX If g‘q, is u s.c. for every closed subset ® of ¥, then, on F,
the compact-open topology reduces to the point-open topoiogy.

The following lemma was suggested to me by M. M. Marjanovié.

Lemma 2.4. Let X be an arbitrary and Y a compact Hausdorff space.
If FCYX is an evenly continuous family, then It“d, is u.s.c. for every subset ® of ¥.

Proof. Let ®CF, x&X and a set ¥ open in Y such that I;q,(x)CV

be given. Since Y is regular and 1?'¢(x) compact there exists in Y an open
set G such that . _
C)) Fy(x)CG, GCv.

Choose arbitrarily a point y& F4(x)CG. Clearly, since F is evenly continuous,
so also is @ and, therefore, there are in X and Y, respectively, open sets
U,5x and W,2y such that

) FEBAFHEW, = fU)CG.
Thus, {W,| yEI:”q,(x)} is an open cover of the compact set I:"Q(x) and, hence,
there is a finite number of points y,, ..., y,,EF;,(x) such that
Fo()CW, U~ UW,.
U=U,N---NU,.

Put
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Since U is open and contains x, it remains to prove that
aclU = ﬁ¢(a)CV.
Indeed, if f&®, then f(x)El;q,(x) and so f(x)€W, for some i<n. Thus,
by (5), f(in)CG and, consequently, f(U)CG i.e., f(a)&G. Therefore,
{f@)|fc®}CaG.
Hence pa((D)Cé, and, by (4), I:’q,(a)C V.
From Lemmas 2.2 and 2.4 we infer the following theorem:

Theorem 2.5 Let Y be a compact Hausdorff space and ¥ YX. Then
the following are equivalent:

(a) F is evenly continuous,

(b) 1;(1, is u.s.c. for every closed subset ® of F.

Lemma 2.6. Let X be a locally compact regular space. Y a Hausdorff
space and F a compact set in YX. Then It“d, is u.s.c. for every closed subset ® of F.

Proof. Let a closed subset ® of F, x&X and an open set V in Y

such that I::’q,(x)CV be given. Let us find an open neighborhood U of the
point x such that .

(6) aclU = Fg(a)CV.

First, let us observe that p,(®) is closed is Y (for each a€X). Indeed,

since @ is closed in F and F is compact, it follows that ® is a compact set
and, thus (p, is continuous), so is p,(®). But, because Y is a Hausdorff space,

we have p,(®)=p,(P), i.e., I?d,(a)={f(a)}fe<l>}. Hence, by (6), we must
show that

U aCUAfED = f(aEV.

Let g&® be arbitrarily given. Then g(x)Ef'd,(x), and so g(x)CV. Since g
is continuous, there exists in X an open set U,Sx such that

gUycr.

Since X is a locally compact regular space, there exists [2, p. 66. Proposition
2.14] a compact set K, such that

xCint(K),  K,CU,.

Thus, g(K))CV, or, g (K,, V). Therefore, the family {(K,, V)|gc®} is an
open cover of the compact set @ and, hence, there is a finite number of
points g,, ..., g,&® such that

DC(K,, V)U -+ UK, , V).
U=int(K, N - NK, )=int(K, )N - - Nint (K, ).

Let

Since U is open and contains x, it remains to verify the implication (7).
Let fc® and acU. Then f(K,)CV for some i<n and acint(K,). This

implies f(a)&V, which completes the proof.
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Now, we prove the first of two theorems characterizing compact sets in YX,

Theorem 2.7. Under the same hypothesis for X and Y as in Theorem K,
FCY* is compact if and only if the conditions (A1), (A2), and
(C3) If'q, is u.s.c. for every closed subset ® of F,
are satisfied.
Proof. Obviously, by Theorem K, it is sufficient to show that
(ADA(A2) N(CI) < (AD A(A2) A(K3).
—=: By Lemma 2.2,

&: F is compact (Theorem K); the implication follows according to
Lemma 2.6.

From Theorems 2.7. and K we have (compare with 2.5):
Corollary 2.8. Let X be a locally compact regular space, Y a regular

Hausdorff space and ¥ a subset of Y satisfying (A1) and (A2). Then (K3) and
(C3) are equivalent.

3. Proof of the main theorem
Let us prove first two lemmas.

Lemma 3.1. Let X and Y be Hausdorff spaces and F a compact set
in YX. If Cis a compact set in X and ® is a closed set in ¥, then the restric-

tion Fy|C is u.s.c..

Proof. Obviously, C is compact Hausdorff space and, thus, a locally
compact regular space.

Since rp: Y¥—YC is continuous [4, vol. II, p. 91, Theorem 1] and F is
a compact set, r.(F)=F:C is a compact set in the space YC.

Now, let us show that ®[C is a closed set in F|C. Indeed, since @ is

closed in F and F is compact, ® is compact in Y* and, hence, ro(P)=® C
is compact in Y€. Since Y is a Hausdorff space, so is Y¢ [2, p. 151, Propo-
sition 1.1] and, thus, ®/C is closed in Y¢. This together with ®|CC_F|C
implies that @ . C is closed in F|C.

Therefore, according to Lemma 2.6, (where X is to be replaced by C,
Y¥ by Y, F by F C and ® by ®|C), ﬁwgc is u.s.c.. But, by Lemma 2.1,
f’q,ic=1?q,ﬂc and, thus, ;};,FC is u.s.c..

Lemma 3.2. Let X be a k-space and F:X->2Y an arbitrary map. If
the restriction F|C is u.s.c. for every compact set C in X, then F is also u.s.c..

Proof. Let U be an open set in Y. Let us prove that F 1({U)) is
open in X. Let C be an arbitrary compact set in X. Obviously, we have
FYUNNC=(F|CYy ' (UY).
Since F|C is u.s.c., (F{C)~1({U)) is an open set in C. Consequently, since
F-1({U>)NC is open in C and is a k-space, F-1((U)) is open in X.
We now state the main result.
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Theorem 3.3. Under the same hypothesis for X and Y as in Theorem M,
FCYX is compact if and only if the conditions (A1), (A2) and (C3) are satisfied.

Proof. By Theorem M, it is sufficient to show that
(AD A(A2) A(C3) <= (A1) A(A2) A (M3).

=>: By Lemma 2.2, F is an evenly continuous family, and, by Lemma
1.1, F|C is also an evenly continuous family for every compact set C in X.

&: By Theorem M, F is compact, and hence, by Lemma 3.1, i’¢[C is
u.s.c. for every compact set C in X and every closed subset ® of F. From

this, we conclude (Lemma 3.2) that I:‘@ is u.s.c. for every closed subset ® of F.
Theorems 3.3 and M imply

Corollary 3.4. Let X be a Hausdorff k-space, Y a regular Hausdorff
space and F a subset of YX satisfying (A1) and (A2). Then (M3) and (C3) are
equivalent.

Remark 3.5. Let us observe that the condition (C3), by 2.1 and 3.2,
can be replaced by the following condition:

(C4) F@!C is u.s.c. for every compact set C in X and every closed sub-
set ® of F.

4. On Gale’s theorem

In this section, from Theorem 3.3, we infer Gale’s theorem (see 4.5).

Let X and Y be two arbitrary topological spaces and let FC Y* be given.
Then every subset ® of F induces a function

Fo: X->P(Y)
Fo(x)=p. (D)

for each x& X. Although of technical nature, the following lemma is very
important as the basis of the connection between the above mentioned theorems.

defined by

Lemma 4.1. Let B be an arbitrary subset of Y. Then

Fo'OBO = U{f1(B) | fE®).

Proof. This follows from

XEFy OB & Fo(E)B & {f(x)| fE®}NB+ &
& @ENHUIEPAS(EB) & BHSCPAXCf1(B)).
Lemma 4.2. The following are equivalent:

(G3) If B is closed in Y and ® is ciosed in ¥, then U{f~1(B)|fc®} is
closed in X,

(H3) Fy is u s c. for every closed subset ® of F.

Proof. This assertion follows easily from Lemma 4.1.
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According to Lemma 4.2, Gale’s theorem obtains the form very similar
to the form of Theorem 3.3. This, however, makes it possible for us to achieve
the desirable aim quite easily by using the next two simple lemmas.

Lemma 4.3. Let Y be a Hausdorff space, ¥ a compact set in YX and
@ a closed subset of F. Then functions Fg and If‘d, are equal.

- . . . * . . - .
Proof. By definition of functions Fg and Fg, it is sufficient to show

that p (®)=p (®) for each x&=X. The proof of this equality is, however, con-
tained in the proof od Lemma 2.6.

Lemma 4.4. Let Y be a regular space and F a subset of YX. Then
conditions

(G2) p.(F) is compact in Y for each x&— X
and (G3) imply conditions (A2) and (C3).

Proof. (A2) follows from (G2) and regularity of Y[2, p. 70, exercise
2F]. Let us prove (C3).
Let a closed subset @ of F, x&X and a set ¥V open in Y such that

E'IL(_"QZIGT(I))CV be given. As a closed subset of a compact space p,(F),

p. (@) is also compact. Therefore, since Y is a regular space, there exists in ¥
an open set G such that

2.(®)CG, GCV.

Hence Fg(x)=p, (®)CG, and, since (Lemma 4.2.) Fg is u.s.c., there exists
in X an open set USx such that

aclU = Fgla)=p,(®)CG.
Hence . L
Fo(@)=p,(®)CGCY,
which completes the proof.
From Theorem 3.3, using 4.3 and 4.4, we now derive immediatelly.

Theorem 4.5. (Gale [1]) Under the same hypothesis for X and Y as
in Theorem M, ¥CYX is compact if and only if the following conditions are
satisfied:

(A1) F is closed in Y,

(G2) p (F) is compact in Y for each xZ X,

(G3) If B is closed in Y and ® is closed in F, then {f'(B)|fc®} is
closed in X.
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