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Introduction.

In this paper we study Cartesian multiplication of accumulation orders
which we have defined and have made use of them in connection with hyperspaces
in one of our previous papers ([3]).

The first section is just a recapitulation of the related main points
from [3]. In the second section we define a multiplication of accumulation
orders associated with the Cartesian product of two spaces. We also find the
explicit formulae giving this multiplication in terms of the usual operations
with natural numbers. Then, these formulae reveal easily the structure of the
monoid of all natural numbers under this multiplication.

As application, in the third section, we find infinitely many pairs of
non-homeomorphic spaces having their squares homeomorphic. All these spaces
are compact metric and O-dimensional. The phenomenon of different spaces
with homeomorphic squares, which came into question in the form of a
problem of 8. Ulam (Fundamenta Mathematicae 20 (1933), p. 285), seems to
be more hidden than rare. Namely, R. H. Fox in [1], solving the Ulam
problem, has shown that there exists a pair of non-homeomorphic 4-dimensional
manifolds having their squares homeomorphic and that this cannot happen if
dimension of manifolds is less than three. At the end of the third section we
attach an easily described pair of such spaces.

1. Accumulation orders.

In this section, we construct a sequence of spaces from the class of all
compact metric 0O-dimensional spaces (denoted here by (£) whose members
represent the spaces having points with greater and greater accumulation orders.
We also repeat the definition of accumulation order from [3] together with
some its corollaries that we will be using here.

Let Z, be an isolated point and Z, the space of points {1, 1/2, ...,
ifn, . .}U{0} having the relative topology of BEuclidean line. Let Z, be the
Cantor discontinuum C. Thus, we already have a sequence Z,, Z,, Z, and
call 0 the leading point of Z,. Assume the sequence

Zyy Zyy ooy Z

n
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has already been defined and each of the spaces Z,, ..., Z, has its leading
point. Let Z’,f-,, k=1,2, ... be the sequence of different copies of Z,_, and Z
one-point compactification of the disjoint topological sum of spaces ZE_,, that is

Z= (o) U(2{Zi1 | k=1,2,...}),

Then Z,,, is the space obtained by the identification of point c and the
leading point of Z, in Z+Z,. The point of Z,., obtained by this identifi-
cation is the leading point of Z, ;.

The space Z,(n>3) can be pictured and realized as
the following star space where the segments in each angle
carry a copy of the indicated space.

Now we describe a classification of points of a
space X from (£ and give the definition of accumulation
order.

For a space X&(Z, X, stands for the set of all iso-
lated points of X and X, for the set of those points
of X which have a clopen neighborhood homeomorphic
to C. For instance,

(Z)o= 2, Z)=C Zo={1.1/2, ..., Un, ...}
(Z), =2, (Z,),={0}.

We put X=X\ (X,UX)), then as it can easily be seen,
(Z)w={0} (Z)w = {each {0}, = {0} Z5 plus {0}}.

The points of X, can be divided into those X)) not being the accumulation
points of X, and those Xy, being the accumulation points of this set.
For instance,

(Z)o @ ={each {0}, S 23}, (Z)wry={0}.

Thus
Xod=Xo X1, Xoo=XeNX,.

Now assume that X,, X, ..., X, and Xy, Xp@), -+ > Xo@)... 1)
have already been defined. Then, let

Xoi1=X0 W .1 =X @ ... 1) X
XoOW .. ) =X @) ... (i) X
Thus, for each X<&(Z we have an inductive definition of sequences

Xoy Xy oo X,y e
and

Xo» Xoya» -+ Xoy@ ..o «-+
Let

Xo=N{X@...00 | k=0, 1, ...},

then, we have the foliowing



Numerical invariants of o-dimensional spaces and their Cartesian multiplication 115

1.1. For each X7,
X=(X,UX,U---UX,U- - HUX,,

the sets X,, X,, ... X,, ..., X, are mutually disjoint and X,J-.-UX, is
open for each n=0, 1, ...

By 1.1, each point x& X belongs to exactly one X,. If x&X,, then we
call x n-point of X and the number n accumulation order of x and we denote
it by ord (x). If X and Y are homeomorphic and f: X~ Y, then, as it is easy
to see, x&-X, implies fx&Y,. Hence, for a point xCX, the properties of
being an n-point or having accumulation order n are topological.

In order to make it easier to deal with the above definitions, we also
include some of their corollaries as follows.

1.2. (a) The closure of X, is

X,=X,U(U{X, | k=n+2, n43, ..., o}).

M If X,= 2, then X,= @ for t=n+2,..., &
1.3. If X+ Y is the disjoint topological sum of two spaces X and Y, then

(X'i' Yn):Xn+ Yn'

Since each point x in X has a clopen neighborhood U, it follows from 1.3
that the accumulation order is a local invariant. If x is an n-point, then by 1.2,
X, ,NX,= o and the neighborhood U can be chosen so that X, NU=g2.
In this case we will call U canonical. Thus, if x is an »n-point of X, then
there is a canonical neighborhood U of X having for the accumulation orders
of its points the numbers O, ..., n—2, » and only them.

2. Multiplication of accumulation orders.

Here we define a multiplication of accumulation orders associated with
the Cartesian product of two speces. Let X and Y be two spaces from &Z and
let x&X and y& Y be such that ord (x)=n and ord (y)=m. Then, the number
ord (x, y), (x, y)&X x Y can be considered as a “product of numbers ord (x)
and ord (y). Our first task is to show that this multiplication of numbers n
and m is well-defined. That is, we must show that we obtain the same number
regardless of the choice of spaces X and Y. We prove it first in a special case
of numbers n and m.

2.1. Let X and Y be arbitrary spaces from (£ and X x Y their product space.
Then, for each xX and ycY

(I) ord (x)=n and ord (y)=0 imply ord (x, y)=n,
dD ord(x)=n and ord (y)=1 imply ord (x, y)=1.

Proof. (I): The point y is isolated and X x{y} is a clopen subset
of X¥x Y. Since

p:Xx{y}~X, p(x,y)=x

is a homeomorphism, ord (x, y)=ord (x)=n.
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(II): The point y has a clopen neighborhood ¥V homeomorphic to the
Cantor set C and the point (x, y) has the clopen neighborhood X xV being
also homeomorphic to C. Hence, ord (x, y)=1.

In both cases, (I) and (II), the order of (x,y) does not depend upon
the choice of X and Y.

If x&X and y&Y, then evidently
ord (x, y)=ord (y, x),

where (x, »)EXxY and (y, x)©Y x X. This means that the “multiplication*
of orders will be commutative.

2.2 Let X and Y be arbitrary spaces from £ and X x Y their product
space. If x,X, ord(x))=n and y,=Y, ord(y,)=m, then ord (x,, y,} is a
natural number uniquely determined by m and n.

Proof. By 2.1, this statement is true for all » and m=0, 1. Assume
1t is true for all » and m<¢t. Now we prove that the statement will be true
for all n and for m=¢. Then by induction, it will be true for all n» and all m.

If n=0,1 and m=t, then ord(x, y)=ord(y, x) and 2.1 imply our
statement. Assume now it is true for all n<k and m<t. Let ord (x))=k,
ord (y,) =t. Then, let U,, and V, be two canonical neighborhoods of x, and y,,
respectively, We have for x=U,, and y&V,,,

pe=ord (x)=0, ..., k—2,k; p,~ord(»)=0,...,t—=2,¢
Let
s=max {ord (x, y) | (x, »)EUy, xVy, and (p,, p,)#(k, 1)},

where all numbers ord (x, y) are uniquely determined by p, and p,. Now two
cases are possible:

(a) there is no (x, y)&X x Y such that ord (x, y)=s—1.
(b) there is a pair (x, »)&X x Y such that ord{x, y)=s5—1.

By 1.2, in case (a): ord (x,, y,)>s and in case (b): ord (x,, yy)>s+2. For
x'EUy,, ord (x'y=k and y'<V,, ord(y')=t, we also have ord (x’, y')>s or
ord (x', ') » s+ 2 according to whether (a) or (b). Indeed, taking two neighbor-
hoods U, CU,, of x’ and ¥V, V), of y' we get the same set of numbers

{Ol'd(x, }’) ; (X, y)EUX'XU)" and (px’ p_))#(k’ 2)}

Thus, in case (a), there is no (x, y)&U,, xV,, such that ord (x, y)=5—1 and
ord (x,, yp)=s and, in case (b), there is no (x, y)&U,, xV,, such that
ord{x, y)=s+1 and ord (x,, y;) =5+ 2. Both numbers are determined uniquely
by the numbers p, and p, and independently of choice of X and Y.

Now we can give the following definition: Let X and Y be two spaces
Sfrom (Z. Let x&X, y&Y and ord(x)=n, ord (y)=m. Then the product of
orders n and m is the number ord (x, y)=nxm.

By 2.2, nxm is well-defined. As we have already noticed it, this multipli-
cation is commutative.
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Since (X xY¥Y)xZ is homeomorphic to X x(¥YxZ} under the homeo-
morphism carrying ((x, y), z) onto (x, (y, z)), we also have

ord (x, y) x ord (z) = ord (x) x ord (¥, z),

what means that the multiplication of accumulation orders is associative.
Hence, (N, x) is a semigroup. Moreover this semigroup has O as the neutral
element and (N, x) is a monoid.

Proving 2.1, we already know that nx0=n and n x 1 =1. Now we prove

23, () nx2= n+2, n=3k
n, n#£3k
n+4, n=3k
3, n=2k ’

av n><3={nJr n~2k . (V) nxd4=!p, n=3k+1

n,  m=~Lk+ n+2, n=3k+2
oh nxe=|l "=l
n+6, n£l.

(VII) () nxS=(nx2)x3 and (b) nxT=(nx3)x4.

Proof. In proving (III), AV), (V) and (VI), we use induction on a.
All these formulae are true for #=0, 1. We will suppose they are true for
all n<<t and a fixed m, (m=2, 3, 4, 6). Then, we choose an x,&X such that
ord (x)) =t and a y,& Y such that ord (y,)=m. The points x, and y, have the
canonical neighborhoods U, for x, and V,, for y,. Then fxm=ord(x,, y,)-
Since #xm is uniquely determined by o, x p,, (¢x, p,)=(#, m) where p, =ord (x),
x&U,, and p,=ord(y), y&V,,, we will indicate all possible values of p, and
p, in each of the particular cases of this proof. The maximal value s of
p, x p, and the cases when s—1 or s+ 1 do not exist will be purely a matter
of verification based upon the induction hypothesis or upon some of formulae
in 2.3 which we will have already proved. Most of such details we will leave out.

(I11): Procf of (IHI) splits into three cases: (a) =3k, (b) t=3k+1
and (c) t=3k+2.

(a) P.xzo, Y 3k'—‘2, 3k py:O’ 2.

Then, (3k—3)x2=3k—1 and s=(3k)x0=3k. Maximality of s is proved
verifying that o, xp,#3k+ 1. Hence, (3k)x2=3k+2.

) e,=0,..., 3k—1, 3k+1 e,=0, 2.
Then, (3k+1)x0=3k+1=s5 and p,xp,#3k Hence, Bk+1)x2=3k+1.
© e,=0,..., 3k, 3k+2 0,=0, 2.

Then, (3k+2)x0=3k+2 and p,xp,#3k+1. Indeed, (3k)x2=3k+2 and
for p, <3k, p,x2<3k—1.
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(V): Proof of (IV) splits into two cases: (a) f=2k and (b) t=2k+1.
(a) px=09 e 2k-2, 2k Py=0, 1, 3.

Then, 2k—2)x3=2k+1=s, (2k)x0=2k and p,xp,#2k+2. Hence,
(k) x3=2k+3.

() ¢x=0,..., 2k—1, 2k+1  p,=0,1, 3.

Then, (2k—2)x3=2k+1=s and p, xp,#2k. Hence, (2k-+1)x3=2k+1.

(V): Proof of (V) splits into three cases: (a) t=3k, (b) t=3k-+1 and
() t=3k+2.

(a) Px=0! ceey 3k"’2) 3k Py=0, I, 2, 4.

Then, (3k—3)x4=3k+1, Bk)x2=3k+2=sand p, x p,# 3k + 3. Hen-
ce, 3k)x4=3k+4.

® e,=0,..., 3k—1, 3k+1 p,=0,1,2, 4.

Then, (3k—3)x4=3k+1=s and p,xp,#3k Indeed, Bk+1)x2=3k+1
and for p,<3k—1, p,x2<3k~1. Further, 3k—1)x4=3k+1, 3k—2)x4
=3k—2 and for p,<3k—4, p,x4<3k—2.

(© ps=0,..., 3k, 3k+2 0,=0, 1,2, 4.

Then, (3k)x4=3k+4=s and p,xp,#3k+3. Hence, 3k+2)x4=3k+4.
(VI) (a): Since the multiplication of orders is associative, we have

nxS=nx(2x3)=(nmx2)x3.

(VD): This formula is true for n=0, 1, 2, 3, 4, 5, since we have already
proved it. Suppose f>5.

p,=0,..., -2, ¢ e,=0,1,2,3,4,6.

Then, (t—3)x6=1+3,(t—2)x6=t+4=sandp, x p,7#¢+ 5. Hence, t x 6 =¢+6.
(VII} (b): We have nx7T=nx(3x4)=(nx3)x4.

If ms%1 is a natural number, then m can be written in a umique way
as 6k-+r, where r=0,2,3,4,5,7 and k=0, 1,... When we write m=6k+r,
this representation is to be understood.

24. If n=6k,+r, and m=6k,+r,, then
nxm=6(k +k))+r xr,.
Proof. By 2.3 (VL) 6k+r=(6k)xr for r1. Thus,
(6k,+r)x(6k,+ry)=(6k +r)x[(6k,) xr)]
=[(6k,+r)x 6k, xr,=[6(k +k)+r]lxr,
=[6(k, + k)] x(r,xr)=6(k +k)+r xr,.
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By 2.4, the multiplication of any two orders m and n is reducible to
the multiplication of their remainders. Here is the multiplication table for
remainders

fo 2 3 4 5 7
0|0 2 3 4 5 1
202 2 5 4 5 7
3/3 5 3 7 5 17
414 4 7 4 7 7
5/5 5 5 7 5 1
777 17 1 1 1 1

2.5. The monoid (N, %) has six and only six prime numbers: 0, 1, 2, 3, 4, 6.

3. An application.

With every space XC (7, we can associate an increasing sequence of
natural numbers being the accumulation orders of its points. Such a sequence
is denoted by s(X) and called the accumulation spectrum of X. For instance,
if X=X, then s(X)=0, s(C)=(w, 1), s(Z,)=(0, 2,2), s(Z,+Z,)=(0, 1, 2).
Generally, if 5s(X) is finite, it has one of these two forms

©,...,n—2, z,n or (O,...,n—1,n.

In the former case we use the empty set to denote the fact that X, ,=4&.
Call a space X full whenever X, @ implies X,~C, n=1, 2. ... In [3],
we have constructed an infinite sequence of full spaces C,, C,, ..., C,, ...
being such that (C),~C, t=1, 2, .. , n—2, n and (C,),_,~ @. Note that
C,=C and that we will describe here the construction of C, and C,.
Now we use a statement proved in [3]. Namely,

3.1. Let X and Y be two spaces from £ such that their accumulation
spectra are finite and equal and let card (X;)=card(Y,). Then, X and Y are
homeomorphic.

~ Our next task here is to find infinitely many pairs of non-homeomorphic
spaces from {Z having their squares homeomorphic.

We need the following

3.2. The product X x Y of two full spaces X and Y is a full space.

Proof. Let X and Y be full and let (x, p)&E(XxY),, where n>0.
Then, either x& X, for some k>0 or ycY, for some A>0. In the former
case (x, )EX, x{y}C(XxY), and in the latter (x, y)E{x}x ¥, C(XxY),.
Since in either case X, and Y, have no isolated point, the point (x, y) is not
isolated in (X x ¥),. Thus, (X x ¥),~C.
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3.3. There exist infinitely many pairs of non-homeomorphic spaces in &
having their squares homeomorphic. Such pairs are:

(@ X=Cgi,+Cusss Y=Cy,s
and
(b) X=C6k+3+C6k+4’ Y=C6k+?’

where k=0, 1,2, ...
Proof. Since the accumulation spectra of the spaces from each pair are:
@ sX)=@®,...,06k+2, 6k+3), s(¥)=(0,..., 6k+5)
®) s(X)=(0,...,6k+3, 6k+4), s(¥)=(@,...,6k+7),

X is not homeomorphic to Y. By 3.2, X2 and ¥? are full and, by 2.4 and by
the multiplication table, it is easy to verify that s(X®)=s(¥?. Then, 3.1
implies X2~ Y2

Now suppose that C,=C is realized in the usual way as a subset of the
interval [0, 1]. Let C, be the Cantor discontinuum C plus the centers of all
deleted intervals. The space C, will be constructed as a subset of the Euclidean

plane as follows. Let

A4,=C, x{0}, 4,=C, x{—l—}
n

and let
C,=U{4,|n=0,1,...}.

Let X=C,+C; and Y=(C,+C,) x(C,+C,). Then, X and Y are not homeo-
morphic but their squares are.
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Added in proof. A simpler construction of the sequence of full spaces is
as follows. The spaces C, is obtained by interpolation of a point (a copy of C,)
in each of deleted intervals of C. The space C, is obtained from C,_,, by
interpolation of a copy of C,_, in each of the deleted intervals. The copy of
C,_, is interpolated so that it does not intersect any of previously interpolated
copies.



