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1. The convolution product of two sequences (a,) and (p,) is defined
to be the sequence

(1.1) €= Pry k> n=1,2,...
k=1

If (a,) is a sequence of positive numbers converging to a positive number
-]

and if the series > p, converges absolutely, then it is easy to see that
K=1

lim¢,/a,= i D+

n-—»co k=1

The following more general result can be found in [7]:

Let (p,) be a sequence of real numbers such that the series > p, x* has a

k=1
positive radius of convergence R. If
(1.2) lima,, /a,=21"1
H—>00
exists, and if 0<<A<<R, then
lim ¢,/a,= 2, p, A~
n—w k=1
The example p,=n"5/4, an:e"V7, n=1, 2,... shows that the condition

0<A<R in the above theorem is essential. We have in this case

R=1=%"1=lima,,,/a, and c,/a,— @)

A result of this type is usually called a direct theorem. The major portion
of this paper is concerned with the converse problem which can be stated as
follows. Suppose that
(1.3) lim¢,/a,=C (0<C< o).

n—owo
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Is it true then that the sequence (a,.,/a,) is convergent? First results of this
type were given by N. G. de Bruijn and P. Erdds in the early 1950°s ([1],
[2], [3]), but instead of considering a sequence (a,) satisfying the asymptotic
relation (1.3) they have assumed that

(1.4) a,=1, a,= 3 pra, 4, n=1,2,...
k=1
where (p,) is a sequence of positive numbers. Independently, in 1962, A. M.
Garsia [S5] investigated essentially the same problem.
We shall study here necessary and sufficient conditions in order that the
asymptotic relation (1.3) imply the existence of lima,,,/a,. In Theorems 1—4

n—o0

we shall make the following assumptions:
(1) (p,) is a sequence of nonnegative numbers with p,>0 and RE(0, o)
is the radius of convergence of series > p,x*;
k=1
(2) (a,) is a sequence of positive numbers satisfying the relation

(1.5) (Ctela,= > pra, i n=0,1,2,...
k=0
where 0<<C<< o0 and g,— 0(n— ).
Our first result in this direction can be then stated as follows:

Theorem 1. If (1) and (2) hold, then the necessary and sufficient con-
dition for the convergence of the sequence (a,.,/a,) is that, for every fixed A,

n41
(1.6) 1m(2p Ni_czm k)u
Here
R, if S pR<C
k=1
1.7) 6= w
YL i 3 pR>C
k=1

where Y& (0, R) is such that > p,y*=C.
k=1

This result was proved by N. G. de Bruijn and P. Erdds in [2] the
special case when (a,) satisfies (1.4) instead of (1.5).

In some cases it can be shown that (1.6) can be replaced by a simpler
condition.

Theorem 2. If (1) and (2) hold and if > p, R*>C, then the necessary
k=1
and sufficient condition for the convergence of (a,,,/a,) is that

(1.8) lim sup 2 P —=k 0 (A—> o).

n—»ow k=A a,
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A special case of this theorem when (a,) satisfies (1.4) instead of (1.5)
was proved earlier by A M. Garsia, S. Orey and E. Rodemich [4].

The condition (1.8) is satisfied, in particular, if

limsupp,,,/p.<o.

H—»w

Using this fact we shall obtain the following extension of another result
of A. M. Garsia, S. Orey and E. Rodemich [4]:

Theorem 3. If (1) and (2) hold and if (p,) is a Sequence of positive

numbers such that 'S p, R*>C and
£=1

1.9 limsupp,.,/p, <o,

n— oo

then
lima,,,/a,=o.

H—>0c

Finally, if one knows that 3 p, Rk, it is possible to replace (1.8) by
K—1
a still simpler necessary and sufficient condition:

Theorem 4. If (1) and (2) hold and if ipk R<>C, then the sequence
k=1
(a,.1/a,) converges if and only if

(1.10) lim sup {/a,>R"".

A continuous analog of this theorem for convolution products of measur-
able functions was proved recently by D. Drasin ([6], Th. 6).

2. In the following sections we shall give the proofs of Theorems 1 —4.
The method used here for the proofs of Theorems 1—3 is essentially an exten-
sion of the method which de Bruijn and Erdds have used in [2].

This paper is based on a portion of my Ph.D. dissertation written at
The Ohio State University. I would like to take this opportunity to thank
Professor Ranko Bojanic for his generous help during the preparation of my
dissertation.

3.1. The necessity part of the proof of Theorems 1, 2 and 4 is based
on the following Lemma.

Lemma 1. If (1) and (2) hold and if lim a,, | /a, exists, then

"R—00

lima,,,/a,=o

where o is the number defined in (1.7).
Proof of Lemma 1. Suppose that

3.1.1) lim a,,,/a,=a.

n—r o0
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We shall prove that a =0, where o is defined by (1.7). By (1.5) we have

(C+ 8n) an > aopn
and so
(3.1.2) limsup {/a,> R~ =lim sup {/ p,.

If (3.1.1) holds, it follows from (3.1.2) that we always have a> R1.
Suppose first that ZPK R¥<C. We have to show that a=R"1 If we

had «>R"!, we would have

n
> Py

C=lim ~’i=—‘-;;= D pe k<D pR
k=1 k=1

which is impossible. Hence, we have
a=R1=0.
Next, suppose that 5 p, R“>C. From (1.5), we have
k=1

4 "
C+ En> z pk ~

k=1 a,

for any n>A4 and it follows immediately that
A
C> 3 pea ™
K=1
Since A can be chosen arbitrarily large it follows that
C> 3 pa™
k=1

If «=R7!, then C> ¥ p,R* which is impossible. Hence we must have «>R™" and
K21

C=lim Zpk

n-so k=1 a,

-]

Zpka k.

Hence, by (1.7), we have a ™ !=y=06"1, or a=0. This completes the proof of
Lemma 1.

3.2, Proof of Theorem 1. We shall first prove the necessity part of

Theorem 1. Let
n4-1

(3.2.1) %w—zpiiLmzmak
By (1.5), we have o "

o, () =C (et -
a

n

A1
an—-k an—k+] an+1
)= e (S o) e
7 k=t a, q

Qy_x n
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Now if (1) and (2) hold and the sequence (a,.,/a,) is convergent, we have,
by Lemma 1,
lima,,, /a,=0c

and the necessity of condition (1.6) follows.

In the proof of the sufficiency part of Theorem 1 we shall always assume
that conditions (1) and (2), and (1.6) hold.

The first step in the proof consists in showing that

(3.2.2) 0 <A =lim inf ’a“ < lim sup =A< 0.

n—oo n n— oo n
These inequalities can be proved easily by the arguments used in the
proof of Theorem 7 in [3].
For the remaining part of the proof we need the following lemma:

Lemma 2. If s<A<ooand if (n) is a sequence such that

an
(3.2.3) lim =21 Z A,

i—> e a"i

then for each fixed positive integer j such that p,>0, we have

Ay i1
(3.2.49) lim —1 T A,

i—>oo a"i—j
and for any positive integer A, we have

a
(3.2.5) lim sup 2 Pi 'Z"‘ —0.

Likewise, if 0<<\<Cc and if (m,)) is a sequence such that

am,+l

(3.2.6) lim

i Gy,

TS,
then for each fixed positive integer j such that p;>>0, we have

it 1—j
(3.2.7) lim —21 g,

i— 00 ami__j

Proof of Lemma 2. By (1.5) and (3.2.1), we have

(3.2.8) Ba(d) =1 (C 6,0 ) — (A +9) (C e +
a

n

A—1 . n
T ZPK ((A‘I‘s)an——k an+l-k)+(A__c+‘€) Z pk an—k

k=1 a, k=A a,

Let (n) be a sequence such that (3.2.3) holds. Since

(3.2.9) Gkt ~Aye for k>N.,
A
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we see that
(A+e)a, ,—a,., >0 for n>N,+4 and 1<k<A.

From this inequality and (3.2.8) follows that

lcpn,(A)|> = (Ceg ) —(A4e) (CHe,) + (A~ c+s)2pk Tk

7§

Let i— oo. Since A>c we have, by (1.6) and (3.2.3)

lim sup Z pk <sC/(A o),

i k= ”

and (3.2.5) follows, since ¢ can be chosen arbitrarily small.

Next, supposse that p,>0 and that 1<j<A4-1. Since o<A
(A+¢e)a,_p—a,,.,_>0, we have, again by (3.2.8)

a, A+e)a, @piroj
<p,,,.(A>>(‘;“—(A+e>)c+p,(( Yot 2)

1 1)

a, a, ; a, .. ;
>(—l—+—l—(A_—|—s))C+pj ’”J(A-—- ni+1 1)‘
ani an[ nj—~j

a, .

From this inequality and (3.2.9) follows that

a,. .1 a,.
e A o (<A+g...

aﬂ;-—f p; a",' —j

"'*‘)C+<p,,i(A>>-

Since aﬂi;’a,,j,__}&(j\-{-e)f, by (3.2.9) and lim @, (4) =0, it follows that

>0

a .
. ni+1—j A

i—sow a”i_l

and

for each j such that p;>0. This proves (3.2.4). The proof of the remaining

statements is similar.

To prove the sufficiency of condition (1.6) it is clearly sufficient to
show that A<o and os<X By (3.2.2) there exists a sequence {r;) such that
(3.2.3) holds with 0<<A << . Suppose that A>¢. Then, by Lemma 2, we have

also for all k¥ such that p, >0

Ak
L ATk (i—>o0).
Using (1.5) we find that

-1 g n;
lll—
C— ZPk
k=1 a,,

i a, .
<2Pk Z +|€ni['

k=4 n;

Hence

-l q
lC ZpkA "'<11msup Zpk mk

i~»00 a,,i
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Since 4 can be chosen arbitrarily large, it follows, by (3.2.5), that
C=3p A7~
k=1

We can now easily show that our hypothesis A> o leads to a contradiction.

Suppose that first C> > p,R*. By (1.7) we have then ¢=R.. Since
k=1
A>oc=R"1 we have

C=3>Sp A <SS pR<C
k=1 k=1

which is impossible. Hence A<o.

Next, suppose that C< > p, R¥. By (1.7) we have o =y7%, where > p,v*=C.
k=1 k=1
Since A>e=+y"1, we have

C=>pA* <3 pY=C
k=1 k=1
which is again impossible. Hence A <o.

To complete the proof of the theorem we have to show that o<A.
Suppose that o>>A, We have, by (1.5) and (3.2.1),

(an+1—-k—0\—s) an—k)+

a,

vy Auey A7)
C ———'—(7\'—'8) =g, — &y + Zpk
q, a, k=1

n

n a
+ @A) +(6—n+e) 3 p,—"=E.
k=4 a,
Let (m) be a sequence so that (3.2.6) holds and let 4 be such that p,>0.
If €0 and k>N, then a,,,—(A—¢c)a,>0. Hence, for m;>A+ N,, we have

" a,
+ @ () + (o= +e) D p—"
k=A a

i i my

ami+1

am,'+1
C(_a— - ()\-—-8)) > Smi— Emi+1

Let i—>o0. Since o>2A, we have, by Lemma 2,
eC>{(c—~N)p,a4,

a contradiction, since £ can be chosen arbitrarily small. Thus we must have
6 <A, and Theorem 1 is proved.

3.3. Proof of Theorem 2. We shall first prove the necessity of condition
(1.8). If lima,,,/a, exists, then by Lemma 1, it is equal to ¢ where ¢ is

defined by (1.7). We shall first consider the case > p,RF=C. Then o=R"!.
k=1
By (1.5), we have

Qi | <, @y
n + Z pk n .
a, fo== A a,

A-1
C+ g, = Z Dy
k=1
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Since
lim 2=k _Re, k=1, 2,...
n—»o an
it follows that
a, A—1
lim sup Z P —*_c- Z i R-.
n—e k= a,

Hence, we have

lim (hmsup S pe ln ")—O.
A— o

n—>ow k=A a,

Next, suppose that > p,R*>C. Then by Lemma 1, we have o=y ! and
k=1

i PY¢=C. Hence

k=t n a C A-1
P — +E€,— > Dk
kgA k a, ;z; a,
Since
lim —2=% — g7k = vk, k=1, 2,
Np 00 an
we find that
A-1
lim sup 2 Pk =C- Z PkYk-
n—sw k=4 a

Let A—>o0, and (1.8) follows.
The proof of the sufficiency of condition (1.8) is based on the following
lemmas:

Lemma 3. If the condition (1.8) holds, we have

0 <A =lim inf 2221 <11msup =A< oo,

—> 00 n—» 00
n a, a,,

Proof of Lemma 3. By (1.8), for any 0<s<%C, we can choose first 4,

and N.> A, such that for >N, we have

1
S etk < (C+e).
k=4g G, 2
If n>A.+ N, we have

Ag—-1 nt1

(C+En+l)_{1_+i_ Z Di n+l—k Z p Qyr1—k <
4, , k=Ae Gpiy

<%(C+g)i*_1+ zapkw

n k=1 n

or
A

1 a e qg
C—c¢ +e,.,) n+l Zrtlok
(2 ( ) 1) e > Pk a

7 k=1 7
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Since
lim sup 22=1 < Cip,
H—>o an
we have
lim sup =% < (C/p,)%,
n—o an
and so

1 Ae
3(C—s) A< S p (Clp)i< .

k=1

Lemma 4. Suppose that condition (1.8) holds. If the sequence (n) is
such that

. an'+l
(3.3.1) lim 2 — A< oo,

i—>o a”i

then, for fixed j such that p;>0,

a,.
(3.3.2) lim —*1 Z A,

i—>c0 a"i“j

Likewise, if

. am-+1
(3.3.3) lim == =3>0
then ’

. am~+1—j
(3.3.4) lim 1y,

isw @y
for each fixed j such that p;>0.
Proof of Lemma 4. If ¢>0 and k>N, we have
(3.3.5) a, la,<A+e.
Using (1.5), for n,>A+ N,, we find that

A-1
C((A + i-:) an,-_ an,-+1) = z pk((A+ 6) ani.—k—ani+1—k) +
k=1

+ (A + E:) ani(Wni (A) - aJ'!,-) - ani+1 (Wn,-+l (A) - snr)- l)
where

(3.3.6) Wod)= S p, 2ok,
k=4

n

By (3.3.5), we have, for j<A4 such that p;>0,
A+e)a, —a,,, >0 for m>A+N, and 1<k<d4-L
Hence

a, a,._ a, ._;\ 4,
C(A+s— ‘;“)wj - ’<A+S_L“)a L Wy (D) =gy )— A t)e,

ny n; ni—j "y

—_ an,-+1—j an5+:
>pi(A+e)7 (A ——~) - Wi (A) =5, )—(A+e)e,,.

ni—J ny
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Hence

—e<A—

a1y (A+e) a, a,
itl 1<( ) (C(A—i—s— ,+1)+ ,+1(
ani—i D; Qp,

From (3.3.1) it follows that

Wn,-+ 1(A)_8ni+1) + (A + E) s"i).

nj

- . an-+1—' . Ayiv1-j
—s<11m1nf(A——’—’ <limsup{ A — 27 ) <
a,_;
i=J

i—>co i—>o0 n;—j
(A+ g)/

EC+A hm supW, ., (4))
p; e

a, . . _;
and so lim —1 A
i— o0 a,,,._j
since € can be chosen arbitrarily small and 4 can be chosen arbitrarily large.
This proves (3.3.2). The proof of (3.3.4) can be obtained by the same argument.
Now we can prove the sufficiency of condition (1.8). Let (n) be a
sequence so that (3.3.1) holds. From (1.5) it follows that for n,>A4

) A—1 n;

Z

n,——k

Cc— Zpk

From Lemma 4, we find that

Ay

‘C ZpkA‘ <11msup Zpk

i—>o00
i

Finally, using condition (1.8), we fmd that

C= ipkA"‘.
k=1
Similarly, by (3.3.4), we have

C= i P Ak
k=1

Since > p.R<>C, we have A=E71=A, where £ is the unique number
K=1

in (0, R] such that ¥ p,&¥=C. Hence Theorem 2 is proved.
k=1
4. Proof of Theorem 3. As usual, we shall prove first that A is finite.
By (1.9) we can find M such that
Pes1/Pr <M, k=1,2,...
By (1.5), we have

(C+e Lop o+ 5Pt p Sk cp L M(Crey).

a, k=1 Dy a,

Hence,

A=limsup Z*L ne1 C+M<°°

n-—>o
an
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The following lemma is analog of Lemma 2.

Lemma 5. If s<<A<o and if (n) is a sequence such that

a,.
@.1) lim LA,

i—y00 a"i

then for each fixed positive integer j such that p,>0, we have

Qi
(4.2) lim —‘;“ T_A
i 00 ni—j
and
. 3 Ak
4.3) limsup 2 p,— ~—0 (4> ).

i—o k=A n;

Proof of lemma 5. If >0 and k>N, then
A+8)a—a,, >0 and (c+e)p,—pr.>0.

Using (1.5) again, if n>>A-+ N, we have
A-1
A+ (Ce)a,—(Cte )y, = > P ((A+e)a, —a,,, )+

k=1
n

+A-0) S Pyt D ((O+8)Pr—Pi1) Gnic—Pa%-ns1-
k=4 k=A

The first 3 terms of the right hand side of this equation are nonnegative.

Hence, we have

(44) C((A'*‘&:)an_anﬂ)'l'(‘A‘{_'E)":nan_en-rlan+l>

n A—1
> (A_G) Z Pry_ it z pk((A+e)an—k—an+l—k) —pAan+l—A‘
k=4 k=1

Let K<A<2K. Then
n K—-1
Pabnii 4> A~0) 5 Py o+ 3 P(A+€)a,_—ay 1)~
k=K k=1

”C((A+€) an'"an+1)_(A+€) snan'*"snﬂarwl‘
Hence,

n

K—1
(4.5 min p.a,. 4>N=0) 5 pa,  + > p((A+e)a, 1 —a,., ) —
K- A<2XK k=2K k=1

—C((A+€)an_an+1)—(A+s) Enan+€n+lan+l‘

But, if n>2K+ N,, we have
2K

4.6) M Pylyyy 4 <— > Dplp,i <
K<A<2K k=K-+1
1 %=1 p
k+1
< z PrOn_i <
K "k pg
oc+e 2K c

e Cte)a,

<-— D@, i <
K ,ZK S



102 You-Hwa Lee

Combining (4.5) and (4.6), we find that (4.4) becomes

o+e
K

4D (C+e)a,+C{{A+e)a,—a,, )+ (A+e)ea,~5,, ,a,,, >

K1 n
> > n((A+9a, —a,,, )+ (A-0) 5 pa, ;.
k=1 k=2K

Dividing both sides of (4.7) by a,, if j<<K, we have first
G+¢e a

(C+e)+ C(A+ s—i‘—)+(1\+e)6,,—s,,“"—“>
K a, a,

(4.8)

>p(A+e)7 (A — aLt‘:L) )
a,._y

Let (n;) be a sequence that (4.1) holds. Replacing n by n; in (4.8), we find that

a,.._; (A+e)/iote a,,
—‘B‘:A"‘ i+ 1 J<( ) ( K (C+8”i)+C(A+E— x+l)+

an‘-—j p_, ny

Ay 1

i

+(A+€)5ni_5’n,~i«1 P )
u;

and (4.2) follows by first letting i— oo, then K— oo and finally ¢ —0.
On the other hand by (4.7), we have

o)

*; (C+e)a,+C((A+)a,—a,, )+ (A+e)e,a,—2,, 0y, >

>(A-0) > Prn_i-
k=2K
If (n,) is as in (4.1), we have

(HTEH)C}(A—G) limsup > p,

i—so0  k=2K a,,

n; ~k

As £—0, (4.3) follows.
To complete the proof of Theorem 3 we shall first show that A<o.
Suppose o<<A. Let (n) be a sequence so that (4.1) holds. By (1.5) we have
4 an,'—»k
C+e)> 2 p—=t
k=1 ay,
for any positive integer 4. Using (4.2) and first letting i— oo, then 4> o0,
we find that

C> 3 p A7k
k=1
On the other hand from

Qu < @y k
Chey= 2 Po——t 2 p—

— = a
k=1 a"l k=A n;
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and the asymptotic relations (4.2) and (4.3) we find that

C< Z pkA_k.
k=1
Hence
C= E pkA—k.

K—1
Now we shall show that the hypothesis A>¢ leads to a contradiction.
Suppose first that C= > p,R*. We have then, by (1.7), o=R~'. Hence
k=1

C=3SpA* <3 po*=C
k=1 £=1

which is impossible. Next suppose that C< % P, R¥. Then by (1.7) o=y~ 'and
k=1

> peY*=C. Hence
Fows1

C= Z pkA._k< Zpkc—k=c,
k=1 k=1

which is again impos.ible. Hence A <o.
Now it remains only to show that

lim (lim sup 5 py On—k ) =0.

A—>o neroo  p 4 -
Then from Theorem 2 it will follow that lim a,,,/a, exists.
If e>0, and if n>k>N,, then
ayla, > (c+e) "k,

Let n> A4+ N, we have, by (1.5),

n a, i A-1
Sp——<Cteg— 3 Pi(o+e) k.
k=A a, k=1
Hence
. n a A1
limsup 3 P <C- S (o +e)k
n—o ;4 a; k=1
If £->0, we find that
n A—1
(4.9) limsup S p L=k <C~"S pyo*.
nA>® fo g an k=1

But, if C< Zka", and o is defined by (1.7), it is easy to see that
k=1

C:: ipko—k-
k=1

Hence condition (1.8) follows immediately from inequality (4.9).
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5. Proof of Theorem 4. (Necessity) If lim a,,,/a, exists, by Lemma 1 it

is equal to o, where o is defined by (1.7). Since > P RF>C, we have o=y"!,
k=1

where > p,y*=C. Hence
k=1

lim{a,=6c=y"1>R"1.

n—>oo

If we had o=R"1, it would follow that
C=3py = szc*k = > p R >C
K=1 K=1 K=t

which is impossible. Hence o> R~! and condition (1.10) is necessary.
In order to prove the sufficiency of condition (1.10) we define a
sequence (4(p)) by the following relation

n
4,()= 3 ¢*a, n=1,2,...
k=1

-

Let 8 be the radius of convergence of the series S a,x*. Then, by (1.10),
k=1
0<3<R and we have, for every p>8,

A,(p)—> 0 (n—>o0).
Using this result, it is easy to see that the following lemma is true.
Lemma 6 For every pc(3, R) we have
.1 (CH+n,(N 4,0 = 3 pre* 4, _x(p)

k=1
where 1,(p) >0 (n—> o).

To prove that the limit of the sequence (a,,,/a,) exists, we shall prove
first that there exists ¢,&(0, 1), for some r&(8, R), such that

r‘a
5.2 hm "
¢ ne A,(r)

a, _, rta,  A(r) A, ‘

T

We have then

an+1 An(r) An+1(r) rn+lan+1
4,0 | _ria,,

Apr () Ay ()

Since

We have, by (5.2),

lim — =rc,{1 —c,)izr(l -c,)
¢

n—yc0 a"+1 -

Thus, it remains only to prove that (5.2) holds. We have, for every p¢ (3, R),

0<ap=liminf~£—9-”~<limsup P % =B, < 1.

now A,(p) oo Ay(p)




Asymptotic properties of convolution products of sequences 105

To establish (5.2) we shall need two lemmas.
Lemma 7. There exists rc (8, R) such that
(5.3) 0<B, <L

Proof of Lemma 7. We first prove that B, <1 for every r&(3, R). Suppose
that 8,=1 for some r&(3, R). Then there exists a sequence (m;) such that

mj

lim — 24 —1,
i—>w Am;(r)
or
llm Ami—l(r)“
i—>00 Ami(r) o
Hence, given >0 there exists I, such that
A1 ()
5.4 —t fi > 1.
(5.4) 4, () <e for all i>I,
Since the sequence (4,(r)) is monotone increasing, we have, by (5.1),
Am-—] (r) i
i k
C+7]mi(r)< Ami(r) k?-—.—:lpkr'

and it follows from (5.4) that C<e 5 p,r*.
k=1
Since r<<R and ¢ can be chosen arbitrarily small, we get C<0, a contradiction.

Next, we prove that ,>0 for some r& (8, R). Suppose that this were not
true. Then for any r&(3, R), we would have B, =0. This would imply that

r'a
lim “.=0 for every r=(, R).
o) y (, B)
Choose £¢=(0, 1) and a number N, which depends on both ¢ and r, so that
(5.5) "% ¢ for all n>N.
A (r)
This means that
(5.6) é’f—”lﬂ>l-g for all n>N.
A,(r)

Using (5.1) and (5.6), we find that
n—N n—N
(CH+ny (1) 4u(r)> 3 ppr* 4, 1 (r)> 4,(r) 5 p,r*(1 —¢)-.
k=1 k=1
Let n->00. We then have
C> 3 plr (1)
k=1

Hence we must have

C> > pr* for every rc(3, R)
k=1
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and it would follow that

C> i P RE.
k=1

But this is impossible in view of the condition
C<3 p R
k=1

This completes the proof of Lemma 7.

From now on we shall fix the number r¢ (3, R) which is determined
by Lemma 7. The result of Lemma 7 enables us to prove the following Lemma:

Lemma 8. If (m) is a sequence of natural numbers so that
r'ia,
(5.7) lim oy =P
then, for each j such that p;>0, we have
_ rMia,
8 A
Likewise, if (n)) is a sequence of natural numbers so that

re a,,

5.9 1i =0,
2 L)

then, for each j such that p,>0, we have

(5.10) li ra,
. im-——=
v Ay (1)
Proof of Lemma 8. We shall prove (5.8) only, the proof of (5.10) can
be established by the same argument.

Choose €>0 such that 1B, —e>0. Next, choose N, such that k>N,
we have

o,.

k
5.11 "% g te,
( ) A (r) °
or
Ap_,(r)
5.12 A (D g .
(5.12) Ak(r)> B¢

Let 4 be a positive integer and let m;>A+ N.. Multiplying (5.1) by
8,+¢ and (1.5) by r™ and subtracting, we obtain

(5 1 3) C((Br + 8) Ami(r) —r ami) + (5:‘ + S) ﬁmi(”) Ami(r) - smirmiamf =

A-1
5
k=1 k

m

]pkrk((s,m) (D)= 1",

i
=4
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Let

A) = k c e k(r) rn_kan-k N
$n(A) = zpr<(ﬁ+)A() A,,(r))

Since r"*a, <A, ,(r) and (4,(r)) is an increasing sequence, we have
[baD|< 3 ppr B, +e+1)<2 3 pirk
k=4 k=4
Since r& (3, R), we have

(5.14) limsup| §,(4)| >0 (4> o),
Dividing (5.13) by 4,,(r) and using (5.12), for j<A4 with p;>0, we have
619 clera-g ())+(@,+ &) (1) - m(’;.T—-xbm,(A»

>p,r ;’"E()) (@ +9- 'm:?;;’)>

>p,P(1~B, - ) (@—g—;%fl)

In order to simplify the notation we shall denote the left hand side of (5.15)
by T, (A). By (5.14) and (5.7), we have

lim sup T, (A)-—>sC (4 -> ).
Hence, by (5.15), we have
PG, T(A)

mEsbm gy “pri-B—

By letting A->o and £—0 we find that

im0

Using this result, we can prove that B,=«,. By Lemma 8 there is a
sequence (m;) such that (5.7) holds. Consequently, we have, for all j such
that p;>0,

m1--1—j( )

(5.16) lim

i—»o0 m,—; (I')

By (5.1), for m;> A4, we have

A1 m; Am._ r)
(C+nmi(r)):[k§l+kgA]Pkrk MA‘ z,() .

By (5.16), since (4,(r)) is an increasing sequence, we find that

—B,-

A-1 )
C< 3 per* (1=B)+ 3 per.
k=1 k=4
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Since A can be chosen arbitrarily large and since r& (3, R), we have
(5.17) C< S pert(1 -8
k=1
On the other hand using (5.1), we have

A AL )
C+n,(r)> S pprk 2n=t)
25 a0

Replacing n by m; and using (5.16), we find that

A
C> S per (1B,
k=1
Hence, as 4 — oo, we have

(5.18) C> S pr*(1-B)
K=1
The equality

(5.19) C= ipkr"(l—ﬁ),"
k=1

follows by combining (5.17) and (5.18).
Similarly, we have

(5.20) C=S pr(1—a,)-
k=1

From (5.19) and (5.20) follows that B, =«, and the theorem is proved.
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