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In this paper we shall prove existence theorems for the system x = H (x, y)
y=K(x,y) where H:UxV—U, K:UxV—V, U is a closed subset of locally
convex space E and V is a closed convex subset of locally convex space F.

1. Introduction. In the introduction we have included a summary of the
basic definitions and theorems to be used in the sequel [5].

Let A be an arbitrary set, E be a locally convex space, M be a subset
of E and T be a mapping of Ax M into E. The generalised sequence {7,} is
defined in the following way:

T,=co T(A x M)

Ty=co T(Ax(MNT,_,)) a—1 exists
T.,=MNTg o —1 does not exist
B<a

where « are ordinal numbers and co is the closed convex hull.

Lemma a) Every set T, is closed and convex

b) T(Ax(MAT)) C Ty,

c) If n<<a then T, C T,

d) TAXMNTy) C T,

e) There exists the ordinal number 8 such that T,=Ts for every >3

Definition 1 Ts=T>(AxM) is the limit domain of values of the
mapping T on the set A x M. The mapping T is a limiting compact mapping if

the set T(Ax(MNT=* (A xM))) is compact

Definition 2 Let M be a subset of 2F and Q & M implies co Q = M.
Further, let (A, <) be a partially ordered set. The measure of noncompacitness

is a function {:M — A such that §(co Q)=1{ (Q).
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Definition 3. The mapping T is Y-densifying if the implication
{VIT (A x Q)= (0)} = {Q is compact} holds.

Theorem A. Suppose M is a closed subset of E, A is a compact topolo-
gical space, T is a continuous Y-densifying mapping and the measure { is mono-
tone ie. Q, C Q, implies that $ (Q) < (Q,). Then T is a limiting compact mapping
on AxM.

Examples of the measure of noncompactness.
1. Kuratowski’s weasure of noncompactness.

Suppose E is a uniform space, P is a family of uniform continuous pseu-
dometrics on E < E, M the family of all sets in E which are bounded in respect
to all p = P, A a partially ordered set of functions a:P — [0, o) where < is
defined as follows a,<a, < % (p < P)[a (p) <a,(p)]. Kuratowski’s measure of
noncompactness is the function [d(Q)](p) = inf {¢>0, there exists a finite number

of sets S,,S,,...., S, such that Q=U S; and d'(S)(p)<e i=1, 2,...,n}
i=1

i=

(d' is diameter of a set).

2. Hausdor(f’s measure of noncompactness.

Ne: M — A is the function [ng (Q)] (p)=inf{e>0, Q has in R a finit e-net in
respect to the preudometric p}, where R is a subset n E.

Suppose S is a closed, convex set, U is an open set, UNS# &, Ug=
—UNS,Ug and Uy are the closure and boundary of Ug in the induced topo-
logy. Further, suppose that T is a completely continuous mapping of Ug into §
and Tx+x for every x—Ug. Under these conditions one can define the function
v,(I—~T, Ug) which plays an important role in the fixed point theory.

Let T be a limiting compact mapping, S=T> (Uz) and R be a closed,
convex subset of E. Then there exists v, (I~T,Ug) and y(I—T, Uy) is by defi-
nition v, (I~ T, Ug). The function has two important properties:

1. fI-T,~I-T, on Uy in respect to R then y (I~ Ty, Ug)=y (I~ T, Uy)
where ~ is the relation of homotopy

2. If v(I-T, Ug)70, then there exists at least one element x & Uy such
that Tx=x

2. Fixed point theorems.

The following theorem is a generalization of theorem 1 in [2].

Theorem | Let E be a locally convex space sequentially complete p,,
i & J be a saturated family of seminorms defining the topology of E, [ be a
mapping of F into J, M be a closed subset in E and T be a mapping of M into
M satisfying the following conditions:

1. For every i & F there exists q(i)>0 such that for every x,y € M:
p; (Tx=Ty)<q @O priy (Xx—¥)
2. There exists x, < M such that for every i & F the series

-]

n—2
> (11_[ qlf* (i)]> -1y (Txy — Xg) = S (i) is convergent, ¢[f~1 ()] =1, ¢[f* ()] =

n=1 B

0
=q (), fr Q=711 @)
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Then there exists one and only one solution of the equation x=Tx which
satisfies the condition:

n—2
lim (H qlf* (i)]) pra—igy (x—x)=0 for every i/ and the inequality

n— o \k=0
S-S, @
1) Prin (x—xp) = oo =4O
19U/ @]
r=0
for every i © F and k=0, 1, . ... where S, (i) is the partial sum of the series S (i).

Proof: We shall construct the sequence {x,} C M in such a way that
x,=Tx n=1,2,.... . Then we have:

pi (xz - xl) < q (i)pf(i) (_Xl - XO)
p; (x5 —x,) <q (D) q[f (D] pray (X, — Xo)

n—1
Py (r— X = (n qis (i)])pfn+1<,-> (x, —x0)-
r=0
From this it follows that:

n

> b (d,)y<p;(Txy—x) +q () prn (TXg—Xg) v v v oo mememe s k-

r=1

n—2
+ (1—1 qlLfr (’)]) Pra—iy (Txg — Xg)
r==0

o0 n—2
where d,=x,—x,_,. Since the series > (n qlfr (i')]) P ot (Tx,-x,) 1s con-
r=0 Q)

n=1

n
vergent and x,=x,+ > d,, we conclude that there exists x=lim T"x,.

r=1 n-—>

Further, we shall prove that:

n—2
lim (H qif* (i)]) Pra—1(y (¥ —Xp) = 0.

n—>o \k=0

For every k, n& N we have:
Drk(iy (x”~x0) <pfk(i) ('xn_xn—l) +pfk(i) (xn—l - xnfz) oot

£ iy (6, = %) = (rf AL PO P Ty
gL ()] oty (T %0) + s (TX, = X0 = n: gLfTh 0] ¢
X Pkt gy (T = Xg) 4+ + v v e e TP (;xo —x).
Since 5 @)~ 50) = (T 9177 01) 2y (75— )+
¥ ([10 L O) Py (T =5 =k[_j0q[f' (i) %

5%



68 0. Hadzi¢
< [prk oy (Txo — Xo) + qLf* D] prri1oy (TXg = Xo) + - -+ - - 1=
k—1
- (n aLs (i)]) 4,()
r=0

we have pk, (x,— x;) < A, ({). When n—>co from this we obtain:

Prk g (X —X) <;§_(_f)_:_§gcﬂ
[TaLr @l
r=0

n—

n—1
and if k — o it follows lim (1_[ q[f’(i)]) Py (X —x,) =0.
r=0

Finally, we shall prove the uniqueness of the solution in M which also
satisfies condition (1). Let on the contrary, x and y be two solutions of the
equation Tx=x then:

p;(x =) =p;(Tx=TY)<q (@) priy(x—») <

( [ L @) sty (e =)=
r=0 /

- (n ! [f’(i)]) [Pty (6 = Xo) sty (¥ = Xo)]
r=0
and if n—> o0 we obtain p,(x—y)=0 for every i & J. Consequently x =y.

Corollary 1 [2]. We suppose:
. For every i & J there exists q(i)>0 such that:
Py (Tx = Ty) <q (i) pyipy (x —y) for every x, yC M

2. For every i< J there exists n(i) & N such that for every n>n(i)

glf"Ml<q(@)<1

3. There exists x, = M such that pm, (x,— Txe) <m(i)<co for every i & J
and n>0.

Then there exists one and only one solution of the equation x=Tx which also
satisfies the condition:

4. pra (X — X)) <p (i, x)<< 0. n=0.

Proof: Since

=]

n—1 © n—1
S (1‘[ als (i)])Pf"(i) (Tx,~x)< > (n q[f"(i)])m(i)
k=0 k=0

n=0 n=0
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we shall apply D’Alambert’s criterion on the series ian (i) where a,(i)=

n=0
=ﬁ g[f*(i)]. Then we obtain:
k=0
R0
) = ~4Lf" (=g <1
" T aLr* N
k=0

and the proof is complete.

Theorem 2. Let G be a closed and convex subset of the topological,
Hausdorff locally convex, complete space E and S, T two mappings of G into E
satisfying the following conditions:

1. For every x,y & G, Tx+Sy & G

2. a) For every i & F there exists q(i)=0 such that p,(Tx—Ty)<
<q()psy (x—y) for every x,y € G

b) For every i C F and n & N there exist a,(i)>0 and g (i) & F such
that for every x & E, n> N the inequality psm, (x)<a, (i) p, (x) holds

c) The series:
% n—2
S (1—[ gLr* <i>]) a, , (i)
n=1\k=0
Is convergent

3. The mapping S is continuous and SF is relatively comipact set.
Then there exists at least one point x, & G such that Sx,+ Tx,= Xx,.

Proof: Let us consider the mapping y — Ty + Sx where x is a fixed
element of G. Since the mapping T satisfies the condition 2. the mapping
y — Ty + Sx satisfies all the conditions of the theorem 1. and so there exists
Rx & G such that Rx—=TRx+ Sx. The uniqueness of the fixed point of the
mapping y — Ty + Sx follows by conditions 2. b) and 2. c). Using the inequality:

-] n—

2
23 (R — Rxg) < pyy (Sx — Sx,) z( g [f"(i)]) a, (i)
k=1

n=1 =

we can prove that the mapping R is continuous and the set RG is compact.
From this fact and Tihonov’s fixed point theorem we conclude [2] -that there
exists z < G such that Rz=z ie. z=Tz+ Sz

Theorem 3. Let E be a locally convex space sequential complete, M
be a subset closed in E, A be a topological space and ® be a mapping of M x A
into M. Further, suppose that @ :h\— @ (x, \) is continuous in A & A for each
x E M and that ©,:x — O (x, A) satisfies the following conditions

1. For every i & F and N & A there exist f;:J — J and q, (i) > 0 such that:
i (@ x — @y y) <3 () Pp, o (x—y) for every x,y & M
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2. Forevery i © Fand n C N there exist a,(i)>0, Q,())>0 and g(i) C F
such that:

a) pray oy (X) <@, () Py (x) for every ) & A and xEM
b) gLf™ (D] = 0, (i) for every %€ A

¢) The series:
% n—2
> (l_l Qs (i)) a,_, (i) is convergent.
n=1 \k=0

Then the solution x (\) of the equation x (\)=®[x (M), 2] is continuous in h & A.

Proof: Condition a) implies that there exists a unique element x (A) & M
such that x (A\) =@ [x (A), \], A € A and x (A) can be obtained as the limit of the se-
quence {x,,} X,2=®P[X,_;, 2 A]. Furthermore, due to the condition ¢) of the
theorem, it does not matter which is the first element x, , & M. If we apply theo-
rem | taking for T the mapping @, we obtain from (1), when k=0, the inequality:

i (x = Xg) =p; (x (1) — X (1)) <Py (P [x (Ro)] — Py [x (R)]

o /n—2
X ; (]—[ gl /% (i)]) a,_, (1) <Py (D5 [x (A)] — Do, [x (R)]) %

k=0

=]

<3 (1 0c @) a0

The mapping A — @ (x, 1) is continuous so there exists a neighbourhood
V(%) C A such that:

o n-2 —1
Do (@ [x (Og)s } =@ [x (h), A < e{ S (1‘[ 0, (i)) Gy, (z‘)]
n=1 \k=0
and therefore p,(x (%) — x () <e for every A & V().
x::£{(x9}0
y=K(x,)

Theorem 4 Suppose E is a locally convex space sequentially complete,
F is a locally convex space, U is a closed subset of E, V is a convex, closed
subset of F, H is a mapping of U xV into U and K is a mapping of UxVintoV.
Further, suppose that the following conditions are satisfied:

3. Existence theorems for the system {

1. The mapping y — H(x, y) is continuous in y &V
2. For every i € 7 there exist q(i)>0 and f:F — F such that: p;(H (x;,y) —
—H(x,, ) <q () psey (X, —X,) for every x,, x, cU, y &V
3. For every i & F and n & N there exist a, (i) >0 and g (i) C J such that:
Py (%) <@, () py(x) for every x CE, nc N and the series
i (n—2 qlf* (i)]) a, (i) is convergent.
k=0

n=1
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4. One of the following conditions is satisfied:

4.1 F is a semireflexive space, V is a bounded subset of F, K is a conti-
nuous, limiting compact mapping

4.2 On the set F is defined the measure of noncompactness § and K is a

continuous, Y-densifying mapping. Also the mapping ) is monotone and has one of
the following properties

a) Y (x, €V, QCV, 0+ )Y ({x) U Q) =4¢(Q)]
b) (x, cV,0,CV,0,CV) [ (xo+ Q)= LL‘(QJ and l'I"(Q1 U Q,)=
=max {4’ (Q1)’ kIJ (Qz)}]

Then there exists at least one element z & U xV such that
z=(H (2), K(2)).

Proof: At first, we shall show that there exists a mapping R:V —>V
such that R(y)=H (R(y), y) for every y € V. If we apply Theorem 3 taking
for A the topological space V (in the induced topology), for M the subset U
and for ®(x, ») the mapping H we see that in this case ¢, (i)=¢(i) and
fi ((y=f(i). Since the mapping H satisfies the conditions 1., 2. and 3, it follows
that all the conditions of Theorem 3 are satisfied and x(A)=Ry. Let us now
assume that the condition 4.1 holds. We define the mapping T of V into V by
setting Ty =K (R (p), y). It is evident that T is a continuous mapping of V into V.
We shall prove that T is a limiting compact mapping showing that the set
T=> (V) is contained in the set K= (U x V).

Let {T4} and {T,} be generalized sequences of sets which correspond to
the mappings T and K respectively, namely:

To=co T (V)

Ta=coT (Tolv) a—1 exists

T;: N Té a—1 does not exist
B<a

T,=coK(U xV)
TazaK(UxTa_l) a—1 exists

To= N Ty a—1 does not exist

B<o

Using the transfinite induction lt can be shown that T, CT, for every a.
For «a=0 we have To=coT(V)=co{K(R(»), »)|y SV} coKUxV)=T,.
Suppose that T, C T, for every a<la,. We distinguish two cases:

1. ay— 1 exists
In this case Tk, =co T (Ta—1)=co {K(R ), ») | ¥ E Too1} C
Cco{K(R(¥), ») |y € Tuy1} C c0K(UxTyy1) =T,
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~

2. ay—1 does not exist

Then we have Th = N Tg C N Tg=Tq,
B<ao T B<ao

The set T (V) is by definition T§ where § is that ordinal number for
which T§=T, for every «>3J. Suppose K* (UxV)=Ty, & >3. It follows that
Ts=Ty C Ty ie. T2 (V) C K= (U x V). If we have 8> it follows by Lemma
that T5 C Ty C Ty so T= (V) C K= (U xV). Since T(T=¥))={K(R ), )]
yET>¥V)} C K(UxK=(UxV)) and the set K(U xK* (U x¥)) is compact,
we conclude that the set T(T= (¥)) is also compact i.e. T is a limiting compact
operator.

Further, in [5], it was shown that if the space F is semireflexive and V is
a bounded subset of T then T;# @ for every o, so T§=T°° (V) +# @ . By The-
orem 3.4.1 [5] if U=F y(I—-T,V)=y(-T, Uy)=1 and there exists at least
one element y, & V such that y,=Ty,. If we take for z element (R(y,), y,) it
follows that z=(H (z), K(2)) i.e. R(¥))=H (R(¥) yo=K(R (o) yo)-

Suppose now that the condition 4.2 is satisfied. To show that T is J-den-
sifying mapping, it is necessary to show that ¢ (7(Q)) > ¢ (Q) implies compactness
of the set Q. Since T(Q)={K(R(»),») |y < 0} C K(Ux Q) and the mapping
¢ is monoton we have {(7(Q))<{(K(U x Q)) and ¢ (K(U x V) >4 (Q). From
the fact that K is a {-densifying mapping, it follows that the set Q is compact
i.e. T is a {-densifying mapping. Then there exists a compact set K such that
T(K) C K [5). In fact this set K, K, ={T"x,,;n=0,1,...... }. This implies that
T= (V)s @ [5] and we obtain z= (R (yo) ¥Yo) Yo=Tx,. This completes the proof.

The following theorem is a generalization of Theorem 4.

Theorem 5. Suppose that the conditions 1. and 4. of Theorem 4. are
satisfied. Suppose further that for every i< F and k & N there exist g, (i)>0
and f: F— J such that:

Pi(Hy (%) — Hy (%)) < i (1) Py (%, — X,)

for every x;, x, © U, y & V and the series > q. (i) it convergent, where H,(x):
2

ix— H(x,y).
Then there exists at least one element z < U xV such that

z=(H(z), K(2)).

Proof: If we apply Theorem 2 in [3] we see that there exists the
mapping R:V —V such that Ry=H (R (»), y). As in the proof of Theorem 4
one can show that the mapping Ty=K(R(»), y) has a fixed point y, & ¥V and

z=(R(¥o) ¥o)-

Remark: If H(x,y)=Ax+ By, A is a linear mapping which satisfies
the condition:

2 pi(A¥x—A*y)<q, () priy x—)
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for every k=1,2,... and z g, (i), then we have H% (x)— 4" (x)+

k—
+ Z A"B(y) and H (x)— Hy (x,) = A% (x)) — A* (x,).

- In [2] is given an example of a mapping (in the field of Mikusinski’s
operators) which satisfies the condition (2).
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