PUBLICATIONS DE L INSTITUT MATHEMATIQUE
Nouvelle série, tome 16 (30), 1973, pp. 101—109

EXPONENTIALLY COMPLETE SPACES IV
M. M. Marjanovié

(Received September 1, 1973)

1. Introduction.

This paper is a continuation of our three previous notes [5], [6], [7] and
is mostly related to [S]. The main facts that we prove here are: 2.3 (the union
mapping is open), 2.6 (if f:X— Y is open, then exp (f):exp (X)—exp(Y) is
open, too) and the properties of branching and non-branching points of {X®, u™}
(3.6, 3.8 and 3.9).

All spaces that we consider are compact Hausdorff and all mappings
continuous. The covariant funtor exp associates to each space X, the space
exp (X) = X® of all its non-empty closed subsets taken with the finite topology
and to each f: X— Y, exp (f)=f": X®— YD given by FOF)=f(F).

2. Our aim in this section is to prove that all bonding mappings of
{X®, y™} are open. Those facts which have a technical or conceptual meaning
of their own are formulated as separate statements. We start with the following

2.1. Let J3 be any open basis in X. Then, the collection of all sets

(B ... By, BED
forms an open basis in exp (X) < X is compact.

Proof. <: Let (U, ..., U,> be a standard basic open set in exp(X)
and F,& (U, ..., U,). Since F, is compact there exists a finite cover of
F,, say{B,, ..., B,} where B,C 3 and B;C U, - - U U, Let x, & F,N U,
i=1,2,...,n and let B(x) & 93 be such that B(x)CU,;. Then

F,E(B,, ..., B, B(x),...,B(x,)) " <{U,... U,y.
This “if”* part of 2.1 was proved in [4].
=>: Suppose X is not compact and let B be a basis for X such that no
finite subcollection of elements of (3 covers X. Then, {X} < exp (X) does not be-
long to any(B,, ..., B>, B;< 3. Thus the sets (B, ..., B>, B, 93 do not
constitute a basis for exp (X).
2.2. Let X be compact and (U, ..., U, a basic open set of exp (X).

Then for every FE (U,, ..., U,) there exist open sels V,, ...V, such that V,-C_: U;
and FE(Vy, ..., V).
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Proof. For each x& FNU,, let Vi, x) be an open neighborhood of x

such that ¥ , C U, Then Vi.o! b X)E{L, ..., n} x F} covers F and let = be
a finite subcover. Take ¥, be the union of a Vi, and all those members of &

having i in their indices. Evidently V:QU;and FEW,, ..., V).

The mapping u: X® — X given by u(F)= {F|F & FD} where X® =
=exp (XM) is continuous (Th. 5.7 in [8D and, when u is considered as a map-
ping of the second power set of X onto the first, # maps an open set of exp (X)
onto an open set of X (Th. 5, 42. in [3]). Let us prove the following property ot u:

2.3. The mapping u:X® — XM js open.
Proof. By 2.1, the sets of the form

SSIERRPRCHPE

where oi:{Uf,A. .., Uk} is a finite collection of open sets in X and (o) =
=(Ui, ..., Uk;y are basic open sets in exp (X), will constitute an open basis
in X®. We prove 2.3 by proving the following relation

U({{6s oo s (o)) = Uty oo, Uk, o, US, L UED
and so u maps open basic sets of X onto open sets of X0,

Let F" {65 ..., {6,). Then each F F§" belongs to some cHz
Thus FC [o,[ (ol =UtU - - - UUL). This implies u(F§")= U{F|F c F"}C
Cle[U--+Ujs,!. On the other hand for every it Fs'({c,>+# ¢, what imp-
lies the existence of an F Fél) such that F & (s,>. Thus FN U}sé gyj=1,...k
and we also have u(Fé”)ﬂU,";é o for every i and every j—=1,..., k;. Hence
u(F") WUy, ..., Uk, ..., U}, ..., Uk,» and we have proved that

ULops oo, SN CUL o, Ukyy o, UL, L, URD.

Now let Fy & (Ui, ..., Uk, ..., Ul ..., UL> Then, evidently F,
c oyl ooy |0, D, where o,={Ui, ..., Uk} By 2.2, there exist Vis oo i s V.

n

such that V,C || and F,(V,, ..., V). Put
E:(FO m Z)U{xi’ sy xlici}a
where X;C FO UL, j=1, ... » k;. Then, F, < (s;) and
FO={F, ..., FYE {6, .., {5 ).
Since F, CV, (- - - UV, we have
F,CFRNV)U- - - UENVYCFU- - UF,CF,
Thus w(FO)<F, U - - . JF,=F, what proves that Focu({{sy), ..., {(6,0)).

24. Let f:X—Y be a continuous and open mapping of the compact space X
into the compact space Y. Let U C X be open and H C f(U) closed in Y. Then,
there exists a closed subset F of U such that f(F)=H.
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Proof. First we prove the existence of a set Fg U for which f(F) O H.
For each y € H, let x, Cf'(»NU and let U, be a neighborhood of x, such

that ﬁygU. Since y & f(U,) and the mapping f is open, {f(U,)y<H} is an
open cover of H. Being H compact, there is a finite subcover {fW)s .., fUp}
Hence,

HCfUs) U~ Uf(Us).
Put F~=—L7yl U+« Uy, Since Uy CU, FC U and we also have
fE=fT)U- - UfUs) DH.
Being f continuous, f~! (H) is closed and let F,= f—l(H)ﬁF. Now
N FFY CASHHNNFEF) =HNf(F)=H,
for HCf(F).

On the other hand, let y & H. Then, there is an x C F such that f(x) =y.

Thus x C F and x & f~1(») Cf~'(H), what shows that xc F, and f(x)=y.
Hence, f(F,) O H and so f(F,)=H.

2.5. Let f:X— Y be continuous and open. Then
exp (f) (U .., Uy ={fUy -, fU).

Proof. Let HE exp (f) ({U;s - .., U,). Then there is an F < U, ..., U
such that f(F)=H. Since FN\U;#@ and FCU U -UU,=U, we have

FFRNfWY# e and f(F)CFUYU - - - USU)=f V)
FE)=HE (fU,s ..., fU-

Conversely, let HE( fU,,...,fU,». Then, HNf(U)# & and HC fU\J .« UV, =
=fU,. By 2.4, there is an FC U, such that f(F)= H. Let x, f~' (H) " U,, then
Fy=FU{x, ..., x U, ..., Up

and f(F,)=H. what shows that H< f((Up -5 U,)-

Hence,

2.6. Let f:X—> Y be a continuous and open mapping of the compact space X
into the compact space Y. Then, the mapping

exp (f):exp (X) — exp (¥)
is continuous and open. If, in addition, the mapping f is onto the sets
fU s fUDS
where U, are open in X, form an open basis in exp (Y).

Proof. By 2.5, exp(f) maps the basic open sets in exp (X) onto open
sets in exp(Y). Thus exp (f) is open.

If f is onto, then for (¥, ..., V,> (V; open in Y), let U,=f~1 (V). Then,

V,=f(U) and
Wy oo s V=L WUDs -5 [U)-
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Being f open, the sets of the form {JU, ..., fU>, where U; are arbitrary
open scts in X, are also open basic sets in exp (Y).

Note that 2.5 and 2.6 were proved in [1], when exp (X) and exp (Y) are
all subsets of X and Y.

Denote u: X® — XM by M and let u®™ =exp (u=D). Then, {X®, U@} s
an inverse sequence, and by 2.3 and 2.6, we get
2.1. All bonding mappings of {X®, u™}. are open.

3. This section is devoted to the study of branching and non-branching
points of {X®, u™}. Some of the more general relevant facts are also formu-
lated and proved.

I.1. Let f:X— Y be a continuous and open mapping of a compact space X
onto a compact space Y. If x' and X' are two different points of f~1(»), then
there exists a neighborhood U of x' such that f X\U)=Y.

Proof. Let U’ and U" be two disjoint open neighborhoods of x’ and x”’.
Since f is open, fU’ and fU’ are open neighborhoods of y and let V be a
neighborhood of y such that ¥V C fU'NfU". Since Jf is continuous, choose a
neighborhood U of x' such that U C U’ and JUC V. Then,

JUCVCfU” C f(X\0)

Y=f(X)=f(X\U) Uf(U)=f(X\).
Now let f:X— Y be a mapping of a set X onto a set ¥ and let
X={x[x=f(f())}, Y={f(®)|xZ X}
={y|f~1(») is a singleton}.
Then, the mapping f: X— Y defined by f is one-to-one and onto and f(X \X) =
=Y\Y. _
In case X and Y are two compact topological spaces, let <i( > and (Y)

be the sets of all closed in X subsets of X and of all closed in Y subsets ofl’
respectively, and let

and

JOHXy > (Y.
be the mapping defined by f®: XM > y®

3.2. Let f:X— Y be a continuous and open mapping of a compact space X
onto a compact space Y. Then,

Aﬁ_’:@l’} and YO = (Y,

Proof Let F& {X), then f(F)C Y and since f:X— Y is one-to-one
and onto, we have (fW)~1(fW(F))=F. Thus Fc AL”._Let now F& (X),
then F( (X\X)# & and choose an x, < F( (X\X). Then the set f~'(f(x,))

contains at least two points x, and x'#x,. Being f open there exists a closed
neighborhood of x,, let it be U,, such that f(X\U,)=Y and this is possible
according to 3.1. Since f(F) C f(X\U,), then by 2.4, there exists an F,CX\U,



Exponentially complete spaces 1V 105

such that f(F))=f(F) and the two sets F and F, are different. This proves
that F¢Z X@. Hence, (X} =X®.

Let H@(Y} then /=1 (H) C X and f(f~'(H))=H. Since f~! (H) c (X,
it follows that H< Y®, On the other hand, being fX)= Y,

FO— O (X0) = £ (X)) C (¥ ).
Thus, YO =(Y).
Let jy: X~ X® be given by jy (x)= {x} and let j=exp(jy), ..., /0 =

;exp(f" V). For FEX®, we have j¥ (F)={/jy (x)\x & Fl={{x}|x c F},
what is obviously a set dlfferent from the set jx((F)={F}

For a set A, let the comprehension for its elements be.{x}xEA}. Then,
an element of X can be written as
FoD—{{.. {{x|x& F}' FEFO}. ..} Fo=dc Fo-1)
and we have
FOEF=Dy (.. A} XS FHFS FOY. .M Fo-2 o pl-DY,
Thus we get a sequence of spaces and mappings (index X dropped)
; e 0
X X0 XD s s X0V Yue1) 5
Let uy: X@— XM be given by .
Uy (FO={x xc F)\F< FO}.
We denote u, by Wy and exp (u(" 1)) by 4. For F® < X we have

uS(Z) (FO)={{x|x CFAFE FV}' FO & FO
what differs from
Uy() (FP) = {F| FE FOA\FO & F@)},
It is easy to see that
u™(FW)y={{.. AUV (FO) FD S @Y. L Fl=D < pony,

If 1,:X— X is the identity, then IX = 1y and it is evident that u®ojM =
= lX(l) what implies

3.3, uWoj® 1y, n=1,2,...
Let {X,, f,} be an inverse system and X, its limit space. A point x & X,

will be called non-branching if there exists an integer n,(x) such that for every
n,m and n>m>n,(x) the relation x,=fm (x,) holds. All other points of X,,
will be called branching.

If all bonding mappings are on, then for each n>1, we have two subsets
of X,, X, related to f, |, and X related to f,. Now we are going to determine
these sﬁiJsets in the case of the inverse system

e NO)
XD e XD v v XM XD L
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For u®:X® > X® we have XO={{x}|xC X} and X@={{x}}|x< X} and
these subsets are closed in their spaces. In view of 3.2,

X = (‘)?(T))m, X0 = (X)),

If A4 is a closed subset of X and B of Y and f: X— Y is continuous, then
for the mapping g: 4 — B defined by f, the mapping g®: A® - BD is defined
by f®. We use this in proving the following statement, where the mappings
defined by a mapping f, will be again denoted by f and their domains and
codomains will serve to distinguish one from the other.

3.4, (a) X — (XD)n-1 YC+1) _ (¥@) =D

u(m

(b) X=X+ are two homeomorphisms.
() —
J

(€) j®oum: X+ » X® » XU+ s an inclusion.
(d) j®: X XV s g homeomorphism and u®™ (X®+D) = X0,

Proof. (a) follows from 3.2 and 2.3.

«1)
To prove (b), consider X~ X®. Obviously " and j are homeomor-
A T

phisms and jWouM=1 and uWojW=1. Being exp covariant, we get

u(n)
(W)(n—l) — (X(Z)) n—-1

j T

where ¥ oj® =1 and j®ou®=1. Now applying (a), we obtain (b).
To prove (c), cheque that jDouD: X@ — x® X js an inclusion. Indeed.
JPou® ({{x}Hh) =jO ({x}) = {{x}}-
Applying exp”~V to the above sequence, it follows that
PO FLO
Jouln: (X<2))<"‘1) — (XD)o=1) (X®) (n=1)
is also an inclusion.
Jo—
To prove (d), start with the homeomorphism X— X® and we get
i .
X — XD, Thus X7+D =0 (x@), By 3.3,

u ( XDy -y (XY = X,
Let jom .- jem and j®=j and put
Jomm :j(n)o IR T LLED. CUED (AN /7 N X
Then all these mappings are imbeddings. Let #0m m — ym),

u("; m):u(m)o o0 ou(”):X(”+1)_> X(m)’ n>=mz 1_
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If n>m>1, then by 3.3,
u(n, m) oj(m, n _ 1 X(VH),

and for a fixed m and each n>m, the mappings jo»": X — X® jinduce the

mapping
Jlm @) 2 X m) . Y (@)

which is also an imbedding.
3.5, jou @) (X)) C jin+k o) (X+K)Yy and
X@=cl(U{j®2X")|nc N}).
Proof. If Fo-D < X@  then
o) pe=Dy = (F, FO_ . Fe=DF® )

where F&-1 —yo-1L.0 (Fe-1) for k<n and for k>n Fok-D— jnk=1) (Fa-D)
Further on,
j(n+k, w)j(n, n+k—1) (F(n-—l)) :j(n+k, w) (j(n, ntk—1) (F(n—l))) :j(n, ) (F(n—l)).
Thus,
j(n, ) (X(n)) :j(n+k, w) (j(n,n +k—1) (X(n))) gj(n-%—k, ) (X(n+k)),
since jenntk—1: Y™ - x¥(+5) {g an imbedding.

Let wm: X — X be the natural projection, then the sets of the
form (u‘@ ®)~1(U), where U is open in X®@Wand n=1, 2, ..., constitute a basis
in X@ ([2], ch. VIIL, 3.12). Now let F@ ¢ X© and let e (F@)—
F@e-D [, where U is open in X®, Then jo @ (F*-1) < (ylo")~1(U) and
this proves that

(U {0 (X) | n & N}) =X,
3.6. U{j®(X®)|n& N} is the set of all non-branching points of X©.

Proof. If F@c U{j® ) (X™)|n< N}, then by 3.4 (d),

j‘") oule, n) (F(cu)) = Xn+D

and F' is a non-branching point of X,

On the other hand if F) is a non-branching point of X, then there
exists an n, such that u(" (F@)c X® for n>n, Then, by 3.4 (b) and (c),

F() :j("o, ) (u(w,”o) (F(m))) Ej("o»w) (X("o))_

Denote X\ J{j® ) (X™) nc& N} by br(X) (branching points of X)),
Now we will prove that for each F® C br (X)) and each n & N there exists
an F\ € br (X) such that

ulosm (F@)) — ylo, (Ffl“’))

and F=£F, Thus, each element of br(X) will be branching in this set.
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f ~
Let XY be a pair of mappings and X = {x|f(x)=g (x)}. When fand g
. .

are continuous (and X and Y compact), then X is a closed subset of X. For the
mappings fW: XD YO apd g X0 YO et X’H)={Fif“’ (F)=gWD (F)}.

f
3.7. Let X==Y be two continuous mappings of a compact space X into a
g

compact space Y. If

AN =0, g(X)egX X)) - o
and

B SO Ng\X) - o
then XM — (XY and '
fo (X(1)\XN(1J)) O fD (XTf)) =

& (XD YD) (4 g XD =
and

SO XONL0) ) g® (XYOND) = 5

Proof. It is obvious that (X)® C X0, 1f F& (X)V then F X\X)+ o
and let x & F() (X\X). Then, f(x) € f(F) and f(x) € f(X\X) Thus f(x) g (X\X)
and f(x) £ f(X)=g(X), what implies f(x) & g(F). Hence, f(F)#g(F) and
FZ XW. This proves (X)V=XW. If He fOXO\XW), then H—f(F) and
F¢& X~ (X)®. Then, again F N (X\X)= = and we can conclude that f(F)Ys£g(F)
what proves the first relation in 3.7. The second relation follows from the
first by symmetry of assumptions in 3.7.

If He fO(XO\XD), then H=f(F), F& XD, Let x=Fr (X\X), then
JS(x) & f(X) and f(x) € X\ (X) =/ (X\X). But f(x) & g (X) and f(x) € g (X\X)
what implies f(x) & g (X). Hence, f(F)#g (K) for every K< X®, This proves
the last relation in 3.7.

3.8. If X is not a singleton space, then for each F C br(X()) and each
nE N there exists an F  br (XY such that F @ £ F and

e, n) (F(w)) = ylo,n) (F;w))

Proof. Consider the mapping k:X®— X® defined by k(F)={(F).
Then for the pair of mappings

k
X0 — x@,
(1
we have XW=;(X) and
k (X(l)\)’(‘(l)) MNJjo (X(l)\XTf)) =0,

because
k(Fy=(F) DjOF)={{x}|x = F},
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if F& X0 and when X is not a singleton space. Evidently,

k (XW) Ok (XOXD = 5 and j0 (X0) A jO (XO\XW) — g
so that we can apply 3.7. By 3.7,

X0 = (j () = XDy - X,

where the last equality follows from 3.4 (a). Put k=kW, then it is easy to see
that uok® = 1,1, what implies u®ok® =1,m. Now, let F < br (X©") and
nC N. Let F$” be such that its r-th coordinate (F$), = u» ) (F@) for r<n and
(F¥), = k@ r=1 (o, n (F@Y)) for r>n, where kD =kWo. . . oW (kn=1n-1) —
=k=D). Since u=V ((F5),) = (Fy”),_, for r>n, it follows that F' < X, Since
(F), & X = X0 it follows that 5@ m+D (F@)£F®) . Since k) ((F) ¢

X0+ —X@+1 for p>n, then by 3.6, F is a branching point of X,
This concludes the proof of 3.8.

In view of 3.8, the points of br (X)) are branching in this set and
br (X@ is dense in itself in a set theoretic sense. Of course, br (X@) is also
dense in itself as a topological space. Thus, no proof of the following cor-
rolary of 3.8 need be given.

3.9. If card (X)>1, then card (br (X)) > ¢ and the set br (X“) is dense
in itself.

A. Pelczynski proved in [9] that T'(C) is a unique compact metric zero-
-dimensional space having an everywhere dense set of isolated points and a
Cantor set of non-isolated points.

Taking X to be a finite discrete space, then all points of ({;j® < (X™)|nc& N}
are isolated and br (X is dense in itself as it follows from 3.8 and 3.6. Hence,

3.10. If X is a finite discrete space and card (X)>1, then X“~T (C).
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