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The notion of infinitary operation in implicit form can be found in diffe-
rent fields of mathematics. Up to now that notion was not submitted to special
investigations. There are some attempts to consider those operations. In parti-
cular can be mentioned the paper of Madevski Z., Trpenovski B., Cupona G. [1].

By an infinitary operation 4 defined on a set Q we understand a mapping
Q, Ayy ooy Qs o — b,
where all g, and b belong to the set Q. As in the n-ary case we shall write
0] Aa,,a,, ..., 0, ..)=b.

The set Q together with the infinitary operation 4 we call an infinitary ope-
rative and denote by Q(4). The infinitary operative Q (4) such that the set O
contains only one element will bz called trivial.

We shall use the following notations. The sequence Xx,,, X, ;5 ..., X,
will be denoted by xi-If m>n, x, will be considered empty, and if m=n

n
then x7 is the element x,. By x we denote the sequence X, X, . ... X where x

o
is repeated n times. The symbol x denotes the empty sequence.
The infinite sequence X,,, Xpsis--» Xp» ... will be denoted by xn

(m finite natural number). The infinite sequence x, X, ..., X, ... We denote by x.
Therefore, the equation (1) can be written in the form A(ar)=b.
The notion of quasigroup in infinitary case can be introduced in a natu-
ral way. '

Definition 1. A set Q together with an infinitary operation 4 we
call an infinitary quasigroup (briefly oo-quasigroup), if the equation

i—1

A(al y Xy a,f'l1)=b

has a unique solution x for all ai’, b < Q and for every positive integer i
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This concept can be found already in [1]. In that paper the authors prove
that nontrivial infinitary groups, i.e. oo-quasigroups satisfying associative laws,
which will be defined later, do not exist.

In the present paper we prove more stronger result: there do not exist
nontrivial (i, j)-associative infinitary quasigroups, where 7, j are fixed natural
numbers. It is proved that there exist infinitary quasigroups and loops of any
finite order and also of infinite order. Further, the equation of general associ-
ativity for infinitary case is solved. Finally, some ordinary concepts of the the-
ory ot quasigroups are given for infinitary case, and some specific questions
of that theory are considered.

§ 1. (i, j)-associative oo-quasigroups

We shall start with some examples of oo-quasigroups. First we give the
definition of an infinitary loop.

Definition 2. The element e of the infinitary operative Q(4) is
called a unity if

i—1 ©
A(e, x, e)=x,

for all x & @ and every i=1,2,...,n,... .

If an infinitary quasigroup O (A4) contains at least one unity then 04
is called an infinitary loop (oo-loop).

We shall prove the existence of infinitary quasigroups and loops.

Let D be the set of all real numbers and let D* be the set of all in-
finite sequences of elements belonging to D.

On the set D= we define a binary relation in the following way. The

sequences o =aj and B=5b7 are equivalent, a~, if and only if > la—b;l<os.

i=1
It is obvious that a~a, and that from o~ it follows B~a. We shall show
that from a~@, B~vy, where y=cy, it follows a~~. Indeed, we have

[

la,~¢|= > [(@;=b)+(b—c) | < i V’i‘h‘i‘*‘i [b;—¢;|< oo
i1 i1

'\ 8

i i=1

that is, a~y. So, “~” is an equivalence relation.

On the set D we define an infinitary operation which we denote by A.
In every equivalence class K, defined by the relation “~”, we choose one rep-

resentative o—=s1°. Let O correspond to that representative, that is, A(c)=0.
If a=ay € K, that is a~o, then

@ > la—s;|<oo.
. i=1
The element A4 (x) we define as following:
(3) A () = > (@—s).
i=1

From (2) we see that the series on the right side of (3) is absolutely convergent.
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We shall show that the equation
(4) A(alfily X, al:O—l—l):ba

has a unique solution for all a’f%l, agi1, b and every k=1.2,...,n,... Let the
sequence o' =a’f_l, 0, apy1 belong to the class K with the representative
c=s7. Then by the definition of 4,

A@)=7 (a;—5)— ¢ =b'.
ol

The sequence o'’ —at', t, ajp.1, where ¢ is an arbitrary real number, obviously
belongs to the class K. We have

) A@)=S @—s)+(-s)=1+b.
ik
Comparing (4) and (5) we see that the solution of the equation (4) is number
b—b' and that solution is unique.
The analogous method we can apply if instead of D we take the set N
of all integers. In this case, a~[ means that the sequences a=a; and B=>b7
differ only on finite number of places. Indeed, the condition i la,—b;| <o is

i=1

fulfilled if and only if a,#b, for finite number of indexes.

In the same way we can construct infinitary quasigroups on the set Q
with n elements, where n is arbitrary natural number. We take that Q is
an additive group of integers modulo n. In that case, a~f if and only if

the sequences «—aj and {=b; differ only on finite number of places and the sum

-]
> (a;—s)s for two sequences «= a; and c=s| from the same equivalence class,
i=1

i; always well defined.
Now we show the existence of infinitary loops.

s

On the set D of all real numbers we define the equivalence relation *“~’
as in the preceding example. Let K, be the equivalence class uniquely deter-

mined by an element a & Q, a € K,. Then the sequence a=0, a also belongs
to K,. Taking that the representative of the class K, is «, we define an infi-
nitary quasigroup operation 4 on D as in the preceding example (then A («) =0).

The element a is a unity of the infinitary quasigroup D (4). Indeed,
A (x, Z)=x,
A, % B=@—0)+0+ - +04(x=a) + 0+ - -+ =x.
If a, b < D, a=~b then it is obvious that the sequences 2 and Ol; are not
equivalent. So, choosing in such a way representatives of all classes K; we get

that every element of D is a unity.
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With different choice of representatives from the classes K, we can get
that the set of all unities is an arbitrary subset M C D.

Definition 3. An infinitary operative Q(A) is called (i, j)-associative
if it satisfies the 1ndent1ty

(6) AT AED), YD) =AET AED), ¥D),

for all x7°, y{” € Q.
(Of course, we suppose isj).

Definition 4. An infinitary operative Q (A) is called an infinitary semi-
group if it satisfies the indentity (6) for all i and j.

Definition 5. An infinitary quasigroup which is infinitary semigroup
is called an infinitary group.

Examples of infinitary semigroups are given in [1]. Also it is proved there
that nontrivial infinitary groups do not exist.

Now we shall consider (i, j)-associative infinitary quasigroups.

Lemma 1. If an infinitary quasigroup Q (A) is (i, j)-associative then it is
(J, 2j-i)-associative. (Here we suppose i< j).

Proof. Let a be arbitrary element from Q. Then, since Q(4) is (i, j)-
-associative, we have

- . o i—-1 i s . ©
A, A, AGE) yOh a)y=A(a, X1, AT, AGED), ¥7), @)=
i-1 .. o i—1 L. o
=A(a, X7, A, AT, y0), a)=A (a, A7 A5, yD), a).
Since A is infinitary quasigroup then
AGT, AT, yD =4 A, ), ¥
that is, 4 is (j, 2j— i)-associative.

Theorem 1. There does not exist a nontrivial (i, j)-associative infinitary
quasigroup.

Proof. Let Q(4) be (i, j)-associative infinitary quasigroup. By Lemma
. O(A) is (J, 2j—i)-associative.

Let a,b be arbitrary elements of the set Q. If A(a)—c then there exists

an element d & Q such that b= A(c, a , d, a) where k=j—i.
Then,

k—1 o oo

t—1 w i—1 k—1 ) i—1
A(a, b,a)=A(a, A(c, a, d, a), y=A(a, c, a, A, a), a)=
i—1 o k—1 w j—1 w k-1 0 o
=A(a, A(a), a, A, a), a)=A(a, A(a), a, A(d, a), a)=
i—1 k—1 0 j—1 k—1 ®© o j—1 o
=A(a ¢, a, A(d,a),a)=A(a, A(c, a, d, a), a)=A(a, b, a),

where we have used (i, j) and (j, 2j— i)-associativity of the infinitary quasi-
group A.
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Hence, for every a, b < Q
i—1 © j—1 3
A(a, b, ay=A(a, b, a).

Let xi°, y be arbitrary elements from (. Then there exists z such that

i—1 o

x;=A(y, 2, y), and we have
- i—1 ) w i j—1 o0 -
AGT) =AGTY, A(y, 2 9, x50 =4, 4(y, 2, 9), X)) =

. k i—1 ) . k
:A(xll-la Y, A(ya z, y); xioil):A(Xllilj Y, X?O).

So, we have proved that for arbitrary elements xi, ¥

R k
(7) AGTY=AG, y, x7).

If in (7) we put u=x,=x;,,=-++=xX;, .=+ and x,=y, for all m#i+nk,
m>i, we get
i k=1 k-t - k-1 k-1
Ay s u, y, u, y,u . )=A1 , Y, Y, U Y, U...)

that is, u=y.
That means that Q contains only one element and the theorem is proved.

Remark. It is proved in [1] that there does not exist a nontrivial
infinitary group. In the note at the end of the mentioned paper, it is said that
it can be easily seen that all the lemmas, which are proved there, are valid
under the supposition that infinitary operation is only (1, 2)-associative. We
remark that in the proof of Lemma 1 from [1] is used (2, 3)-associativity and
not only (1, 2)-associativity.

§ 2. Generalized associativity on infinitary quasigroups

First we note that the definition of an infinitary quasigroup given above
is for a countable set of the order type o of variables: the mapping A which
defines infinitary operation maps a countable set of order type ® Xx;, X,,..,X,,...
into some element y from the same set Q. This set of variables has the order
type o, and we shall say that the operation 4 has also the type o.

Here we introduce infinitary quasigroup of the type o +k.

The mapping 4: a,, dy,...,a,,...,b,,b,,..., b, — c defined on the set
Q«*% (where by Q»'* we denote the set of all infinite sequences of order type
o+ k of elements from Q) is called infinitary operation of the type w+k. We
write in this case 4 (ay, b’f):c. The type of 4 we shall denote by 4|

Definition 6. An infinitary operative Q (4) of the type w +k is called
infinitary quasigroup of the type o -+ k if the equations

A(ail—lr X, a{‘il, bl;):c: A(alm’ bi1715 X, bx{(—}-l):C,
have an unique solution x for all a,, b,, ¢ & Q and for all positive integers i
in the first equation and for all i=1,2,...,k in the second equation.

3*
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We shall consider functional equation of generalized associativity on inti-
nitary quasigroups:

®) AGT, BT, 3,y =CGL DG, W), v5),
where 4, B, C, D are infinitary quasigroups of types | A |=a, |Bl=w+r, [C|=0,

| D|=w+s, defined on the same nonempty set Q, 7, j some fixed natural num-
bers and r, s non-negative integers.

We shall give general solution of the equation (8). Without loss of gene-
rality we way assume that 7 <.

Case I i=j.
Subcase I,. r=s5>0.

If we substitute in (8) variables xi ', yri1 by some fixed elements af ',
b1 of the set Q we get

o« B(x21, y1)=BD(xL1, ¥,

where o, B are permutations of the set Q defined by ax=4(d", x, b7 1),
Bx=C(d", x, b7y, that is

D=0B, (O=y'a).
Putting in (8) 0 B instead of D we obtain

AT, BGE, ¥, yn)=C i, 0BG, ¥, ),

or
ATz pR)=C (T B2,y
So, in this case all solutions of (8) are given by
) D=0B, AGT, z, y2)=CG, 0z, yru),

where 0 is an arbitrary permutation of e set O, B and C arbitrary infinitary
quasigroups of types | Bl=w+r, {C|=w» and D and A are determined by the
equations (9).

Subcase I,. s>r>0. (If r>s5>0, the solution is analogous).
If in (8) we fix the variables xi™', . by elements ¢\ !, b1 we get
A, (BT, y0), yie) =y DT, y),
where y is the permutation of the set Q defined by
yx=C(a ', x, b3y, and 4, (z, yi) =A@, z, i1, b50),
that is
(109) D(xi*, y)=K (B, y1), yre)s
where K=vy=14,.
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Putting D back in (8) we obtain

AT BT, ), yR)=C e KBET, ¥, v, 5,
or

(11) AT 2y =C O Kz ¥, v,

In this case all solutions of the equation (8) are given by the equations
(10) and (i1), where B and C are arbitrary infinitary quasigroups of types
|B|=w+r, |C|=w, K arbitrary quasigroup of arity s—r+1 and 4 and D are
determined by the equations (11) and (10).

Case II. i<j.
Subcase II,. r>s>0.
Substituting in (8) Xl oy by @ bl 1 we get
% B(xT1 y)=C(x1 ' D575 ¥, yha),
where o is the permutation of @ defined by ocx=A(a’iV1, x, b2 1) and

j—1 r i—1 j-1 r o0 .
Ci(xi 2 y)=Clar , xi 5 z, ¥si1» bryy), that is

(12) B, y) =KD DO, ph)s ¥,
where K=a1C,.
Putting B back in (8) we have

A(xil—l» K(X{HI’ D(x;o’ yi)’ y;+1)s yﬁrl):c(xi#]’ D(Xj?os yi)’ y:rl)a
or

(13) Cx oz, yr) =AY, KT 2 Y,y

All solutions of (8) are given by (12) and (13) where 4 and D are arbit-
rary infinitary quasigroups of typss |4|{=w, |D|=w+s, K arbitrary quasigroup
of arity j—i+r—s-+1 and B and C are determined by the equations (12) and (13).

Subcase II,. s>r>0.

In this case wc obtain general solution by an analogous method as in [2].

If in (8) we substitute the variables x| ', p7; by elements ai ', %4
from Q, we get

(14) A (B(x]”

1 £ r j—1 o r K

> xj ’ yl)’ yi-l—l):Cl (x]t 3 D(xj > Vis yr+1))5
Whele A1 (Za yi+1):A (ailﬁla z, yi+1’ b.:°+1)5 C] (X{Ala Z):C(ail_l9 x{_]
If we define

A, (@ Vi) = A,z (1),
B(xifil’ x1?°> y;):E((X{MI)’ (XJ?O, y;))’
C,(xI7 =C((x]7Y), 2),

D(xX{", 1o ¥rrn) =D ((x7°5 YD), (7 +1))s

s Z5 bsoj_»l)'
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and denote (x/"")=X, (x, y1)=7Y, (yr+1)=Z, the equation (14) becomes
A, (B(X, Y),Z)=C,(X, D (Y, Z)),
where Zl, B, 51, D are GD-groupoids (see {2]), defined on
A4,:0% QT Q, C:Q'"'xQ—0Q,
B:Q/=ixQotr > Q,  D:Qerx Q57— Q.

These GD-groupoids satisfy the conditions of Theorem 2 from [2], and by
this theorem

B(X,Y)=a"l(yXo3Y), D(Y,Z)=9 ' (3 YoB Z)

that is,
(15) B(x7, y)y =t (y(x] )od (x5, yD),
(16) D(x, Y1) =0 1 (3 (x, ¥D)oR (3ri1),

where o, ¢ are permutations of the set Q, Q(o) binary group, y and B quasi-
groups of arities |y|=j—i, | |=s—r and 3 an infinitary quasigroup of type  +r.
Using (15) and (16), we put back B and D in (8) and obtain

(17 AT am (e S (6, Y,y =
=C(x]i_15 (P_l (8 (x;"’ y’l-)oﬁ()"§+1)),y:+l),

and if in (17) we substitute the variables x/' by elements ¢)' such that
y(c§_1)=e, where e is the unity of the group Q (o), we shall have

ACT, a8, Y,y =K, S, yDeB (), o),

where

KTy yny=cd, o, 971y, o).
Hence,
(18) AT o %, ) =K G, xoB (), o).

If in (17) we substitute x;°, yi by elements ¢;°, dj such that 8 (c}°, df)=e,
we have

(19 CE o7 BT+ yo)=A G oty (7Y, yo0),
and by (18) and (19) it follows

Cl, o 1B (1), YD =KG v () oB (5541, 2,
ie.

CEl p ya) =K vy (2 Yowy, y20).
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So, in this case all solutions of (8) are given by
AGT X, yR) =K axeB (), ¥,
B(xF, yy=at (v (x)e8 (7, ¥,
c, v, ya0=KG L v (i ooy, v,
D(x7s y) =97t (B (x7, x1)oB(¥rsn),

where «, ¢ are permutations of the set Q, Q (o) binary group, § and ¥y quasi-
groups of arities |B|=s—r, |y|=j—1i, and 3, K infinitary quasigroups of types
13|=w+r, K|=o.

All the preceding results can be summarized in

(20)

Theorem 2. All solutions of the equation
®) AT, BT, ¥, yn) =C T DO v, v,
are given by the following relations:
I, (i=j, r=s5>0)
D=0B, 4G, z ¥ =C@E 02y,
I, (=j s>r>0)
D(x", Y1) =K(BET5 y1)s Yrin)s

ATz R0 =C T Kz yion), p),s
|K|=s—r1+1,

I, (@(<j, r>s=0)
B(xicila y;):K(x{_l’ D(x;o, yi), y;+l)’
COl™ 7, ¥y =46, KL 2y, v,
|K|=j—i+r—s+1,
I, (i<j, s>r>0)
ACTY X yE) =K@, axeB (), ¥,
B, yp=a~t (y (53 (%, ¥
COAY, p yo) =K v (oo pi),
D(x{, Y1) =97 8(x7, YD (r+1)s
|K|=0w, |3|=0+r, [B]=s—r, ly|=j—i.
All operations on the right sides of these equalities are arbitrary, (o)-arbit-
rary binary group.
§ 3. Some remarks on oo-quasigroups

1° We have introduced oo-quasigroups of two types: o and w+k. This
fact suggests a further generalization of oo-guasigroups. Here we use some nota-
tions and results from [3]. We shall use the notations X,, Y;, Z, and so on,
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for linear ordered sequences of the order types «, B, vy, respectively. Let QO be
an arbitrary set. The set of all sequences of the order type o of elements from
O we denote by Q% The set Q together with the mapping 4: Q% — Q is called
operative of the type o, and we write A4 (X,)=y, where X, is the set of variables
of the type «, and the operative will be denoted as usual by Q(A4). We shall
say that the operation (mapping) 4 has the type « which will be denoted by
Al, ie. 1Al=oa.

4] Now let us introduce the notion of quasigroup of the type a. Let X, be
a linear ordered sequence of variables of the type «, and let x be an arbitrary
variable from X. Let X, be the set of all variables from X, which are less than
x and X,, the set of all elements from X, which are greater than x. Both X,
and X,, are linear ordered and they have the order types «, and «, respectively.
Hence « can be represented as o, -+ 1+ a,. The operative Q(A4) of the type « is
a quasigroup if the equation

2n A(C,,, x, Cy,)=b,

where C,, and C,, are arbitrary linear ordered sequences from Q* and Q* res-
pectively, b is an arbitrary element from Q, has a unique solution.

The definitions of the oo-quasigroups of the type o and w+k are parti-
cular cases of the definition given above.

2° The type of a oo-quasigroup generalizes the notion of the arity of
finitary operation. The question which arises for infinitary case is what operations
should ce considered equal. It is natural to consider two operations A4 and B,
defined on the same set Q, equal if they have the same type « and 4 (C,) = B(C,)
for all sequences C, from Q<.

This definition introduces a new kind of parastrophs which will be consi-
dered bellow (see 5°).

3° The notion of isotopy may be introduced in the same way as we did
for m-ary quasigroups. It can be done for quasigroups of any typs, but we
restrict ourselves to quasigroups of the type «. Two quasigroups B and A4 of
the type o defined on the same set Q are called isotopic if there exists a se-
quence T =g of permutations of Q such that B (x7") = o, "' A({o; x;}/~1). As usually
we introduce the notion of principal isotopy, isomorphism, autotopy, see [4]. The
LP-isotopy can be also easily introduced. Let a—ai be some sequence from Q°.
The mapping L,(a):x — A@", x, ais1) is called the i-translation with respect
to a. Of course it is a permutation of Q. The isotopy T =y where o= 1,
o =L; 1(Zz_) is called LP-isotopy. As for finitary case we can prove that every
LP-isotope of a quasigroup (of the type w) is a loop of the type o with the
unity e=A (ar). The usual theoremes for isotopy are also true for infinitary case.

4° Let Q(A) be a given quasigroup of the type «. The equation (21) defines
an inverse quasigroup operation. The notion of an inverse quasigroup operation is
more clear for the quasigroup operations of the type o. We consider the equa-
tion 4 (di”, x, a11)=b. This equation defines a new operation ¥4 as follo-
wing: x =4 (a’l_l, b, a1). The inverse operation is a particular case of a
parastroph, see [4], [5].

Here we shall define the parastroph of an infinitary quasigroup in an
other way which is equivalent to usual one for finitary case.
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Let A be a w-quasigroup (i.e. a quasigroup of the type w) defined on the
set Q. The w-quasigroup B is finitely symmetric to A if B(xT)=A (Xo1, Xns1)
where xJ1 is a permutation of x7. The quasigroup @B (of course of the type w),
where o is an arbitrary permutation on finite number of places of the variables
of A and i is an arbitrary positive integer, is called a parastroph of 4 and the
mapping 4 — B is called parastrophy of A. It is easily seen that the usual
properties of parastrophies (and connected notion of isostrophy) are true for the
parastrophy of w-quasigroups.

5° We may also consider the permutations on infinite places of variables.
For example, let O (4) be a w-quasigroup, A4 (x7)=y. We may obtain the follo-
wing operation A" as following:

(22) A (X[, X3y X5y ooo s Xay X4y Xg, o2 ) =

The operation A’ has the type o+ . 1If we take in account our d:fnition for
the equality of two oo-quasigroups we cannot say that 4 and A’ defined in (22)
are equal. Hence we need a new more adequate definition of the equality of
two oo-operations. On the other hand we may say that A" is a parastroph of
A. In fact we have two kinds of parastrophy: one which does not change the
type of the quasigroup and the second which does. This situation will arise
when considering some kinds of functional equations on oo-quasigroups.

6° Considering the functional equation (8) we note that in both sidss of it
we have a superposition of operations. The left side can be written in the follo-
wing way:

i—1

(A+B) (xl > X°1°> .VL y::Ll)
or _
Analogously the right side has the form
j
(C+D)(x1, ¥),
i.e. the equation (8) can be written as

i j
or briefly, see the definition of the equality of two oc-quasigroups,
i j
A+ B=C+D.

One of the authors has considered in [4], [5], the insertion algebra for
n-ary quasigroups. The elements of this algebra X are the finitary operations

defined on some set Q and the operations of X are the superpositions (),
i=1,2,...

We can extend the notion of insertion algebra for infinitary case. But the
axioms of this algebra should be changed. For example the first axiom of the
insertion algebra, considered in [5], page 11, is the following:

(23) |A+B|=14|+|B|—1
where, as we know, ]A, means the arity of A. If we restrict ourselves to the
infinitary operations whose types are order types of well ordered sets, then (23)
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should be replaced by the following four axioms. Let |A|=a, |B|=8, o, B
are the types (for infinitary case) or arities (for finitary case) of 4 and B res-
pectively. We have:

1) |A+B|=|B|+]4], if a B>o,
2) AL B|=|B|+|A|—i if a<w, B>o
3) A+ Bl=|A], if a>e, B<a,
4) |A;B\=§A{+(B§-—1, if <o, B<o.
Let us prove the relation 1). By the definition of (+i) we have
(24) AGE, BOG), Y= (4 +B) (T, Xy Yo,

where Xy and Y, are well ordered sequences of the types  and « respectively.
From (24) it follows:

}AiB[=(i41)+B+a=B+a,
A|l=(-D+1+a=a,
B\*

Hence, ‘A+B =B+a=|B|+|A4|. We note here that we cannot write |4+ B|=
=|A|+|B| because the 1nf1mte types o and 3 do not commute.
The proof of 2)—4) is similar.
We note also that the supzrposition on infinite place can also be considered.
At the end we formulate some problems on oo -quUAasigroups:

1. Solve the functional equation A+B C +D when the types are diffe-
rent from o+ k.

2. Discuss the both notions of parastrophy given in 5°

3. Define the (i, j)-associativity for the oo-quasigroups of the types o
and find its structure (of course if they exist).

4. Find other examples of oo-quasigroups. Note that the example from
§1 is not effective one.

5. Does there exist oo quasigroups satisfying some known identities? We
note that the example of o«o-loop given in §l1, Wthh has the property that all

elements are unity elements, satisfies the identities A (x ¥, x) y, forall x,y € Q,
k=1,2,.

6. Construct the theory of insertion algebras for infinitary case.
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