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0. Introduction

This paper is concerned with properties of multi-valued quotient mappings,
which extend the concept of quotient mappings for single-valued functions to
multivalued functions.

Section 2. contains some equivalent conditions for a multi-valued mapping
to be an us-quotient (Is-quotient) mapping (Theorem 2.2.).

The main results in Section 3. are: (@) a relationship between multi-valued
quotient mappings and almost single-valued mappings (Theorem 3.2.) and (b)
in analogy with the case of single-valued mappings, a Y-connected quotient
multi-valued mapping preserves local connectedness (Theorem 3.10.).

Some other results are: a multivalued quotient mapping maps a connected
space onto a connected or a discrete space; and a multi-valued Y-closed quo-
tient mapping maps a locally connected compact space X onto a locally con-
nected space Y.

1. Preliminaries

For any sets X and Y, F:X—Y is a multi-valued mapping provided
that, for each xc X, F(x) is a nonempty subset of Y.

Definition 1.1 Let F:X-—>Y be a multi-valued mapping. Then

(1) F(A)=U{F(x):x&X} for each ACX,

(2) FF(B)={xEX:F(x)NB+ @} for each BCY,

3 ;(A)=C0F0C(A):{yeY:F'(y)CA} for each AC X (C-denotes
complement),

2]
(4) F'(B)=CoF'oC(B)={xEX:F(x)CB} for each BCY.

If F:X—Y is a multi-valued mapping, then F(x) need not be a closed
set as required, for example, in [2], [4], [5], [6]. For this reason we adopt
the following convention. Let P be a property of sets. Then a multi-valued
mapping F:X—-Y is called Y—P (X—P) if and only if F(x) (F (y)) has
property P for each x& X (for each ycY). Properties we are going to use in
this paper are closed, compact and connected.
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Let F: X—Y be a multi-valued mapping. Denote by P (Y) the nonempty
subsets of Y. Then F induces a single-valued function F:X ->P(Y) by setting
F(x)=F(x) for all x€X, and F:P(X)—P(Y) by setting F(4)=F(A4) for
all AP (X).

Define (following M. Marjanovié [3]) some topologies on nonempty
subsets of a topological space.

Definition 1.2. Let (X, J4) be a topological space and 4 a family
of subsets of X containing the family 7, (75 — family of all open subsets
of X). Then

(1) P, (X, /) is the topological space having for ist elements all nonempty
subsets of X and for the open subbase of its topology the collection of all

Uy, VEAWU)={ACX:ACU})),

(2) P, (X, /) is the topological space having for its elements all nonempty
subsets of X and for the open subbase of its topology the collections of all

YU UEAQU(={ACX: ANU#2}),

(3) Py(X, /4) is the topological space having for its elements all nonempty
subsets of X and for the open subbase of its topology the collections of all

Uy and W{, UcHA, VEA-
Remark. If f#=Tyx we denote P, (X,Tx), Pr(X, Ty and Py (X, T
by P, (X), P,(X) and Py (X) respectively.
If
exp (X)={ECX:E is closed and nonempys},

then » (X, A), MX, A)s Y (X, 4 are the topological spaces on closed subsets
defined by (1), (2), (3) respectively.

For the continuity of the multi-valued mapping the following definition
is used.

Definition 1.3. Let X—Y be a multi-valued mapping. Then

(1) F is upper semi-continuous (u.s.c.) provided that F'(B) is closed for
each closed BCY,

(2) F is lower semi-continuous (l.s.c.) provided that F'(V) is open for
each open VY,

(3) F is continuous provided that F is an upper semi-continuous and a
lower semi-continuous mapping.

The proof of Theorem 1.4. is omitted (see, for example [6]).

Theorem 1.4. Let X and Y be topological spaces and F:X—>Y be a
multi-valued mapping. Then the following assertions are equivalent:

(1) F is an u.s.c. mapping (l.sc. mapping) (continuous mapping),

(2) F:X—P,(Y) is continuous (F: X > Py (Y) is continuous) (F : X — P,(Y)
is continuous),

(3) F: P, (X)—> P, (Y) is continuous (l3 1Py (X)— P, (Y) is continuous)
(I:’ 1Py (X)— Py (Y) is continuous).
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2. Equivalence of some conditions
The following definition is given by C. J. R. Borges ([1] p.p. 457.).

Definition 2.1. Let X and Y be topological spaces and F: X->Y an
onto multi-valued mapping. Then F is said to be an us-quotient (Is-quotient)
mapping provided that a subset B of Y is closed (open) if and only if F'(B)
is a closed subset of X (F'(B) is an open subset of X). F is said to be a
quotient mapping whenever F is both an us-quotient mapping and a Is-quotient
mapping.

If F: XY is such that F(x)=Y for all x&X, then F is continuous
but is not quotient. It is easily seen that this mapping F is quotient if and
only if Y is a discrete space.

As a direct consequence of the definition given for us-quotient and
Is-quotient mapping, the composition of multi-valued mappings which are
us-quotient (Is-quotient) is us-quotient (Is-quotient). (If F,: X—Y and F,: Y —>2Z,
then F,oF,:X—Z is defined by F,oF, (x)=F, (F,(x))).

The following result gives in a way a characterisation of us-quotient,
Is-quotient and quotient multi-valued mappings.

Theorem 2.2 Let F:X—Y be an onto multi-valued mapping. Then the
Sfollowing conditions are equivalent.
(1) F is an us-quotient (ls-quotient) mapping,
(2) If BCY, then B is an open subset of Y (B is a closed subset of Y)
if and only if F (B) is an open (closed) subset of X,
. (3) If BCY, then B is open in Y if and only if i‘“‘l(<B>) is open in X
(F~Y()B{) is open in X,

(4) For any topological space Z and mapping G:Y—>Z we have G is
an u.s.c. mapping (l.s.c. mapping) if and only if GoF:X—~>Z is u.s.c. (I.s.c).

Proof. The equivalence of (1), (2) and (3) follows from Definitions 1.1.,
Definition 2.1. and Theorem 1.4.

We now concentrate attention to the case of us-quotient mapping.

(1) = (4). Let F:X-—>Y be an us-quotient mapping and G:Y->2Z be a
mapping where Z an arbitrary topological space. If G u.s.c., then GoF is
also u.s.c. Let, now GoF be an u.s.c. mapping and B be a closed subset
of Z. Then (GoF) (B)=F'(G'(B)) is a closed subset of X and, since F is
us-quotient, we have that G’ (B) is closed in Y and G is u.s.c.

(4) = (3). Suppose (3) is not satisfied. Then (@) there exists an open
nonempy subset ¥'C Y such that F~1({(V)) is not open, i.e. F is not u.s.c.; or

(b) there exists a nonopen subset BC Y such that l~7"1(<B>) is an open
subset of X.

Case (a). If F satisfies the condition (4) then F is u.s.c. (take Z to
be Y and G the identity function). Hence, in case (@), F does not satisfy the
condition (4).
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Case (b). Let B={BCY:F-1({B)) is open in X} and let Z=P, (Y, B).
Then the mapping F:X— P, (Y, 93) is continuous. Let G: P, (¥Y)->Z be such
that G(B)Y=28 for all BCY. Then the mapping G is not continuous. The
mapping GoF:X->Z is continuous and F does not satisfy the condition (4).

The proof concerning ls-quotient mapping is simalar where only one
takes P, (Y, 43 instead of P, (Y, ).

Now we have.

Corollary 2.3. Let F:X—Y be an onto wmulti-valued mapping. Then
the following conditions are equivalent.

(1) F is an us-quotient mapping (Is-quotient mapping).

(2) The mapping F:X—P, (Y, B) (the mapping F:X— P, (Y, JB)) is
continuous if and only if 93=T x.

3. Relationship between quotient and single-valued mapping

In [5] Ponomarev has introduced the concept of almost singe-valued
mapping (see also [4]). In the following definition the mapping F need not be
a Y-closed as required by Ponomarev.

Definition 3.1. Let F:X—Y be an onto multi-valued mapping.

Then F is said to be an almost single-valued mapping provided that 1’(12 V)£ @
for each open nonempty subset V of Y.

The following Theorem gives a relationship between multi-valued quotient
mappings and the almost single-valued mappings.

Theorem 3.2. Let F:X—Y be an us-quotient (Is-quotient) mapping, X
T\-space and Y dense in itself T -space. Then F is almost single-valued mapping.

Proof. Suppose F is us-quotient and F si not almost single-valued.

[]
Then there exists an open nonempty subset V' C Y but such that F' (V)= & or
equivalently F'(CV)=X. Then for every y,&¥ we have that C{y,}DCV and
F' (C(y))=X. Since F is us-quotient and F’(C{y,}) is closed, then C{y,} is
closed and {y,} is open, that contradicts the supposition that Y is dense in
itself 7)-space.

Let now F be a Is-quotient mapping and F is not almost single-valued.

o
Then there exists an open nonsmpty subset VC Y but such that F' (V)= @.
Since F is Is-quotient and @ closed, we have that V is closed, (see Theo-
rem 2.2, (2)). Let y,c V. Then we have that F' ({y,}'JCV)=X and {y,} UCV
is open, which contradicts that Y is dense in itself 7'-space.

Let f: X—Y be an onto single-valued function. It is well known that
if f is an open or closed continuous function, then f is a quotient function.
For multi-valued mappings it is not true. The following theorem gives a
necessary condition that an almost single-valued function is a quotient multi-
~valued mapping.
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Theorem 33. Let F: XY be an onto, open, closed and X-compact
almost single-valued continuous mapping, where, X and Y are T,-space. Then F is
a quotient mapping.

Proof. Let F'(B) be a closed subset of X and let y,&B. Since F is
X-compact and almost single-valued mapping, then there exists a x,©X such
that F(x,)=y, (see [5] Lemma 2. p.p. 534.). Since F is u.s.c. and open,
then we have F'(B)=F (B)=F'(B) (F open = F' ls.c. = F'(B)C F'(B);
F us.c. > F' closed F'(B)=F'(B) and we have that F'(B)C F'(B) and
F'(B)=F'(B)). To the hypothesis y,&B. So x,&F'(B)=F'(B). Hence
Yo=F(x)CB, and so B is closed in Y and F is us-quotient.

Let F'(B) be an open subset of X and let y,&B. Then F’(y,)CF(B)
and, since F is X-compact, then there exists an open subset U, in X such
that F' (y,)CU,CF'(B). To the hypothesis F is a closed multi-valued mapping

and we have that Ic”(UO) is an open subset of ¥ and y, & F(U,). If yIEI?*(UO),
then F'(y)CU,CF'(B). If y,&B and if y,=F(x), then F(x)NB= ¢ and

Q
x,F’'(B) and this contradicts the relation x, & F’ (y,) C F' (B). Hence F(U,)C B,
and so B is open and F is a Is-quotient mapping.

Lemma 34. Let F: XY be a multivalued quotient mapping, where X
and Y are T,-space. If y is not an isolated point of Y, then there exists xCX

such that F(x)=y, i.e. I?'(y);é 2.

o]
Proof. If F/'(y)= o, then y is an open subset of Y which contradicts
that y is not an isolated point of Y.

Lemma 3.5. Let F:X->Y be an onto multi-valued continuous mapping,
where X is a connected space. Then F(x) intersect every closed and open subset
of Y for each x=X.

Proof. Let BCY be an open and closed subset. Then F’(B) is an
open closed subset of X. Since X is a connected space, then F'(B)=X and we
have F(x)[\B+#0 for each x& X,

From Lemma 3.5. we have the following:

Theorem 3.6. (Theorem 1. in [6] p.p. 209). Let F: XY be a con-
tinuous multi-valued mapping, and X a connected space. If there is at least one
point xS X such that F(x) is a connected set, then Y is connected.

From Lemma 3.4. and Theorem 3.6. we have the following.

Corollary 3.7. Let F:X->Y be a multi-valued quotient mapping from
the connected space X onto a T,-space Y. Then Y is connected or discrete.

Proposition 3.8 Let F:X-—Y be a multi-valued quotient mapping
and let X be a T,-space and X has the finite number of components and Y
T,-space. Then the set of all isolated points of ¥ is a closed and open set.



160 Momir S. Stanojevi¢

Proof. Denote by Y, the set of all isolated points of Y and by Y,
the set of all nonisolated points of Y. The set Y, is open. If Y=o, or
Y,=7Y, or Y, is finite, then Y, is closed.

Let Y4 @ and Y;% o and let C,,C,, ..., C, be all components of
the space X.

If C,NF' (Y,)=o for i=1,2,...,n then F'(¥)= o and since F is
quotient, we have that Y, is closed and open.

If xkEFo’ (Y9N C#0 then F(x)CY, and from Lemma 3.5. F(x,) inter-
sects every closed and open subset of F(C,) and we have that F(C,)CY,.

Let C;, C,, ..., Gy, be such that F (¥;)NC;#0 for i=1,2, ..., m. Then

o
F(Y)=CUGU - -UC,
and Y, is closed and open.

It is known that if f is an open, closed or quotient single valued mapping
then f maps a locally connected space onto a locally connected space Conse-
quently, if f:X—>Y is a continuous single valued mapping from a compact
locally connected T,-space X onto a T,-space Y, then Y is also locally connected.
For multi-valued mappings this is not generally true.

Ponomarev shows the following result ({S] p.p. 534. Theorem 2.).

Theoi1em (Ponomarev). Let F be a continuous Y-closed almost single
valued mapping from a compact locally connected space X onto a T,-space Y.
Then Y is locally connected.

Now we can apply the above results to obtain the following theorem.

Theorem 3.9. Let be a multivalued Y-closed quotient mapping from
the locally connected compact space X onto a Tyspace Y. Then Y is locally
connected.

Proof. Let C,,C,,..., C, be all components of X (since X is a
compact and locally connected space, then X has the finite number of com-
ponents).

Denote by Y, the set of all isolated points of ¥ and by Y, the set of
all nonisolated points of Y. Since the space Y is locally connected at each
isolated point in Y, it is necessary to show that Y, is locally connected.

Since Y, is an open and closed set (see Proposition 3.8.) and F is a
)
quotient multi-valued mapping, then the set F'(Y)CX is open, closed and

non empty. Let g"(Yi):CIUCZU* --UC,=X,, (m<n) and let F: X, =X,
be the restriction of F to X, (F,=F/X)).

Since F, is a continuous almost single-valued mapping and X, a compact
locally connected space, we get that Y, is a locally connected space, by above
Theorem (Ponomarev).

Theorem 3.10. Let F:X—>Y be a multi-valued Y-connected quotient
mapping, X locally connected T -space and Y T,-space. Then Y is a locally
connected space.
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Proof. Let y,&Y be a nonisolated point and V an arbitrary neighbour-
hood of y,. If C is the component of y, in ¥, then we must show that the
component C is an open subset of Y. By Lemma 3.4. there exists a point

x,EX such that F (xo) yo The set F (V,) is an open and it is a neighbour-
hood of x,, and F (C)CF V)
Let x& F "(C). Since X is a locally connected space, then the component C,

(o]
of x in F'(V) is an open subset in X. The mapping F is Y-connected and
we have that F(C,) is a connected subset of Y, and F(C,)NC# @. Since

(o]
Yo EF(C)UCCF' (V,), F(C,)UC is connected and C is the component of y,
in Y, then we have that F(C,)CC.

(o]
From F(C,)CC follows that C,CF'(C) and I?” (C) is an open set in X.

[o]
Since F is a quotient mapping and F’(C) is an open set, then C is an open
subset of Y. Hence Y is a locally connected space.

I thank Professor M. Marjanovi¢ for useful suggestions.
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