EXISTENCE THEOREMS FOR THE SYSTEM $\begin{cases} x = H(x, y) \\ y = K(x, y) \end{cases}$ IN LOCALLY CONVEX SPACES

O. Hadžić

(Received April 5, 1973

In this paper we shall prove existence theorems for the system x = H(x, y) y = K(x, y) where $H: U \times V \to U$, $K: U \times V \to V$, U is a closed subset of locally convex space E and V is a closed convex subset of locally convex space F.

1. Introduction. In the introduction we have included a summary of the basic definitions and theorems to be used in the sequel [5].

Let Λ be an arbitrary set, E be a locally convex space, M be a subset of E and T be a mapping of $\Lambda \times M$ into E. The generalised sequence $\{T_{\alpha}\}$ is defined in the following way:

$$\begin{cases} T_o = \overline{co} \ T(\Lambda \times M) \\ T_\alpha = \overline{co} \ T(\Lambda \times (M \cap T_{\alpha-1})) & \alpha - 1 \text{ exists} \\ T_\alpha = \bigcap_{\beta < \alpha} T_\beta & \alpha - 1 \text{ does not exist} \end{cases}$$

where α are ordinal numbers and co is the closed convex hull.

Lemma a) Every set T_{α} is closed and convex

- b) $T(\Lambda \times (M \cap T_{\alpha})) \subseteq T_{\alpha+1}$
- c) If $\eta < \alpha$ then $T_{\alpha} \subset T_{\alpha}$
- d) $T(\Lambda \times (M \cap T_{\alpha})) \subseteq T_{\alpha}$
- e) There exists the ordinal number δ such that $T_{\alpha} = T_{\delta}$ for every $\alpha > \delta$

Definition 1 $T_{\delta} = T^{\infty}(\Lambda \times M)$ is the limit domain of values of the mapping T on the set $\Lambda \times M$. The mapping T is a limiting compact mapping if the set $T(\Lambda \times (M \cap T^{\infty}(\Lambda \times M)))$ is compact

Definition 2 Let \mathfrak{M} be a subset of 2^E and $Q \in \mathfrak{M}$ implies \overline{co} $Q \in \mathfrak{M}$. Further, let (A, \leqslant) be a partially ordered set. The measure of noncompactness ψ is a function $\psi : \mathfrak{M} \to A$ such that $\psi (\overline{co} \ Q) = \psi (Q)$.

Definition 3. The mapping T is ψ -densifying if the implication $\{\psi[T(\Lambda \times Q)] \geqslant \psi(Q)\} \Rightarrow \{\overline{Q} \text{ is compact}\}\ \text{holds.}$

Theorem A. Suppose M is a closed subset of E, Λ is a compact topological space, T is a continuous ψ -densifying mapping and the measure ψ is monotone i.e. $Q_1 \subseteq Q_2$ implies that $\psi(Q_1) \leqslant \psi(Q_2)$. Then T is a limiting compact mapping on $\Lambda \times M$.

Examples of the measure of noncompactness.

1. Kuratowski's measure of noncompactness.

Suppose E is a uniform space, P is a family of uniform continuous pseudometrics on $E \times E$, \mathfrak{M} the family of all sets in E which are bounded in respect to all $p \in P$, A a partially ordered set of functions $a: P \to [0, \infty)$ where \leqslant is defined as follows $a_1 \leqslant a_2 \Leftrightarrow \forall \ (p \in P) [a_1(p) \leqslant a_2(p)]$. Kuratowski's measure of noncompactness is the function $[d(Q)](p) = \inf \{\varepsilon > 0$, there exists a finite number of sets S_1, S_2, \ldots, S_n such that $Q = \bigcup_{i=1}^n S_i$ and $d'(S_i)(p) \leqslant \varepsilon \ i = 1, 2, \ldots, n \}$ (d') is diameter of a set).

2. Hausdorff's measure of noncompactness. $\eta_R: \mathfrak{M} \to A$ is the function $[\eta_R(Q)](p) = \inf \{ \varepsilon > 0, Q \text{ has in } R \text{ a finit } \varepsilon \text{-net in respect to the preudometric } p \}$, where R is a subset in E.

Suppose S is a closed, convex set, U is an open set, $U \cap S \neq \emptyset$, $U_S = U \cap S$, \overline{U}_S and U_S are the closure and boundary of U_S in the induced topology. Further, suppose that T is a completely continuous mapping of U_S into S and $Tx \neq x$ for every $x \in U_S$. Under these conditions one can define the function $Y_O(I-T,U_S)$ which plays an important role in the fixed point theory.

Let T be a limiting compact mapping, $S = T^{\infty}(U_R)$ and R be a closed, convex subset of E. Then there exists $\gamma_o(I-T,U_S)$ and $\gamma(I-T,U_S)$ is by definition $\gamma_o(I-T,U_S)$. The function has two important properties:

- 1. If $I T_1 \sim I T_2$ on \overline{U}_R in respect to R then $\gamma(I T_1, U_R) = \gamma(I T_2, U_R)$ where \sim is the relation of homotopy
- 2. If $\gamma(I-T, U_R) \neq 0$, then there exists at least one element $x \in U_R$ such that Tx = x
- **2.** Fixed point theorems.

The following theorem is a generalization of theorem 1 in [2].

Theorem 1 Let E be a locally convex space sequentially complete p_i , $i \in \mathcal{I}$ be a saturated family of seminorms defining the topology of E, f be a mapping of \mathcal{I} into \mathcal{I} , M be a closed subset in E and T be a mapping of M into M satisfying the following conditions:

- 1. For every $i \in \mathcal{J}$ there exists $q(i) \ge 0$ such that for every $x, y \in M$: $: p_i(Tx Ty) \le q(i)p_{f(i)}(x y)$
- 2. There exists $x_o \in M$ such that for every $i \in \mathcal{I}$ the series $\sum_{n=1}^{\infty} \left(\prod_{k=0}^{n-2} q[f^k(i)] \right) p_{f^{n-1}(i)}(Tx_0 x_0) = S(i) \text{ is convergent, } q[f^{-1}(i)] = 1, \ q[f^0(i)] = q(i), \ f^n(i) = f[f^{n-1}(i)].$

Then there exists one and only one solution of the equation x = Tx which satisfies the condition:

$$\lim_{n \to \infty} \left(\prod_{k=0}^{n-2} q[f^k(i)] \right) p_{f^{n-1}(i)}(x - x_0) = 0 \text{ for every } i \in \mathcal{F} \text{ and the inequality}$$

$$(1) \qquad p_{f^k(i)}(x - x_0) \leq \frac{S(i) - S_k(i)}{\sum_{k=1}^{k-1} q[f^k(i)]}$$

for every $i \in \mathcal{I}$ and $k = 0, 1, \ldots$ where $S_k(i)$ is the partial sum of the series S(i).

Proof: We shall construct the sequence $\{x_n\} \subset M$ in such a way that $x_n = Tx_{n-1}$ $n = 1, 2, \ldots$. Then we have:

$$\begin{aligned} & p_{i}\left(x_{2}-x_{1}\right) \leqslant q\left(i\right) p_{f(i)}\left(x_{1}-x_{0}\right) \\ & p_{i}\left(x_{3}-x_{2}\right) \leqslant q\left(i\right) q\left[f\left(i\right)\right] p_{f^{2}(i)}\left(x_{1}-x_{0}\right) \\ & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ & p_{i}\left(x_{n+1}-x_{n}\right) \leqslant \left(\prod_{r=0}^{n-1} q\left[f^{r}\left(i\right)\right]\right) p_{f^{n+1}(i)}\left(x_{1}-x_{0}\right). \end{aligned}$$

From this it follows that:

$$\sum_{r=1}^{n} p_{i}(d_{r}) \leq p_{i}(Tx_{0} - x_{0}) + q(i) p_{f(i)}(Tx_{0} - x_{0}) + \cdots + \left(\prod_{r=0}^{n-2} q[f^{r}(i)]\right) p_{f^{n-1}(i)}(Tx_{0} - x_{0})$$

where $d_n = x_n - x_{n-1}$. Since the series $\sum_{n=1}^{\infty} \left(\prod_{r=0}^{n-2} q[f^r(i)] \right) p_{f^{n-1}(i)}^{n-1} (Tx_{0-x_0})$ is con-

vergent and $x_n = x_0 + \sum_{r=1}^n d_r$, we conclude that there exists $x = \lim_{n \to \infty} T^n x_0$.

Further, we shall prove that:

$$\lim_{n\to\infty} \left(\prod_{k=0}^{n-2} q[f^k(i)] \right) p_{f^{n-1}(i)}(x-x_0) = 0.$$

For every $k, n \in N$ we have:

$$\begin{split} p_{fk(i)}(x_n - x_0) &\leq p_{fk(i)}(x_n - x_{n-1}) + p_{fk(i)}(x_{n-1} - x_{n-2}) + \cdots + \\ &+ p_{fk(i)}(x_1 - x_0) \leq \left(\prod_{r=0}^{n-2} q[f^r(f^k(i))]\right) p_{fn+k-1(i)}(Tx_0 - x_0) + \cdots + \\ &+ q[f^k(i)]p_{fk+1(i)}(Tx_0 - x_0) + p_{fk(i)}(Tx_0 - x_0) = \prod_{r=0}^{n-2} q[f^{r+k}(i)] \times \\ &\times p_{f^{n+k-1}(i)}(Tx_0 - x_0) + \cdots + p_{f^k(i)}(Tx_0 - x_0). \end{split}$$
 Since $S(i) - S_k(i) = \left(\prod_{r=0}^{k-1} q[f^r(i)]\right) p_{f^k(i)}(Tx_0 - x_0) + \\ &+ \left(\prod_{r=0}^{k} q[f^r(i)]\right) p_{f^{k+1}(i)}(Tx_0 - x_0) + \cdots + \prod_{r=0}^{k-1} q[f^r(i)] \times \end{split}$

$$\times [p_{f^{k}(i)}(Tx_{0}-x_{0})+q[f^{k}(i)]p_{f^{k+1}(i)}(Tx_{0}-x_{0})+\cdots] =$$

$$= \left(\prod_{r=0}^{k-1} q[f^{r}(i)]\right) A_{k}(i)$$

we have $p_f k_{(i)}(x_n - x_0) \le A_k(i)$. When $n \to \infty$ from this we obtain:

$$p_{f^{k}(i)}(x-x_{0}) \leq \frac{S(i)-S_{k}(i)}{\prod_{r=0}^{k-1} q[f^{r}(i)]}$$

and if $k \to \infty$ it follows $\lim_{n \to \infty} \left(\prod_{r=0}^{n-1} q[f^r(i)] \right) p_{f^n(i)}(x-x_0) = 0$.

Finally, we shall prove the uniqueness of the solution in M which also satisfies condition (1). Let on the contrary, x and y be two solutions of the equation Tx = x then:

$$p_{i}(x-y) = p_{i}(Tx - Ty) \leqslant q(i) p_{f(i)}(x-y) \leqslant$$

$$\leqslant \left(\prod_{r=0}^{n} q[f^{r}(i)]\right) p_{f^{n+1}(i)}(x-y) \leqslant$$

$$\leqslant \left(\prod_{r=0}^{n} q[f^{r}(i)]\right) [p_{f^{n+1}(i)}(x-x_{0}) + p_{f^{n+1}(i)}(y-x_{0})]$$

and if $n \to \infty$ we obtain $p_i(x-y) = 0$ for every $i \in \mathcal{J}$. Consequently x = y.

Corollary 1 [2]. We suppose:

- 1. For every $i \in \mathcal{I}$ there exists $q(i) \ge 0$ such that: $p_1(Tx - Ty) \le q(i) p_{f(i)}(x - y)$ for every $x, y \in M$
- 2. For every $i \in \mathcal{I}$ there exists $n(i) \in N$ such that for every $n \ge n(i)$ $q[f^n(i)] \le q(i) < 1$
- 3. There exists $x_0 \in M$ such that $p_{f^n(i)}(x_0 Tx_0) \le m(i) < \infty$ for every $i \in \mathcal{I}$ and n > 0

Then there exists one and only one solution of the equation x = Tx which also satisfies the condition:

4.
$$p_{f^n(i)}(x-x_0) \le p(i, x) < \infty$$
. $n \ge 0$.

Proof: Since

$$\sum_{n=0}^{\infty} \left(\prod_{k=0}^{n-1} q[f^{k}(i)] \right) p_{f^{n}(i)}(Tx_{0} - x_{0}) \le \sum_{n=0}^{\infty} \left(\prod_{k=0}^{n-1} q[f^{k}(i)] \right) m(i)$$

we shall apply D'Alambert's criterion on the series $\sum_{n=0}^{\infty} a_n(i)$ where $a_n(i) = \prod_{k=0}^{n-1} q[f^k(i)]$. Then we obtain:

$$\frac{a_{n+1}(i)}{a_n(i)} = \frac{\prod_{k=0}^{n} q[f^n(i)]}{\prod_{k=0}^{n-1} q[f^k(i)]} = q[f^n(i)] \leqslant q(i) < 1$$

and the proof is complete.

Theorem 2. Let G be a closed and convex subset of the topological, Hausdorff locally convex, complete space E and S, T two mappings of G into E satisfying the following conditions:

- 1. For every $x, y \in G$, $Tx + Sy \in G$
- 2. a) For every $i \in \mathcal{J}$ there exists $q(i) \ge 0$ such that $p_i(Tx Ty) \le q(i)p_{f(i)}(x y)$ for every $x, y \in G$
- b) For every $i \in \mathcal{I}$ and $n \in N$ there exist $a_n(i) > 0$ and $g(i) \in \mathcal{I}$ such that for every $x \in E$, n > N the inequality $p_{f^n(i)}(x) < a_n(i) p_{g(i)}(x)$ holds
 - c) The series:

$$\sum_{n=1}^{\infty} \left(\prod_{k=0}^{n-2} q \left[f^{k} \left(i \right) \right] \right) a_{n-1} \left(i \right)$$

is convergent

3. The mapping S is continuous and SF is relatively compact set. Then there exists at least one point $x_0 \in G$ such that $Sx_0 + Tx_0 = x_0$.

Proof: Let us consider the mapping $y \to Ty + Sx$ where x is a fixed element of G. Since the mapping T satisfies the condition 2, the mapping $y \to Ty + Sx$ satisfies all the conditions of the theorem 1, and so there exists $Rx \in G$ such that Rx = TRx + Sx. The uniqueness of the fixed point of the mapping $y \to Ty + Sx$ follows by conditions 2, b) and 2, c). Using the inequality:

$$p_i(Rx - Rx_0) \le p_{g(i)}(Sx - Sx_0) \sum_{n=1}^{\infty} \left(\prod_{k=1}^{n-2} q[f^k(i)] \right) a_{n-1}(i)$$

we can prove that the mapping R is continuous and the set RG is compact. From this fact and Tihonov's fixed point theorem we conclude [2] that there exists $z \in G$ such that Rz = z i.e. z = Tz + Sz

Theorem 3. Let E be a locally convex space sequential complete, M be a subset closed in E, Λ be a topological space and Φ be a mapping of $M \times \Lambda$ into M. Further, suppose that $\Phi_x \colon \lambda \to \Phi(x, \lambda)$ is continuous in $\lambda \in \Lambda$ for each $x \in M$ and that $\Phi_{\lambda} \colon x \to \Phi(x, \lambda)$ satisfies the following conditions

1. For every $i \in \mathcal{I}$ and $\lambda \in \Lambda$ there exist $f_{\lambda} \colon \mathcal{I} \to \mathcal{I}$ and $q_{\lambda}(i) > 0$ such that:

$$p_i(\Phi_{\lambda} x - \Phi_{\lambda} y) \leq q_{\lambda}(i) p_{f_{\lambda}(i)}(x - y)$$
 for every $x, y \in M$

2. For every $i \in \mathcal{I}$ and $n \in N$ there exist $a_n(i) \ge 0$, $Q_n(i) \ge 0$ and $g(i) \in \mathcal{I}$ such that:

a)
$$p_{f^n,(i)}(x) \leq a_n(i) p_{g(i)}(x)$$
 for every $\lambda \in \Lambda$ and $x \in M$

b)
$$q[f_{\lambda}^{n}(i)] \leq Q_{n}(i)$$
 for every $\lambda \in \Lambda$

c) The series:

$$\sum_{n=1}^{\infty} \left(\prod_{k=0}^{n-2} Q_k(i) \right) a_{n-1}(i) \text{ is convergent.}$$

Then the solution $x(\lambda)$ of the equation $x(\lambda) = \Phi[x(\lambda), \lambda]$ is continuous in $\lambda \in \Lambda$.

Proof: Condition a) implies that there exists a unique element $x(\lambda) \in M$ such that $x(\lambda) = \Phi[x(\lambda), \lambda], \lambda \in \Lambda$ and $x(\lambda)$ can be obtained as the limit of the sequence $\{x_{n,\lambda}\}$, $x_{n,\lambda} = \Phi[x_{n-1}, \lambda, \lambda]$. Furthermore, due to the condition c) of the theorem, it does not matter which is the first element $x_{0,\lambda} \in M$. If we apply theorem 1 taking for T the mapping Φ_{λ} we obtain from (1), when k = 0, the inequality:

$$\begin{split} p_{i}\left(x-x_{0}\right) &= p_{i}\left(x\left(\lambda\right)-x\left(\lambda_{0}\right)\right) \leqslant p_{g\left(i\right)}\left(\Phi_{\lambda}\left[x\left(\lambda_{0}\right)\right]-\Phi_{\lambda_{0}}\left[x\left(\lambda_{0}\right)\right]\times\\ &\times\sum_{n=1}^{\infty}\left(\prod_{k=0}^{n-2}q\left[f^{k}_{\lambda}\left(i\right)\right]\right) \; a_{n-1}\left(i\right) \leqslant p_{g\left(i\right)}\left(\Phi_{\lambda}\left[x\left(\lambda_{0}\right)\right]-\Phi_{\lambda_{0}}\left[x\left(\lambda_{0}\right)\right]\right)\times\\ &\times\sum_{n=1}^{\infty}\left(\prod_{k=0}^{n-2}Q_{k}\left(i\right)\right) \; a_{n-1}\left(i\right). \end{split}$$

The mapping $\lambda \to \Phi(x, \lambda)$ is continuous so there exists a neighbourhood $V(\lambda_0) \subset \Lambda$ such that:

$$p_{g(i)}(\Phi[x(\lambda_0), \lambda] - \Phi[x(\lambda_0), \lambda_0]) \le \varepsilon \left\{ \sum_{n=1}^{\infty} \left(\prod_{k=0}^{n-2} Q_k(i) \right) a_{n-1}(i) \right\}^{-1}$$

and therefore $p_i(x(\lambda) - x(\lambda_0)) \le \varepsilon$ for every $\lambda \in V(\lambda_0)$.

3. Existence theorems for the system
$$\begin{cases} x = H(x, y) \\ y = K(x, y) \end{cases}$$

Theorem 4 Suppose E is a locally convex space sequentially complete, F is a locally convex space, U is a closed subset of E, V is a convex, closed subset of F, H is a mapping of $U \times V$ into U and K is a mapping of $U \times V$ into V. Further, suppose that the following conditions are satisfied:

- 1. The mapping $y \to H(x, y)$ is continuous in $y \in V$
- 2. For every $i \in \mathcal{I}$ there exist $q(i) \ge 0$ and $f: \mathcal{I} \to \mathcal{I}$ such that: $p_i(H(x_1, y) H(x_2, y)) \le q(i) p_{f(i)}(x_1 x_2)$ for every $x_1, x_2 \in U$, $y \in V$
- 3. For every $i \in \mathcal{J}$ and $n \in N$ there exist $a_n(i) > 0$ and $g(i) \in \mathcal{J}$ such that: $p_{f^n(i)}(x) \leq a_n(i) p_{g(i)}(x)$ for every $x \in E$, $n \in N$ and the series $\sum_{i=1}^{\infty} \binom{n-2}{i} q[f^k(i)] a_{n-1}(i) \text{ is convergent.}$

- 4. One of the following conditions is satisfied:
- 4.1 F is a semireflexive space, V is a bounded subset of F, K is a continuous, limiting compact mapping
- 4.2 On the set F is defined the measure of noncompactness ψ and K is a continuous, ψ -densifying mapping. Also the mapping ψ is monotone and has one of the following properties

a)
$$\forall (x_0 \in V, Q \subseteq V, Q \neq \emptyset) [\psi(\{x_0\} \cup Q) = \psi(Q)]$$

b)
$$(x_0 \in V, Q_1 \subseteq V, Q_2 \subseteq V) [\psi(x_0 + Q_1) = \psi(Q_1) \text{ and } \psi(Q_1 \cup Q_2) = \max \{\psi(Q_1), \psi(Q_2)\}].$$

Then there exists at least one element $z \in U \times V$ such that

$$z = (H(z), K(z)).$$

Proof: At first, we shall show that there exists a mapping $R: V \to V$ such that R(y) = H(R(y), y) for every $y \in V$. If we apply Theorem 3 taking for \wedge the topological space V (in the induced topology), for M the subset U and for $\Phi(x, \lambda)$ the mapping H we see that in this case $q_{\lambda}(i) = q(i)$ and $f_{\lambda}(i) = f(i)$. Since the mapping H satisfies the conditions 1., 2. and 3, it follows that all the conditions of Theorem 3 are satisfied and $x(\lambda) = Ry$. Let us now assume that the condition 4.1 holds. We define the mapping T of V into V by setting Ty = K(R(y), y). It is evident that T is a continuous mapping of V into V. We shall prove that T is a limiting compact mapping showing that the set $T^{\infty}(V)$ is contained in the set $K^{\infty}(U \times V)$.

Let $\{T_{\alpha}^{1}\}$ and $\{T_{\alpha}\}$ be generalized sequences of sets which correspond to the mappings T and K respectively, namely:

$$\begin{cases} T_0^1 = \overline{co} \ T(V) \\ T_{\alpha}^1 = \overline{co} \ T(T_{\alpha-1}^{-1}) & \alpha - 1 \text{ exists} \\ T_{\alpha}^1 = \bigcap_{\beta < \alpha} T_{\beta}^1 & \alpha - 1 \text{ does not exist} \end{cases}$$

$$\begin{cases} T_0 = \overline{co} \ K(U \times V) \\ T_{\alpha} = \overline{co} \ K(U \times T_{\alpha-1}) & \alpha - 1 \text{ exists} \\ T_{\alpha} = \bigcap_{\beta < \alpha} T_{\beta} & \alpha - 1 \text{ does not exist} \end{cases}$$

Using the transfinite induction it can be shown that $T_{\alpha}^1 \subseteq T_{\alpha}$ for every α . For $\alpha = 0$ we have $T_0^1 = \overline{co} T(V) = \overline{co} \{K(R(y), y) \mid y \in V\} \subseteq \overline{co} K(U \times V) = T_0$. Suppose that $T_{\alpha}^1 \subseteq T_{\alpha}$ for every $\alpha < \alpha_0$. We distinguish two cases:

1.
$$\alpha_0 - 1$$
 exists

In this case $T^1_{\alpha_0} = \overline{co} T(T^1_{\alpha_0 - 1}) = \overline{co} \{K(R(y), y) \mid y \in T^1_{\alpha_0 - 1}\} \subseteq \overline{co} \{K(R(y), y) \mid y \in T_{\alpha_0 - 1}\} \subseteq \overline{co} K(U \times T_{\alpha_0 - 1}) = T_{\alpha_0}$

2. $\alpha_0 - 1$ does not exist

Then we have $T^1_{\alpha_0} = \bigcap_{\beta < \alpha_0} T^1_{\beta} \subseteq \bigcap_{\beta < \alpha_0} T_{\beta} = T_{\alpha_0}$

The set $T^{\infty}(V)$ is by definition T^1_{δ} where δ is that ordinal number for which $T^1_{\delta} = T^1_{\alpha}$ for every $\alpha > \delta$. Suppose $K^{\infty}(U \times V) = T_{\delta'}, \delta' > \delta$. It follows that $T^1_{\delta} = T^1_{\delta'} \subseteq T_{\delta'}$ i.e. $T^{\infty}(V) \subseteq K^{\infty}(U \times V)$. If we have $\delta > \delta'$ it follows by Lemma that $T^1_{\delta} \subseteq T^1_{\delta'} \subseteq T_{\delta'}$ so $T^{\infty}(V) \subseteq K^{\infty}(U \times V)$. Since $T(T^{\infty}(V)) = \{K(R(y), y) \mid y \in T^{\infty}(V)\} \subseteq K(U \times K^{\infty}(U \times V))$ and the set $\overline{K(U \times K^{\infty}(U \times V))}$ is compact, we conclude that the set $\overline{T(T^{\infty}(V))}$ is also compact i.e. T is a limiting compact operator.

Further, in [5], it was shown that if the space F is semireflexive and V is a bounded subset of T then $T_{\alpha}^{1} \neq \varnothing$ for every α , so $T_{\delta}^{1} = T^{\infty}(V) \neq \varnothing$. By Theorem 3.4.1 [5] if $U = F \gamma(I - T, V) = \gamma(I - T, U_{V}) = 1$ and there exists at least one element $y_{0} \in V$ such that $y_{0} = Ty_{0}$. If we take for z element $(R(y_{0}), y_{0})$ it follows that z = (H(z), K(z)) i.e. $R(y_{0}) = H(R(y_{0}), y_{0}) = K(R(y_{0}), y_{0})$.

Suppose now that the condition 4.2 is satisfied. To show that T is ψ -densifying mapping, it is necessary to show that $\psi(T(Q)) \geqslant \psi(Q)$ implies compactness of the set \overline{Q} . Since $T(Q) = \{K(R(y), y) \mid y \in Q\} \subseteq K(U \times Q)$ and the mapping ψ is monoton we have $\psi(T(Q)) \leqslant \psi(K(U \times Q))$ and $\psi(K(U \times V)) \geqslant \psi(Q)$. From the fact that K is a ψ -densifying mapping, it follows that the set \overline{Q} is compact i.e. T is a ψ -densifying mapping. Then there exists a compact set K such that $T(K) \subseteq K$ [5]. In fact this set K_1 , $K_1 = \{T^n x_0, n = 0, 1, \ldots\}$. This implies that $T^{\infty}(V) \neq \emptyset$ [5] and we obtain $z = (R(y_0), y_0)$ $y_0 = Tx_0$. This completes the proof.

The following theorem is a generalization of Theorem 4.

Theorem 5. Suppose that the conditions 1. and 4. of Theorem 4. are satisfied. Suppose further that for every $i \in \mathcal{I}$ and $k \in N$ there exist $q_k(i) > 0$ and $f: \mathcal{I} \to \mathcal{I}$ such that:

$$p_i(H_y^k(x_1) - H_y^k(x_2)) \le q_k(i) p_{f(i)}(x_1 - x_2)$$

for every x_1 , $x_2 \in U$, $y \in V$ and the series $\sum_k q_k(i)$ it convergent, where $H_y(x)$: $: x \to H(x, y)$.

Then there exists at least one element $z \in U \times V$ such that

$$z = (H(z), K(z)).$$

Proof: If we apply Theorem 2 in [3] we see that there exists the mapping $R: V \to V$ such that Ry = H(R(y), y). As in the proof of Theorem 4 one can show that the mapping Ty = K(R(y), y) has a fixed point $y_0 \in V$ and $z = (R(y_0), y_0)$.

Remark: If H(x, y) = Ax + By, A is a linear mapping which satisfies the condition:

(2)
$$p_i(A^k x - A^k y) \leq q_k(i) p_{f(i)}(x - y)$$

for every
$$k=1, 2, \ldots$$
 and $\sum_{k=1}^{\infty} q_k(i)$, then we have $H_y^k(x) = A^k(x) + \sum_{k=1}^{\infty} q_k(i)$

$$+ \sum_{r=0}^{k-1} A^r B(y) \text{ and } H_y^k(x_1) - H_y^k(x_2) = A^k(x_1) - A^k(x_2).$$

In [2] is given an example of a mapping (in the field of Mikusiński's operators) which satisfies the condition (2).

REFERENCES

- [1] A v r a m e s c u, C., Asupra unei teoreme de punct fix, Studii si Cercetari mat. Acad. R.S.R. (1970), $22\,\mathrm{N}^\circ$ 2,215—221.
- [2] O. Hadžić, B. Stanković, Some theorems on the fixed point in locally convex spaces, Publ. Inst. Math., T. 10 (24), 1970, 9—19.
- [3] O. Hadžić, Neprekidna zavisnost nepokretne tačke od parametra i primena diferencijalne jednačine u lokalno konveksnim prostorima, Zbornik radova P.M.F. 6a, Novi Sad, knj. 1 (1971), 3—14.
- [4] B. Stanković, Solution de l'équation différentielle dans un sous ensemble des opérateurs de J. Mikusiński, Publ. Inst. Math., T.9 (13) 1965, p. 89-95.
- [5] Б. Н. Садовский, Предельно компактные и уплотияющие оператори, У.М.Н., Т. XXVII, Вып 1. (163), 1972, 81—146.