ON MULTIVALUED QUOTIENT MAPPINGS

Momir S. Stanojević

(Communicated June 22, 1973)

0. Introduction

This paper is concerned with properties of multi-valued quotient mappings, which extend the concept of quotient mappings for single-valued functions to multivalued functions.

Section 2. contains some equivalent conditions for a multi-valued mapping to be an us-quotient (ls-quotient) mapping (Theorem 2.2.).

The main results in Section 3. are: (a) a relationship between multi-valued quotient mappings and almost single-valued mappings (Theorem 3.2.) and (b) in analogy with the case of single-valued mappings, a Y-connected quotient multi-valued mapping preserves local connectedness (Theorem 3.10.).

Some other results are: a multivalued quotient mapping maps a connected space onto a connected or a discrete space; and a multi-valued Y-closed quotient mapping maps a locally connected compact space X onto a locally connected space Y.

1. Preliminaries

For any sets X and Y, $F: X \rightarrow Y$ is a multi-valued mapping provided that, for each $x \in X$, F(x) is a nonempty subset of Y.

Definition 1.1 Let $F: X \rightarrow Y$ be a multi-valued mapping. Then

- (1) $F(A) = \bigcup \{F(x) : x \in X\}$ for each $A \subset X$,
- (2) $F'(B) = \{x \in X : F(x) \cap B \neq \emptyset\}$ for each $B \subset Y$,
- (3) $\overset{\circ}{F}(A) = C \circ F \circ C(A) = \{ y \in Y : F'(y) \subset A \}$ for each $A \subset X$ (C-denotes complement),
 - (4) $\overset{\circ}{F}'(B) = C \circ F' \circ C(B) = \{x \subseteq X : F(x) \subseteq B\}$ for each $B \subseteq Y$.
- If $F: X \to Y$ is a multi-valued mapping, then F(x) need not be a closed set as required, for example, in [2], [4], [5], [6]. For this reason we adopt the following convention. Let P be a property of sets. Then a multi-valued mapping $F: X \to Y$ is called Y P(X P) if and only if F(x)(F'(y)) has property P for each $x \in X$ (for each $y \in Y$). Properties we are going to use in this paper are closed, compact and connected.

Let $F: X \to Y$ be a multi-valued mapping. Denote by P(Y) the nonempty subsets of Y. Then F induces a single-valued function $\tilde{F}: X \to P(Y)$ by setting $\tilde{F}(x) = F(x)$ for all $x \in X$, and $\hat{F}: P(X) \to P(Y)$ by setting $\hat{F}(A) = F(A)$ for all $A \in P(X)$.

Define (following M. Marjanović [3]) some topologies on nonempty subsets of a topological space.

Definition 1.2. Let (X, \mathcal{T}_X) be a topological space and \mathcal{A} a family of subsets of X containing the family \mathcal{T}_X (\mathcal{T}_X — family of all open subsets of X). Then

(1) $P_{\kappa}(X, A)$ is the topological space having for ist elements all nonempty subsets of X and for the open subbase of its topology the collection of all

$$\langle U \rangle$$
, $U \in \mathcal{A}(\langle U \rangle = \{A \subset X : A \subset U\})$,

(2) $P_{\lambda}(X, \mathcal{A})$ is the topological space having for its elements all nonempty subsets of X and for the open subbase of its topology the collections of all

$$\rangle U \langle , U \in \mathcal{A}(\rangle U \langle = \{A \subset X : A \cap U \neq \emptyset \}),$$

(3) $P_{\psi}(X, \mathcal{A})$ is the topological space having for its elements all nonempty subsets of X and for the open subbase of its topology the collections of all

$$\langle U \rangle$$
 and $\rangle V \langle$, $U \in \mathcal{A}$, $V \in \mathcal{A}$.

Remark. If $\mathcal{A} = \mathcal{T}_X$ we denote $P_{\kappa}(X, \mathcal{T}_X)$, $P_{\lambda}(X, \mathcal{T}_X)$ and $P_{\psi}(X, \mathcal{T}_X)$ by $P_{\kappa}(X)$, $P_{\lambda}(X)$ and $P_{\psi}(X)$ respectively.

$$\exp(X) = \{E \subset X : E \text{ is closed and nonempy}\},$$

then $x(X, \mathcal{A})$, $\lambda(X, \mathcal{A})$, $\psi(X, \mathcal{A})$ are the topological spaces on closed subsets defined by (1), (2), (3) respectively.

For the continuity of the multi-valued mapping the following definition is used.

Definition 1.3. Let $X \rightarrow Y$ be a multi-valued mapping. Then

- (1) F is upper semi-continuous (u.s.c.) provided that F'(B) is closed for each closed $B \subset Y$,
- (2) F is lower semi-continuous (l.s.c.) provided that F'(V) is open for each open $V \subset Y$,
- (3) F is continuous provided that F is an upper semi-continuous and a lower semi-continuous mapping.

The proof of Theorem 1.4. is omitted (see, for example [6]).

Theorem 1.4. Let X and Y be topological spaces and $F: X \rightarrow Y$ be a multi-valued mapping. Then the following assertions are equivalent:

- (1) F is an u.s.c. mapping (l.sc. mapping) (continuous mapping),
- (2) $\tilde{F}: X \to P_{\varkappa}(Y)$ is continuous $(\tilde{F}: X \to P_{\lambda}(Y))$ is continuous $(\tilde{F}: X \to P_{\psi}(Y))$ is continuous,
- (3) $\hat{F}: P_{\kappa}(X) \to P_{\kappa}(Y)$ is continuous $(\hat{F}: P_{\lambda}(X) \to P_{\lambda}(Y))$ is continuous) $(\hat{F}: P_{\psi}(X) \to P_{\psi}(Y))$ is continuous).

2. Equivalence of some conditions

The following definition is given by C. J. R. Borges ([1] p.p. 457.).

Definition 2.1. Let X and Y be topological spaces and $F: X \rightarrow Y$ an onto multi-valued mapping. Then F is said to be an us-quotient (Is-quotient) mapping provided that a subset B of Y is closed (open) if and only if F'(B) is a closed subset of X(F'(B)) is an open subset of X). F is said to be a quotient mapping whenever F is both an us-quotient mapping and a Is-quotient mapping.

If $F: X \to Y$ is such that F(x) = Y for all $x \in X$, then F is continuous but is not quotient. It is easily seen that this mapping F is quotient if and only if Y is a discrete space.

As a direct consequence of the definition given for us-quotient and ls-quotient mapping, the composition of multi-valued mappings which are us-quotient (ls-quotient) is us-quotient (ls-quotient). (If $F_1: X \to Y$ and $F_2: Y \to Z$, then $F_2 \circ F_1: X \to Z$ is defined by $F_2 \circ F_1: (x) = F_2: (F_1: X)$).

The following result gives in a way a characterisation of us-quotient, ls-quotient and quotient multi-valued mappings.

Theorem 2.2 Let $F: X \rightarrow Y$ be an onto multi-valued mapping. Then the following conditions are equivalent.

- (1) F is an us-quotient (ls-quotient) mapping,
- (2) If $B \subset Y$, then B is an open subset of Y (B is a closed subset of Y) if and only if F'(B) is an open (closed) subset of X,
- (3) If $B \subset Y$, then B is open in Y if and only if $\tilde{F}^{-1}(\langle B \rangle)$ is open in X $(\tilde{F}^{-1}(\langle B \rangle))$ is open in X,
- (4) For any topological space Z and mapping $G: Y \rightarrow Z$ we have G is an u.s.c. mapping (l.s.c. mapping) if and only if $G \circ F: X \rightarrow Z$ is u.s.c. (l.s.c.).

Proof. The equivalence of (1), (2) and (3) follows from Definitions 1.1., Definition 2.1. and Theorem 1.4.

We now concentrate attention to the case of us-quotient mapping.

- (1) \Rightarrow (4). Let $F: X \rightarrow Y$ be an us-quotient mapping and $G: Y \rightarrow Z$ be a mapping where Z an arbitrary topological space. If G u.s.c., then $G \circ F$ is also u.s.c. Let, now $G \circ F$ be an u.s.c. mapping and B be a closed subset of Z. Then $(G \circ F)'(B) = F'(G'(B))$ is a closed subset of X and, since F is us-quotient, we have that G'(B) is closed in Y and G is u.s.c.
- (4) \Rightarrow (3). Suppose (3) is not satisfied. Then (a) there exists an open nonempy subset $V \subset Y$ such that $\tilde{F}^{-1}(\langle V \rangle)$ is not open, i.e. F is not u.s.c.; or
- (b) there exists a nonopen subset $B \subset Y$ such that $\tilde{F}^{-1}(\langle B \rangle)$ is an open subset of X.

Case (a). If F satisfies the condition (4) then F is u.s.c. (take Z to be Y and G the identity function). Hence, in case (a), F does not satisfy the condition (4).

Case (b). Let $\mathcal{B} = \{B \subset Y : \tilde{F}^{-1}(\langle B \rangle) \text{ is open in } X\}$ and let $Z = P_{\times}(Y, \mathcal{B})$. Then the mapping $F: X \to P_{\times}(Y, \mathcal{B})$ is continuous. Let $G: P_{\times}(Y) \to Z$ be such that G(B) = B for all $B \subset Y$. Then the mapping G is not continuous. The mapping $G \circ \tilde{F}: X \to Z$ is continuous and F does not satisfy the condition (4).

The proof concerning Is-quotient mapping is simalar where only one takes $P_{\lambda}(Y, \mathcal{B})$ instead of $P_{\kappa}(Y, \mathcal{B})$.

Now we have.

Corollary 2.3. Let $F: X \rightarrow Y$ be an onto multi-valued mapping. Then the following conditions are equivalent.

- (1) F is an us-quotient mapping (Is-quotient mapping).
- (2) The mapping $\tilde{F}: X \to P_{\kappa}(Y, \mathcal{B})$ (the mapping $\tilde{F}: X \to P_{\lambda}(Y, \mathcal{B})$) is continuous if and only if $\mathcal{B} = \mathcal{T}_{\kappa}$.

3. Relationship between quotient and single-valued mapping

In [5] Ponomarev has introduced the concept of almost singe-valued mapping (see also [4]). In the following definition the mapping F need not be a Y-closed as required by Ponomarev.

Definition 3.1. Let $F: X \to Y$ be an onto multi-valued mapping. Then F is said to be an almost single-valued mapping provided that $F'(V) \neq \emptyset$ for each open nonempty subset V of Y.

The following Theorem gives a relationship between multi-valued quotient mappings and the almost single-valued mappings.

Theorem 3.2. Let $F: X \rightarrow Y$ be an us-quotient (Is-quotient) mapping, X T_1 -space and Y dense in itself T_1 -space. Then F is almost single-valued mapping.

Proof. Suppose F is us-quotient and F si not almost single-valued. Then there exists an open nonempty subset $V \subset Y$ but such that $F'(V) = \emptyset$ or equivalently F'(CV) = X. Then for every $y_0 \in V$ we have that $C\{y_0\} \supset CV$ and $F'(C(y_0)) = X$. Since F is us-quotient and $F'(C\{y_0\})$ is closed, then $C\{y_0\}$ is closed and $\{y_0\}$ is open, that contradicts the supposition that Y is dense in itself T_1 -space.

Let now F be a Is-quotient mapping and F is not almost single-valued. Then there exists an open nonempty subset $V \subset Y$ but such that $F'(V) = \emptyset$. Since F is Is-quotient and \emptyset closed, we have that V is closed, (see Theorem 2.2. (2)). Let $y_0 \subset V$. Then we have that $F'(\{y_0\} \cup CV) = X$ and $\{y_0\} \cup CV$ is open, which contradicts that Y is dense in itself T_1 -space.

Let $f: X \rightarrow Y$ be an onto single-valued function. It is well known that if f is an open or closed continuous function, then f is a quotient function. For multi-valued mappings it is not true. The following theorem gives a necessary condition that an almost single-valued function is a quotient multi-valued mapping.

Theorem 33. Let $F: X \to Y$ be an onto, open, closed and X-compact almost single-valued continuous mapping, where, X and Y are T_1 -space. Then F is a quotient mapping.

Proof. Let F'(B) be a closed subset of X and let $y_0 \in \overline{B}$. Since F is X-compact and almost single-valued mapping, then there exists a $x_0 \in X$ such that $F(x_0) = y_0$ (see [5] Lemma 2. p.p. 534.). Since F is u.s.c. and open, then we have $F'(\overline{B}) = \overline{F'(B)} = F'(B)$ (F open $\Rightarrow F'$ l.s.c. $\Rightarrow F'(\overline{B}) \subseteq \overline{F'(B)}$; F u.s.c. $\Rightarrow F'$ closed $F'(\overline{B}) = F'(\overline{B})$ and we have that $F'(\overline{B}) \subseteq F'(\overline{B})$ and $F'(\overline{B}) = F'(\overline{B})$. To the hypothesis $y_0 \in \overline{B}$. So $x_0 \in F'(\overline{B}) = F'(B)$. Hence $y_0 = F(x) \subset B$, and so B is closed in Y and F is us-quotient.

Let F'(B) be an open subset of X and let $y_0 \in B$. Then $F'(y_0) \subset F(B)$ and, since F is X-compact, then there exists an open subset U_0 in X such that $F'(y_0) \subset U_0 \subset F'(B)$. To the hypothesis F is a closed multi-valued mapping and we have that $\mathring{F}(U_0)$ is an open subset of Y and $y_0 \in \mathring{F}(U_0)$. If $y_1 \in \mathring{F}(U_0)$, then $F'(y_1) \subset U_0 \subset F'(B)$. If $y_1 \in B$ and if $y_1 = F(x_1)$, then $F(x_1) \cap B = \emptyset$ and $x_1 \notin F'(B)$ and this contradicts the relation $x_1 \in F'(y_1) \subset F'(B)$. Hence $\mathring{F}(U_0) \subset B$, and so B is open and F is a 1s-quotient mapping.

Lemma 3.4. Let $F: X \to Y$ be a multivalued quotient mapping, where X and Y are T_1 -space. If y is not an isolated point of Y, then there exists $x \in X$ such that F(x) = y, i.e. $\mathring{F}'(y) \neq \emptyset$.

Proof. If $F'(y) = \emptyset$, then y is an open subset of Y which contradicts that y is not an isolated point of Y.

Lemma 3.5. Let $F: X \rightarrow Y$ be an onto multi-valued continuous mapping, where X is a connected space. Then F(x) intersect every closed and open subset of Y for each $x \in X$.

Proof. Let $B \subset Y$ be an open and closed subset. Then F'(B) is an open closed subset of X. Since X is a connected space, then F'(B) = X and we have $F(x) \cap B \neq 0$ for each $x \in X$.

From Lemma 3.5. we have the following:

Theorem 3.6. (Theorem 1. in [6] p.p. 209). Let $F: X \rightarrow Y$ be a continuous multi-valued mapping, and X a connected space. If there is at least one point $x \in X$ such that F(x) is a connected set, then Y is connected.

From Lemma 3.4. and Theorem 3.6. we have the following.

Corollary 3.7. Let $F: X \rightarrow Y$ be a multi-valued quotient mapping from the connected space X onto a T_1 -space Y. Then Y is connected or discrete.

Proposition 3.8 Let $F: X \rightarrow Y$ be a multi-valued quotient mapping and let X be a T_1 -space and X has the finite number of components and Y T_1 -space. Then the set of all isolated points of Y is a closed and open set.

Proof. Denote by Y_0 the set of all isolated points of Y and by Y_1 the set of all nonisolated points of Y. The set Y_0 is open. If $Y_0 = \emptyset$, or $Y_0 = Y$, or Y_0 is finite, then Y_0 is closed.

Let $Y_0 \neq \emptyset$ and $Y_1 \neq \emptyset$ and let C_1, C_2, \ldots, C_n be all components of the space X.

If $C_i \cap F'(Y_0) = \emptyset$ for $i = 1, 2, \ldots, n$ then $F'(Y_0) = \emptyset$ and since F is quotient, we have that Y_0 is closed and open.

If $x_k \in \overset{\circ}{F}'(Y_0) \cap C_k \neq 0$ then $F(x_k) \subset Y_0$ and from Lemma 3.5. $F(x_k)$ intersects every closed and open subset of $F(C_k)$ and we have that $F(C_k) \subset Y_0$.

Let C_1, C_2, \ldots, C_m be such that $\overset{\circ}{F}(Y_0) \cap C_i \neq 0$ for $i = 1, 2, \ldots, m$. Then

$$\overset{\circ}{F}'(Y_0) = C_1 \cup C_2 \cup \cdots \cup C_m$$

and Y_0 is closed and open.

It is known that if f is an open, closed or quotient single valued mapping then f maps a locally connected space onto a locally connected space Consequently, if $f: X \to Y$ is a continuous single valued mapping from a compact locally connected T_2 -space X onto a T_2 -space Y, then Y is also locally connected. For multi-valued mappings this is not generally true.

Ponomarev shows the following result ([5] p.p. 534. Theorem 2.).

Theorem (Ponomarev). Let F be a continuous Y-closed almost single valued mapping from a compact locally connected space X onto a T_2 -space Y. Then Y is locally connected.

Now we can apply the above results to obtain the following theorem.

Theorem 3.9. Let be a multivalued Y-closed quotient mapping from the locally connected compact space X onto a T_2 -space Y. Then Y is locally connected.

Proof. Let C_1, C_2, \ldots, C_n be all components of X (since X is a compact and locally connected space, then X has the finite number of components).

Denote by Y_0 the set of all isolated points of Y and by Y_1 the set of all nonisolated points of Y. Since the space Y is locally connected at each isolated point in Y, it is necessary to show that Y_1 is locally connected.

Since Y_1 is an open and closed set (see Proposition 3.8.) and F is a quotient multi-valued mapping, then the set $\overset{\circ}{F}'(Y_1) \subset X$ is open, closed and non empty. Let $\overset{\circ}{F}'(Y_1) = C_1 \cup C_2 \cup \cdots \cup C_n = X_1$, (m < n) and let $F_1: X_1 \to X_1$ be the restriction of F to X_1 $(F_1 = F/X_1)$.

Since F_1 is a continuous almost single-valued mapping and X_1 a compact locally connected space, we get that Y_1 is a locally connected space, by above Theorem (Ponomarev).

Theorem 3.10. Let $F: X \rightarrow Y$ be a multi-valued Y-connected quotient mapping, X locally connected T_1 -space and Y T_1 -space. Then Y is a locally connected space.

Proof. Let $y_0 \in Y$ be a nonisolated point and V an arbitrary neighbourhood of y_0 . If C is the component of y_0 in V, then we must show that the component C is an open subset of Y. By Lemma 3.4. there exists a point $x_0 \in X$ such that $F(x_0) = y_0$. The set $\mathring{F}'(V_0)$ is an open and it is a neighbourhood of x_0 , and $\mathring{F}'(C) \subset \mathring{F}'(V_0)$.

Let $x \in \mathring{F}'(C)$. Since X is a locally connected space, then the component C_x of x in $\mathring{F}'(V)$ is an open subset in X. The mapping F is Y-connected and we have that $F(C_x)$ is a connected subset of Y, and $F(C_x) \cap C \neq \emptyset$. Since $y_0 \in F(C_x) \cup C \subset \mathring{F}'(V_0)$, $F(C_x) \cup C$ is connected and C is the component of y_0 in Y, then we have that $F(C_x) \subset C$.

From $F(C_x) \subset C$ follows that $C_x \subset \overset{\circ}{F'}(C)$ and $\overset{\circ}{F'}(C)$ is an open set in X. Since F is a quotient mapping and $\overset{\circ}{F'}(C)$ is an open set, then C is an open subset of Y. Hence Y is a locally connected space.

I thank Professor M. Marjanović for useful suggestions.

REFERENCES

- [1] C. J. R. Borges, A study of multivalued functions, Pacific J. Math. 23 (1967), 451-461.
 - [2] K. Kuratowski, Topology (Russian), Moscow, vol. I (1966) and vol. II (1969).
- [3] M. Marjanović, Topologizing the hypersets, Publ. Inst. Math. T. 13 (27), 1971., 123—134.
- [4] M. Mišić, Multivalued mappings of topological spaces, (Serbocroatian), Doctoral dissertation, Beograd 1971.
- [5] V. I. Ponomarev, Properties of topological spaces preserved under multivalued continuous mappings, (Russian), Math. Sb., 51 (93), 1959., 515—536.
- [6] V. I. Ponomarev, A new space of closed sets and multivalued continuous mappings, (Russian), Math. Sb., 48 (90), 1959., 191—212.
- [7] R. E. Smithson, Some general properties of multivalued functions, Pacific J. Math. 15 (1965) 681-703.
- [8] R. E. Smithson, Multifunctions, Nieuw Archief voor Wiskunde (3), XX, (1972), 31-53.

Momir S. Stanojević, University of Niš Yugoslavia