ON A FAMILY OF CONTRACTIVE MAPS AND FIXED POINTS

Ljubomir B. Ćirić

(Communicated October 19, 1973)

1. Introduction.

Let (M, d) be a metric space and let $\mathcal{F} = \{T_{\lambda} : \lambda \in (\lambda)\}$ be a family of maps which map M into itself. A point $u \in M$ is a common fixed point for \mathcal{F} iff $u = T_{\lambda}u$ for each $T_{\lambda} \in \mathcal{F}$. A mapping $T: M \to M$ is called a generalized contraction iff

(1)
$$d(Tx, Ty) < q \cdot \max \left\{ d(x, y); d(x, Tx); d(y, Ty); \frac{1}{2} [d(x, Ty) + d(y, Tx)] \right\}$$

holds for some q < 1 and all $x, y \in M$. M is T-orbitally complete iff every Cauchy sequence of the form $\{T^{n_i}x\}_{i\in N}, x\in M$, converges in M. In [2] we proved the following result.

Theorem A. A generalized contraction T on T-orbitally complete metric space M has a unique fixed point.

In a recent paper [1] S. K. Chatterjea proved the following:

Theorem B. If there exists a sequence of continuous mappings $\{T_n\}$ of M into itself such that for some m and 0 < q < 1

- (i) for every T_i and T_j $d(T_i^m x, T_j^m y) \leq q \cdot d(x, y), x, y \in M$,
- (ii) T_i commutes with T_i , $i \neq j$,

then $\{T_n\}$ has a unique common fixed point.

In this paper we investigate a family of maps which satisfy a common condition of type (1) and which are not necessarily continuous and commuting. An example is given to show that our results are indeed extension of Theorem B.

2. Let S be a set and $T: S \to S$ be a map of S in S. Denote $F(T) = \{x \in S: x = Tx\}$.

Lemma. Let T_0 , $T: M \to M$ be two maps on a metric space (M, d). If (2) $d(T_0x, Ty) \le q \cdot \max\{d(x, y), d(x, T_0x), d(y, Ty), d(x, Ty), d(y, T_0x)\}$ holds for some q < 1 and all $x, y \in M$, and $F(T_0)$ is a non empty set, then $F(T_0)$ is a singleton and $F(T) = F(T_0)$.

Proof. Let $u \in F(T_0) \subset M$ be any fixed point. Then by (2)

$$d(u, Tu) = d(T_0u, Tu) \le q \cdot \max \{d(u, u), d(u, T_0u), d(u, Tu), d(u, Tu), d(u, T_0u)\}$$

$$= q \cdot d(u, Tu),$$

and hence $d(u, Tu) \cdot (1-q) \le 0$, which implies d(u, Tu) = 0. Therefore, $u \in F(T)$. Let now $v \in F(T_0)$ be arbitrary. Then $v \in F(T)$ and by (2)

$$d(u, v) = d(T_0u, Tv) \le q \cdot \max\{d(u, v), 0, 0, d(u, v), d(u, v)\} = q \cdot d(u, v).$$

Thence v = u. Therefore, $F(T_0) = \{u\} = F(T)$.

Now we shall use Lemma to prove the following results:

Theorem 1. Let $\{T_n: n \in I^+\}$ be a sequence of maps on a complete metric space (M, d). If for some $q \in (0, 1) \subset R$

(3)
$$d(T_0x, T_ny) < q \cdot \max \left\{ d(x, y), d(x, T_0x), d(y, T_ny), \frac{1}{2} [d(x, T_ny) + d(y, T_0x)] \right\}$$

holds for each $n=1, 2, \ldots$ and all $x, y \in M$, then there exists a unique point $u \in M$ such that $T_n u = u$ for each $n=0, 1, 2, \ldots$ and for arbitrary $x_0 \in M$ a sequence

(4)
$$x_0, x_1 = T_0 x_0, x_2 = T_1 x_1, x_3 = T_0 x_2, \dots, x_{2n-1} = T_0 x_{2n-2}, x_{2n} = T_n x_{2n-1}, \dots$$

converges to u .

Proof. We prove that (4) is a Cauchy sequence, where $x_0 \in M$ is arbitrary. By (3) for $x = x_{2n-2}$ and $y = x_{2n-1}$

$$d(x_{2n-1}, x_{2n}) = d(T_0 x_{2n-2}, T_n x_{2n-1})$$

$$\leq q \cdot \max \left\{ d(x_{2n-2}, x_{2n-1}), d(x_{2n-2}, T_0 x_{2n-2}), d(x_{2n-1}, T_n x_{2n-1}), \right.$$

$$\frac{1}{2} \left[d(x_{2n-2}, T_n x_{2n-1}) + d(x_{2n-1}, T_0 x_{2n-2}) \right] =$$

$$=q\cdot\max\left\{d(x_{2n-2},\ x_{2n-1}),\ d(x_{2n-1},\ x_{2n}),\ \frac{1}{2}\,d(x_{2n-2},\ x_{2n})\right\}.$$

Since

$$d(x_{2n-1}, x_{2n}) \le q \cdot d(x_{2n-1}, x_{2n})$$
 implies $d(x_{2n-1}, x_{2n}) = 0$

and

$$d(x_{2n-1}, x_{2n}) \le q \cdot \frac{1}{2} d(x_{2n-2}, x_{2n})$$
 implies $\frac{1}{2} d(x_{2n-2}, x_{2n}) \le d(x_{2n-2}, x_{2n-1})$,

we have

$$d(x_{2n-1}, x_{2n}) \leq q \cdot d(x_{2n-2}, x_{2n-1}).$$

By the same reason

$$d(x_{2n-2}, x_{2n-1}) = d(T_{n-1}, x_{2n-3}, T_0, x_{2n-2}) \leq q \cdot d(x_{2n-3}, x_{2n-2}).$$

Proceeding in this manner one has

$$d(x_{2n-1}, x_{2n}) \leqslant q \cdot d(x_{2n-2}, x_{2n-1}) \leqslant q^2(x_{2n-3}, x_{2n-2}) \leqslant \cdots \leqslant q^{2n-1} d(x_0, x_1).$$

By routine calculation one can show that the following inequalities hold

$$d(x_i, x_j) \le \sum_{k=i}^{j-1} d(x_k, x_{k+1}) \le q^i \frac{d(x_0, x_1)}{1-q}; \quad j > i.$$

Therefore, (4) is a Cauchy sequence. Then completeness of M implies that for some $u \in M$

$$\lim_{n} x_{n} = u.$$

Using (3) and the triangle inequality we have

$$d(u, T_0 u) \le d(u, x_{2n}) + d(T_n x_{2n-1}, T_0 u) \le d(u, x_{2n}) +$$

$$+ q \cdot \max \left\{ d(x_{2n-1}, u), d(x_{2n-1}, x_{2n}), d(u, T_0 u), \frac{1}{2} [d(x_{2n-1}, T_0 u) + d(u, x_{2n})] \right\}.$$

Hence, as

$$\frac{1}{2}d(x_{2n-1}, T_0u) \leq d(x_{2n-1}, T_0u) \leq d(x_{2n-1}, u) + d(u, T_0u),$$

we have

$$d(u, T_0u) \leq d(u, x_{2n}) + q \{d(x_{2n-1}, u) + d(x_{2n-1}, x_{2n}) + d(u, T_0u) + d(u, x_{2n})\}$$

Thence

$$d(u, T_0u) \leq \frac{1}{1-q} [(1+q) d(u, x_{2n}) + q \cdot d(x_{2n-1}, u) + q \cdot d(x_{2n-1}, x_{2n})].$$

This implies by (5), that $d(u, T_0 u) = 0$. Since (3) implies (2), by our Lemma u is a unique fixed point of T_0 and $T_n u = u$ for each $n = 1, 2, \ldots$ This completes the proof of the Theorem.

Theorem 2. Let $\mathcal{F} = \{T_{\lambda} : \lambda \in (\lambda)\}$ be a family of functions which maps a complete metric space (M,d) into itself and let 0 < q < 1. If there exists some $T_{\lambda_0} \in \mathcal{F}$ such that for each $T_{\lambda} \in \mathcal{F}$ $(\lambda \neq \lambda_0)$ there are positive integers i_{λ} and j_{λ} such that

(6)
$$d(T_{\lambda_0}^{i_{\lambda}}x, T_{\lambda}^{i_{\lambda}}y) < q \cdot \max \left\{ d(x, y), \ d(x, T_{\lambda_0}^{i_{\lambda}}x), \ d(y, T_{\lambda}^{i_{\lambda}}y), \right.$$

$$\left. \frac{1}{2} \left[d(x, T_{\lambda}^{i_{\lambda}}y) + d(y, T_{\lambda_0}^{i_{\lambda}}x) \right] \right\}$$

holds for all $x, y \in M$, then every $T_{\lambda} \in \mathcal{F}$ has a unique fixed point in M, which is a unique common fixed point for \mathcal{F} .

Proof. Let $T_{\lambda} \in \mathcal{F}$ be arbitrary. For arbitrary $x \in M$ let us consider a sequence

(7)
$$x_0 = x$$
, $x_1 = T_{\lambda_0}^{i\lambda} x_0$, $x_2 = T_{\lambda}^{j\lambda} x_1$, ..., $x_{2n-1} = T_{\lambda_0}^{i\lambda} x_{2n-2}$, $x_{2n} = T_{\lambda}^{j\lambda} x_{2n-1}$, ...

By (6)
$$d(x_{2n}, x_{2n+1}) = d(T_{\lambda}^{j_{\lambda}} x_{2n-1}, T_{\lambda_{0}}^{i_{\lambda}} x_{2n})$$

$$\leq q \cdot \max \left\{ d(x_{2n-1}, x_{2n}), d(x_{2n-1}, T_{\lambda}^{j_{\lambda}} x_{2n-1}), d(x_{2n}, T_{\lambda_{0}}^{i_{\lambda}} x_{2n}), \right.$$

$$\left. \frac{1}{2} \left[d(x_{2n-1}, T_{\lambda_{0}}^{i_{\lambda}} x_{2n}) + d(x_{2n}, T_{\lambda}^{j_{\lambda}} x_{2n-1}) \right] \right\}$$

$$= q \cdot \max \left\{ d(x_{2n-1}, x_{2n}), d(x_{2n}, x_{2n+1}), \frac{1}{2} \cdot d(x_{2n-1}, x_{2n+1}) \right] \right\}.$$

Hence, as in the part of proof of Theorem 1,

$$d(x_{2n}, x_{2n+1}) \leq q \cdot d(x_{2n-1}, x_{2n}).$$

Then by routine calculation one can show that (7) is the Cauchy sequence. Using completeness of M we have that

$$\lim_{n} x_n = u$$

for some $u \in M$. By (6)

$$d(u, T_{\lambda_0}^{i_{\lambda}}u) \leq d(u, x_{2n}) + d(T_{\lambda}^{j_{\lambda}}x_{2n-1}, T_{\lambda_0}^{i_{\lambda}}u) \leq d(u, x_{2n}) +$$

$$+ q \cdot \max \left\{ d(x_{2n-1}, u), d(x_{2n-1}, x_{2n}), d(u, T_{\lambda_0}^{i_{\lambda}}u), \frac{1}{2} \left[d(x_{2n-1}, T_{\lambda_0}^{i_{\lambda}}u) + d(u, x_{2n}) \right] \right\}.$$

Hence

$$d(u, T_{\lambda_0}^{i_{\lambda}}u) \leq \frac{1}{1-a} [(1+q) d(u, x_{2n}) + q \cdot d(u, x_{2n-1}) + q \cdot d(x_{2n-1}, x_{2n})].$$

Then, as $\lim_k x_k = u$, we have $d(u, T_0 u) = 0$. Therefore, u is a fixed point of $T_{\lambda_0}^{i_{\lambda_0}}$.

By Lemma u is a unique fixed point of $T_{\lambda_0}^{i_{\lambda}}$ and $T_{\lambda}^{j_{\lambda}}$, as (6) implies (2). Since

$$T_{\lambda_0}^{i_\lambda}(T_{\lambda_0}u)=T_{\lambda_0}(T_{\lambda_0}^{i_\lambda}u)=T_{\lambda_0}u,$$

 $T_{\lambda_0}u$ is also a fixed point of $T_{\lambda_0}^{i_{\lambda_0}}$ and therefore $T_{\lambda_0}u=u$. Similarly follows that $T_{\lambda}u=u$. So we proved that u is a unique fixed point of T_{λ_0} and T_{λ} .

Now we shall show that u is a unique common fixed point for \mathcal{F} . Let $T_{\lambda'} \in \mathcal{F}$, $\lambda_0 \neq \lambda' \neq \lambda$, be arbitrary. Since $u = T_{\lambda_0} u$ implies $u = T_{\lambda_0}^{i\lambda'} u$, by (6) and Lemma, u is a unique fixed point of $T_{\lambda'}^{i\lambda'}$. This implies that u is a unique fixed point of $T_{\lambda'}$. This completes the proof of the Theorem.

Note that the Theorem 2. also includes as a special case Theorem B and the following result of S. K. Chatterjea [1].

Theorem C. If there exists a sequence of mappings $\{T_n\}$ of a complete metric space (M, d) into itself such that for any two mappings T_i , T_i we have

- 1) $d(T_i^m x, T_i^m y) \leqslant qd(x, y)$
- 2) $d(T_i^m x T_i y) \leq qd(x, y)$

for some m and 0 < q < 1; $x, y \in M$, then $\{T_n\}$ has a unique common fixed point.

Now we give an example of a family of maps satisfying the conditions of Theorem 1, for which the conditions of Theorem B and Theorem C did not hold.

Example. Let M=[0,1] be the subset of reals with the usual metric and let $\mathcal{F}=\{T_0,\,T_1,\,\ldots,\,T_n,\ldots\}$ be a family of functions which maps M into itself, defined as follows

$$T_0 x = \frac{1}{5} x^2$$
, if x rational,
= $\frac{1}{6} x^2$, if x irrational

and

$$T_n x = \frac{n}{1+5n} x^2$$
, if x rational,
= $\frac{n}{1+6n} x^2$, if x irrational, $n = 1, 2, \dots$

Let $x,y \in M$ and $T_n \in \mathcal{F}$ be arbitrary. If, for example, $T_0 x < T_n y$, then

$$d(T_0x, T_ny) \leqslant \frac{1}{4} d(T_0x, y) \leqslant \frac{1}{2} \cdot \frac{1}{2} [d(T_0x, y) + d(y, T_nx)].$$

The case $T_n y < T_0 x$ is now obvious. So we see that (3) is satisfied with $q = \frac{1}{2}$. The point u = 0 is the unique common fixed point for \mathcal{F} . But it is clear that every $T_i \in \mathcal{F}$ is not continuous and that $T_i T_j x \neq T_j T_i x$ for $x \neq 0$ and $i \neq j$.

Theorem 3. Let M be a complete metric space and let $\{T_n\}$ be a sequence of functions which map M into itself. If there exists some q(0 < q < 1) and a convergent series $\sum_{k=1}^{\infty} a_k (a_k > 0)$ such that

(8)
$$d(T_n x, T_{n+1} y) \leq q \cdot \max \left\{ d(x, y); \ d(x, T_n x); \ d(y, T_{n+1} y); \right.$$

$$\left. \frac{1}{2} \left[d(x, T_{n+1} y) + d(y, T_n x) \right] \right\} + a_n$$

holds for every $x, y \in M$ and each n = 1, 2, ..., then there exists a mapping $T: M \to M$ defined by $Tx = \lim_n T_n x$ which has a unique fixed point in M.

Proof. Let $x \in M$ be arbitrary and consider a sequence

$$x_0 = x$$
; $x_1 = T_1 x_0$, $x_2 = T_2 x_1$, ..., $x_n = T_n x_{n-1}$, ...

By (8)

$$d(x_n, x_{n+1}) = d(T_n x_{n-1}, T_{n+1} x_n)$$

$$\leq q \cdot \max \left\{ d(x_{n-1}, x_n); d(x_n, x_{n+1}); \frac{1}{2} \cdot d(x_{n-1}, x_{n+1}) \right\} + a_n$$

and hence

$$d(x_n, x_{n+1}) \leq \frac{1}{1-q} \cdot a_n + q \cdot d(x_{n-1}, x_n).$$

Proceeding in this manner we get that

$$d(x_n, x_{n+1}) \leq \frac{1}{1-q} (a_n + q \cdot a_{n-1} + q^2 a_{n-2} + \cdots + q^{n-1} a_1) + q^n d(x_0, x_1).$$

Then, as the series

$$\sum_{k=1}^{\infty} \left[\frac{1}{1-q} (a_k + q a_{k-1} + \cdots + q^{k-1} a_1) + q^k d(x_0, x_1) \right]$$

is convergent, by routine calculation one can show that $\{x_n\}$ is the Cauchy sequence. Since M is complete there exists $\lim_n T_n x \in M$. Put $Tx = \lim_n T_n x$. Then

$$d(Tx, Ty) = d(\lim_{n} T_{n} x, \lim_{n} T_{n+1} y) = \lim_{n} d(T_{n} x, T_{n+1} y)$$

$$\leq \lim_{n} \left[q \max \left\{ dx, y \right\}; d(x, T_{n} x); d(y, T_{n+1} y); \frac{1}{2} [d(x, T_{n+1} y) + d(y, T_{n} x)] \right\} + a_{n} \right]$$

$$\leq q \cdot \max \left\{ d(x, y); d(x, Tx); d(y, Ty); \frac{1}{2} [d(x, Ty) + d(y, Tx)] \right\}.$$

Hence, by Theorem A, it follows that T has a unique fixed point. The proof is complete.

Theorem 4. Let M be a metric space, and let $\{T_n\}$ be a sequence of mappings which map M into itself. Let $T_0: M \to M$ be a generalized contraction and let M be T_0 -orbitally complete. If each T_n has at least one fixed point u_n and if the sequence $\{T_n\}$ on the subset $I=\{x: \text{there is some } T_k \text{ such that } x=T_kx\}$ converges uniformly to T_0 , then the sequence $\{u_n\}$ converges to the unique fixed point u_0 of T_0 .

Proof. By Theorem A, T_0 has a unique fixed point u_0 . We have $d(u_0, u_n) = d(T_0u_0, T_nu_n) \le d(T_0u_0, T_0u_n) + d(T_0u_n, u_n)$ $\le q \cdot \max \left\{ d(u_0, u_n); \ d(u_n, T_0u_n); \ \frac{1}{2} [d(u_0, T_0u_n) + d(u_n, u_0)] \right\} + d(T_0u_n, u_n)$ $\le q [d(u_0, u_n) + d(u_n, T_0u_n)] + d(T_0u_n, u_n)$

and hence

$$d(u_0, u_n) \leq \frac{1+q}{1-q} d(u_n, T_0 u_n).$$

Since $\{T_n\}$ on I converges uniformly to T_0 ,

$$d(u_n, T_0 u_n) = d(T_n u_n, T_0 u_n) \rightarrow 0, \quad n \rightarrow \infty$$

and we have that $\lim_{n} d(u_0, u_n) = 0$ which completes the proof.

REFERENCES

- [1] S. K. Chatterjea, Fixed point theorems for a sequence of mappings with contractive iterates, Publ. Inst. Math., 14 (28) 1972, 15—18.
- [2] Lj. B. Ćirić, Generalized contractions and fixed point theorems, Publ. Inst. Math., 12 (26) 1971, 19-26.
- [3] Lj. B. Ćirić, Fixed point theorems for mappings with a generalized contractive iterate at a point, Publ. Inst. Math., 13 (27) 1972, 11—16.