EXPONENTIALLY COMPLETE SPACES IV

M. M. Marjanović

(Received September 1, 1973)

1. Introduction.

This paper is a continuation of our three previous notes [5], [6], [7] and is mostly related to [5]. The main facts that we prove here are: 2.3 (the union mapping is open), 2.6 (if $f: X \to Y$ is open, then $\exp(f): \exp(X) \to \exp(Y)$ is open, too) and the properties of branching and non-branching points of $\{X^{(n)}, u^{(n)}\}$ (3.6, 3.8 and 3.9).

All spaces that we consider are compact Hausdorff and all mappings continuous. The covariant funtor exp associates to each space X, the space $\exp(X) = X^{(1)}$ of all its non-empty closed subsets taken with the finite topology and to each $f: X \to Y$, $\exp(f) = f^{(1)}: X^{(1)} \to Y^{(1)}$ given by $f^{(1)}(F) = f(F)$.

- **2.** Our aim in this section is to prove that all bonding mappings of $\{X^{(n)}, u^{(n)}\}$ are open. Those facts which have a technical or conceptual meaning of their own are formulated as separate statements. We start with the following
 - 2.1. Let $\mathcal B$ be any open basis in X. Then, the collection of all sets

$$\langle B_1, \ldots, B_n \rangle, B_i \in \mathcal{B}$$

forms an open basis in $\exp(X) \Leftrightarrow X$ is compact.

Proof. \Leftarrow : Let $\langle U_1, \ldots, U_n \rangle$ be a standard basic open set in $\exp(X)$ and $F_0 \in \langle U_1, \ldots, U_n \rangle$. Since F_0 is compact there exists a finite cover of F_0 , say $\{B_1, \ldots, B_m\}$ where $B_i \in \mathcal{B}$ and $B_i \subseteq U_1 \cup \cdots \cup U_n$. Let $x_i \in F_0 \cap U_i$, $i=1,2,\ldots,n$ and let $B(x_i) \in \mathcal{B}$ be such that $B(x_i) \subseteq U_i$. Then

$$F_0 \subseteq \langle B_1, \ldots, B_m, B(x_1), \ldots, B(x_m) \rangle \subseteq \langle U_1, \ldots U_n \rangle.$$

This "if" part of 2.1 was proved in [4].

- \Rightarrow : Suppose X is not compact and let \mathscr{B} be a basis for X such that no finite subcollection of elements of \mathscr{B} covers X. Then, $\{X\} \in \exp(X)$ does not belong to any $\langle B_1, \ldots, B_n \rangle$, $B_i \in \mathscr{B}$. Thus the sets $\langle B_1, \ldots, B_n \rangle$, $B_i \in \mathscr{B}$ do not constitute a basis for $\exp(X)$.
- 2.2. Let X be compact and $\langle U_1, \ldots, U_n \rangle$ a basic open set of $\exp(X)$. Then for every $F \in \langle U_1, \ldots, U_n \rangle$ there exist open sets V_1, \ldots, V_n such that $\overline{V_i} \subseteq U_i$ and $F \in \langle V_1, \ldots, V_n \rangle$.

Proof. For each $x \in F \cap U_i$, let $V_{(i, x)}$ be an open neighborhood of x such that $\overline{V_{(i, x)}} \subseteq U_i$. Then $\{V_{(i, x)} \mid (i, x) \in \{1, \dots, n\} \times F\}$ covers F and let π be a finite subcover. Take V_i be the union of a $V_{(i, x)}$ and all those members of π having i in their indices. Evidently $\overline{V_i} \subseteq U_i$ and $F \in \langle V_1, \dots, V_n \rangle$.

The mapping $u: X^{(2)} \to X^{(1)}$ given by $u(F^{(1)}) = \bigcup \{F \mid F \in F^{(1)}\}$ where $X^{(2)} = \exp(X^{(1)})$ is continuous (Th. 5.7 in [8]) and, when u is considered as a mapping of the second power set of X onto the first, u maps an open set of $\exp(X)$ onto an open set of X (Th. 5, 42. in [3]). Let us prove the following property of u:

2.3. The mapping $u: X^{(2)} \to X^{(1)}$ is open.

Proof. By 2.1, the sets of the form

$$\langle\langle\sigma_1\rangle,\ldots,\langle\sigma_n\rangle\rangle,$$

where $\sigma_i = \{U_1^i, \ldots, U_{k_i}^i\}$ is a finite collection of open sets in X and $\langle \sigma_i \rangle = \langle U_1^i, \ldots, U_{k_i}^i \rangle$ are basic open sets in $\exp(X)$, will constitute an open basis in $X^{(2)}$. We prove 2.3 by proving the following relation

$$u(\langle\langle\sigma_1\rangle,\ldots,\langle\sigma_n\rangle\rangle)=\langle U_1^1,\ldots,U_{k_1}^1,\ldots,U_1^n,\ldots,U_{k_n}^n\rangle$$

and so u maps open basic sets of $X^{(2)}$ onto open sets of $X^{(1)}$.

Let $F_0^{(1)} \in \langle \langle \sigma_1 \rangle, \ldots, \langle \sigma_n \rangle \rangle$. Then each $F \in F_0^{(1)}$ belongs to some $\langle \sigma_i \rangle$. Thus $F \subseteq |\sigma_i| (|\sigma_i| = U_1^i \cup \cdots \cup U_{k_i}^i)$. This implies $u(F_0^{(1)}) = \bigcup \{F \mid F \in F_0^{(1)}\} \subseteq \subseteq |\sigma_1| \cup \cdots \cup |\sigma_n|$. On the other hand for every i: $F_0^{(1)} \cap \langle \sigma_i \rangle \neq \varnothing$, what implies the existence of an $F \in F_0^{(1)}$ such that $F \in \langle \sigma_i \rangle$. Thus $F \cap U_i^i \neq \varnothing$, $j = 1, \ldots, k_i$ and we also have $u(F_0^{(1)}) \cap U_i^i \neq \varnothing$ for every i and every $j = 1, \ldots, k_i$. Hence $u(F_0^{(1)}) \in \langle U_1^1, \ldots, U_{k_1}^1, \ldots, U_1^n, \ldots, U_{k_n}^n \rangle$ and we have proved that

$$u(\langle\langle\sigma_i\rangle,\ldots,\langle\sigma_n\rangle\rangle)\subseteq\langle U_1^1,\ldots,U_{k_1}^1,\ldots,U_1^n,\ldots,U_{k_n}^n\rangle.$$

Now let $F_0 \in \langle U_1^1, \ldots, U_{k_1}^1, \ldots, U_1^n, \ldots, U_{k_n}^n \rangle$. Then, evidently $F_0 \in \langle |\sigma_1|, \ldots, |\sigma_n| \rangle$, where $\sigma_i = \{U_1^i, \ldots, U_{k_i}^i\}$. By 2.2, there exist V_1, \ldots, V_n such that $\overline{V_i} \subseteq |\sigma_i|$ and $F_0 \langle V_1, \ldots, V_n \rangle$. Put

$$F_i = (F_0 \cap \overline{V_i}) \cup \{x_1^i, \ldots, x_{ki}^i\},$$

where $x_j^i \in F \cap U_j^i$, $j = 1, \ldots, k_i$. Then, $F_i \in \langle \sigma_i \rangle$ and

$$F^{(1)} = \{F_1, \ldots, F_n\} \subset \langle \langle \sigma_1 \rangle, \ldots, \langle \sigma_n \rangle \rangle.$$

Since $F_0 \subseteq \overline{V_1} \cup \cdots \cup \overline{V_n}$, we have

$$F_0 \subseteq (F_0 \cap \overline{V_1}) \cup \cdots \cup (F_0 \cap \overline{V_n}) \subseteq F_1 \cup \cdots \cup F_n \subseteq F_0.$$

Thus $u(F^{(1)}) = F_1 \cup \cdots \cup F_n = F_0$, what proves that $F_0 \in u(\langle \langle \sigma_1 \rangle, \ldots, \langle \sigma_n \rangle \rangle)$.

2.4. Let $f: X \to Y$ be a continuous and open mapping of the compact space X into the compact space Y. Let $U \subseteq X$ be open and $H \subseteq f(U)$ closed in Y. Then, there exists a closed subset F of U such that f(F) = H.

Proof. First we prove the existence of a set $\tilde{F} \subseteq U$ for which $f(\tilde{F}) \supseteq H$. For each $y \in H$, let $x_y \in f^{-1}(y) \cap U$ and let U_y be a neighborhood of x_y such that $\overline{U_y} \subseteq U$. Since $y \in f(U_y)$ and the mapping f is open, $\{f(U_y) | y \in H\}$ is an open cover of H. Being H compact, there is a finite subcover $\{f(U_{y_1}), \ldots, f(U_{y_n})\}$. Hence,

$$H\subseteq f(U_{y_1})\cup\cdots\cup f(U_{y_n}).$$

Put $\widetilde{F} = \overline{U}_{\nu_1} \cup \cdots \cup \overline{U}_{\nu_n}$. Since $\overline{U}_{\nu_i} \subseteq U$, $\widetilde{F} \subseteq U$ and we also have

$$f(\widetilde{F}) = f(\overline{U}_{y_1}) \cup \cdots \cup f(\overline{U}_{y_n}) \supseteq H.$$

Being f continuous, $f^{-1}(H)$ is closed and let $F_0 = f^{-1}(H) \cap \tilde{F}$. Now

$$f(F_0) \subseteq f(f^{-1}(H)) \cap f(\tilde{F}) = H \cap f(\tilde{F}) = H$$

for $H \subseteq f(\tilde{F})$.

On the other hand, let $y \in H$. Then, there is an $x \in \tilde{F}$ such that f(x) = y. Thus $x \in \tilde{F}$ and $x \in f^{-1}(y) \subseteq f^{-1}(H)$, what shows that $x \in F_0$ and f(x) = y. Hence, $f(F_0) \supseteq H$ and so $f(F_0) = H$.

2.5. Let $f: X \to Y$ be continuous and open. Then

$$\exp(f)(\langle U_1,\ldots,U_n\rangle)=\langle fU_1,\ldots,fU_n\rangle.$$

Proof. Let $H \in \exp(f)(\langle U_1, \ldots, U_n \rangle)$. Then there is an $F \in \langle U_1, \ldots, U_n \rangle$ such that f(F) = H. Since $F \cap U_i \neq \emptyset$ and $F \subseteq U_1 \cup \cdots \cup U_n = U_0$, we have

$$f(F) \cap f(U_i) \neq \emptyset$$
 and $f(F) \subseteq f(U_1) \cup \cdots \cup f(U_n) = f(U_0)$.

Hence,

$$f(F) = H \in \langle fU_1, \ldots, fU_n \rangle.$$

Conversely, let $H \in \langle fU_1, \dots, fU_n \rangle$. Then, $H \cap f(U_i) \neq \emptyset$ and $H \subseteq fU_1 \cup \dots \cup fU_n = fU_0$. By 2.4, there is an $F \subseteq U_0$ such that f(F) = H. Let $X_i \in f^{-1}(H) \cap U_i$, then

$$F_0 = F \cup \{x_1, \ldots, x_n\} \in \langle U_1, \ldots, U_n \rangle$$

and $f(F_0) = H$, what shows that $H \in f(\langle U_1, \ldots, U_n \rangle)$.

2.6. Let $f: X \to Y$ be a continuous and open mapping of the compact space X into the compact space Y. Then, the mapping

$$\exp(f) : \exp(X) \to \exp(Y)$$

is continuous and open. If, in addition, the mapping f is onto the sets

$$\langle fU_1,\ldots,fU_n\rangle,$$

where U_i are open in X, form an open basis in $\exp(Y)$.

Proof. By 2.5, $\exp(f)$ maps the basic open sets in $\exp(X)$ onto open sets in $\exp(Y)$. Thus $\exp(f)$ is open.

If f is onto, then for $\langle V_1, \ldots, V_n \rangle$ (V_i open in Y), let $U_i = f^{-1}(V_i)$. Then, $V_i = f(U_i)$ and

$$\langle V_1, \ldots, V_n \rangle = \langle f(U_1), \ldots, f(U_n) \rangle.$$

Being f open, the sets of the form $\langle fU_1, \ldots, fU_n \rangle$, where U_i are arbitrary open sets in X, are also open basic sets in $\exp(Y)$.

Note that 2.5 and 2.6 were proved in [1], when $\exp(X)$ and $\exp(Y)$ are all subsets of X and Y.

Denote $u: X^{(2)} \to X^{(1)}$ by $u^{(1)}$ and let $u^{(n)} = \exp(u^{(n-1)})$. Then, $\{X^{(n)}, u^{(n)}\}$ is an inverse sequence, and by 2.3 and 2.6, we get

- 2.7. All bonding mappings of $\{X^{(n)}, u^{(n)}\}$ are open.
- 3. This section is devoted to the study of branching and non-branching points of $\{X^{(n)}, u^{(n)}\}$. Some of the more general relevant facts are also formulated and proved.
- 1.1. Let $f: X \to Y$ be a continuous and open mapping of a compact space X onto a compact space Y. If x' and x'' are two different points of $f^{-1}(y)$, then there exists a neighborhood U of x' such that $f(X \setminus U) = Y$.

Proof. Let U' and U'' be two disjoint open neighborhoods of x' and x''. Since f is open, fU' and fU'' are open neighborhoods of y and let V be a neighborhood of y such that $V \subseteq fU' \cap fU''$. Since f is continuous, choose a neighborhood U of x' such that $U \subseteq U'$ and $fU \subseteq V$. Then,

$$fU \subseteq V \subseteq fU^{\prime\prime} \subseteq f(X \setminus U)$$

and

$$Y=f(X)=f(X\backslash U)\cup f(U)=f(X\backslash U).$$

Now let $f: X \to Y$ be a mapping of a set X onto a set Y and let

$$X = \{x \mid x = f^{-1}(f(x))\}, \ \overline{Y} = \{f(x) \mid x \in X\}$$

= $\{y \mid f^{-1}(y) \text{ is a singleton}\}.$

Then, the mapping $f: X \to \overline{Y}$ defined by f is one-to-one and onto and $f(X \setminus X) = Y \setminus \overline{Y}$.

In case X and Y are two compact topological spaces, let $\langle X \rangle$ and $\langle \overline{Y} \rangle$ be the sets of all closed in X subsets of X and of all closed in X subsets of X respectively, and let

$$f^{(1)}:\langle X\rangle \to \langle \overline{Y}\rangle.$$

be the mapping defined by $f^{(1)}: X^{(1)} \to Y^{(1)}$

3.2. Let $f: X \to Y$ be a continuous and open mapping of a compact space X onto a compact space Y. Then,

$$\underline{X^{(1)}} = \langle \underline{X} \rangle \text{ and } \overline{Y^{(1)}} = \langle \overline{Y} \rangle.$$

Proof. Let $F \in \langle X \rangle$, then $f(F) \subseteq \overline{Y}$ and since $f: X \to \overline{Y}$ is one-to-one and onto, we have $(f^{(1)})^{-1}(f^{(1)}(F)) = F$. Thus $F \in X^{(1)}$. Let now $F \notin \langle X \rangle$, then $F \cap (X \setminus X) \neq \emptyset$ and choose an $x_0 \in F \cap (X \setminus X)$. Then the set $f^{-1}(f(x_0))$ contains at least two points x_0 and $x' \neq x_0$. Being f open there exists a closed neighborhood of x_0 , let it be U_0 , such that $f(X \setminus U_0) = Y$ and this is possible according to 3.1. Since $f(F) \subseteq f(X \setminus U_0)$, then by 2.4, there exists an $F_1 \subseteq X \setminus U_0$

such that $f(F_1) = f(F)$ and the two sets F and F_1 are different. This proves that $F \notin X^{(1)}$. Hence, $\langle X \rangle = X^{(1)}$.

Let $\overline{H} \in \langle \overline{Y} \rangle$, then $f^{-1}(\underline{H}) \subseteq \underline{X}$ and $f(f^{-1}(H)) = H$. Since $f^{-1}(H) \in \langle \underline{X} \rangle$, it follows that $H \in \overline{Y^{(1)}}$. On the other hand, being $f(X) = \overline{Y}$,

$$\overline{Y^{(1)}} = f^{(1)}(X^{(1)}) = f^{(1)}(\langle X \rangle) \subseteq \langle \overline{Y} \rangle.$$

Thus, $\overline{Y^{(1)}} = \langle \overline{Y} \rangle$.

Let $j_X: X \to X^{(1)}$ be given by $j_X(x) = \{x\}$, and let $j_X^{(1)} = \exp(j_X), \ldots, j_X^{(n)} = \exp(j_X^{(n-1)})$. For $F \in X^{(1)}$, we have $j_X^{(1)}(F) = \{j_X(x) \mid x \in F\} = \{\{x\} \mid x \in F\}$, what is obviously a set different from the set $j_X^{(1)}(F) = \{F\}$.

For a set A, let the comprehension for its elements be: $\{x \mid x \in A\}$. Then, an element of $X^{(n)}$ can be written as

$$F^{(n-1)} = \{\{\cdots \{\{x \mid x \in F\} \mid F \in F^{(1)}\}\cdots\} \mid F^{(n-2)} \in F^{(n-1)}\}$$

and we have

$$j_X^{(n)}(F^{(n-1)}) = \{\{\cdots \{\{x\} \mid x \in F\} \mid F \in F^{(1)}\}\cdots\} \mid F^{(n-2)} \in F^{(n-1)}\}.$$

Thus we get a sequence of spaces and mappings (index X dropped)

$$X \xrightarrow{j} X^{(1)} \xrightarrow{j(1)} X^{(2)} \xrightarrow{j} \cdots \xrightarrow{j(n)} X^{(n+1)} \xrightarrow{j} \cdots$$

Let $u_X: X^{(2)} \to X^{(1)}$ be given by .

$$u_X(F^{(1)}) = \{x \mid x \in F \land F \in F^{(1)}\}.$$

We denote u_X by $u_X^{(1)}$ and $\exp(u_X^{(n-1)})$ by $u_X^{(n)}$. For $F^{(2)} \subseteq X^{(3)}$, we have

$$u_X^{(2)}(F^{(2)}) = \{\{x \mid x \in F \land F \in F^{(1)}\} \mid F^{(1)} \in F^{(2)}\}$$

what differs from

$$u_{X^{(1)}}(F^{(2)}) = \{F \mid F \in F^{(1)} \land F^{(1)} \in F^{(2)}\}.$$

It is easy to see that

$$u^{(n)}(F^{(n)}) = \{\{\cdots \{u^{(1)}(F^{(1)}) \mid F^{(1)} \in F^{(2)}\} \cdots \} \mid F^{(n-1)} \in F^{(n)}\}.$$

If $1_X: X \to X$ is the identity, then $1_X^{(n)} = 1_X^{(n)}$ and it is evident that $u^{(1)} \circ j^{(1)} = 1_X^{(1)}$ what implies

3.3.
$$u^{(n)} \circ j^{(n)} = 1_{x^{(n)}}, n = 1, 2, \dots$$

Let $\{X_n, f_n\}$ be an inverse system and X_∞ its limit space. A point $x \in X_\infty$ will be called *non-branching* if there exists an integer $n_0(x)$ such that for every n, m and $n > m > n_0(x)$ the relation $x_n = f_{nm}^{-1}(x_m)$ holds. All other points of X_∞ will be called *branching*.

If all bonding mappings are on, then for each n>1, we have two subsets of X_n , X_n related to f_{n-1} and $\overline{X_n}$ related to f_n . Now we are going to determine these subsets in the case of the inverse system

$$X^{(1)} \leftarrow X^{(2)} \leftarrow \cdots \leftarrow X^{(n)} \leftarrow X^{(n+1)} \leftarrow \cdots$$

For $u^{(1)}: X^{(2)} \to X^{(1)}$ we have $\overline{X^{(1)}} = \{\{x\} \mid x \in X\}$ and $X^{(2)} = \{\{x\}\} \mid x \in X\}$ and these subsets are closed in their spaces. In view of $3.\overline{2}$,

$$\overline{X^{(2)}} = (\overline{X^{(1)}})^{(1)}, \ X^{(3)} = (X^{(2)})^{(1)}.$$

If A is a closed subset of X and B of Y and $f: X \to Y$ is continuous, then for the mapping $g: A \to B$ defined by f, the mapping $g^{(1)}: A^{(1)} \to B^{(1)}$ is defined by $f^{(1)}$. We use this in proving the following statement, where the mappings defined by a mapping f, will be again denoted by f and their domains and codomains will serve to distinguish one from the other.

3.4. (a)
$$\overline{X^{(n)}} = (\overline{X^{(1)}})^{(n-1)}, \ X^{(n+1)} = (X^{(2)})^{(n-1)}$$

- (b) $\overline{X^{(n)}} \stackrel{u^{(n)}}{\underset{i(n)}{\longleftarrow}} X^{(n+1)}$ are two homeomorphisms.
- (c) $j^{(n)} \circ u^{(n)} : X^{(n+1)} \to \overline{X^{(n)}} \to \overline{X^{(n+1)}}$ is an inclusion.
- (d) $j^{(n)}: X^{(n)} \to \overline{X^{(n+1)}}$ is a homeomorphism and $u^{(n)}(\overline{X^{(n+1)}}) = X^{(n)}$.

Proof. (a) follows from 3.2 and 2.3.

To prove (b), consider $X^{(1)} \stackrel{u^{(1)}}{\hookrightarrow} X^{(2)}$. Obviously $u^{(1)}$ and $j^{(1)}$ are homeomorphisms and $j^{(1)} \circ u^{(1)} = 1$ and $u^{(1)} \circ j^{(1)} = 1$. Being exp covariant, we get

$$(\overline{X^{(1)}})^{(n-1)} \stackrel{u^{(n)}}{\underset{i(n)}{\longleftarrow}} (X^{(2)})^{(n-1)}$$

where $u^{(n)} \circ j^{(n)} = 1$ and $j^{(n)} \circ u^{(n)} = 1$. Now applying (a), we obtain (b).

To prove (c), cheque that $j^{(1)} \circ u^{(1)} : X^{(2)} \to \overline{X^{(1)}} \to \overline{X^{(2)}}$ is an inclusion. Indeed,

$$j^{(1)} \circ u^{(1)} (\{\{x\}\}) = j^{(1)} (\{x\}) = \{\{x\}\}.$$

Applying $exp^{(n-1)}$ to the above sequence, it follows that

$$j^{(n)} \circ u^{(n)} : (X^{(2)})^{(n-1)} \xrightarrow{u^{(n)}} (\overline{X^{(1)}})^{(n-1)} \xrightarrow{j^{(n)}} (\overline{X^{(2)}})^{(n-1)}$$

is also an inclusion.

To prove (d), start with the homeomorphism $X \to \overline{X^{(1)}}$ and we get $X^{(n)} \to \overline{X^{(n+1)}}$. Thus $\overline{X^{(n+1)}} = j^{(n)}(X^{(n)})$. By 3.3,

$$u^{(n)}(\overline{X^{(n+1)}}) = u^{(n)} \circ j^{(n)}(X^{(n)}) = X^{(n)}.$$

Let $j^{(m, m)} = j^{(m)}$ and $j^{(0)} = j$ and put

$$j^{(m, n)} = j^{(n)} \circ \cdot \cdot \cdot \circ j^{(m)} : X^{(m)} \to X^{(n+1)}, \ n \geqslant m \geqslant 0.$$

Then all these mappings are imbeddings. Let $u^{(m, m)} = u^{(m)}$,

$$u^{(n, m)} = u^{(m)} \circ \cdot \cdot \cdot \circ u^{(n)} : X^{(n+1)} \to X^{(m)}, \ n \ge m \ge 1.$$

If n > m > 1, then by 3.3,

$$u^{(n, m)} \circ i^{(m, n)} = 1 X^{(m)}$$

and for a fixed m and each n > m, the mappings $j^{(m,n)}: X^{(m)} \to X^{(n)}$ induce the mapping

$$j^{(m, \omega)}: X^{(m)} \to X^{(\omega)}$$

which is also an imbedding.

3.5.
$$j^{(n, \omega)}(X^{(n)}) \subseteq j^{(n+k, \omega)}(X^{(n+k)})$$
 and $X^{(\omega)} = \operatorname{cl}(\bigcup \{j^{(n, \omega)}(X^{(n)}) \mid n \in N\}).$

Proof. If
$$F^{(n-1)} \subset X^{(n)}$$
, then

$$f^{(n, \omega)} F^{(n-1)} = (F, F^{(1)}, \ldots, F^{(n-1)}, \ldots, F^{(k)}, \ldots)$$

where $F^{(k-1)} = u^{(n-1, k)}(F^{(n-1)})$ for k < n and for k > n $F^{(k-1)} = j^{(n, k-1)}(F^{(n-1)})$. Further on,

$$j^{(n+k,\ \omega)}j^{(n,\ n+k-1)}\left(F^{(n-1)}\right)=j^{(n+k,\ \omega)}\left(j^{(n,\ n+k-1)}\left(F^{(n-1)}\right)\right)=j^{(n,\ \omega)}\left(F^{(n-1)}\right).$$

Thus,

$$j^{(n, \omega)}\left(X^{(n)}\right) = j^{(n+k, \omega)}\left(j^{(n,n+k-1)}\left(X^{(n)}\right)\right) \subseteq j^{(n+k, \omega)}\left(X^{(n+k)}\right),$$

since $j^{(n, n+k-1)}: X^{(n)} \to X^{(n+k)}$ is an imbedding.

Let $u^{(\omega,n)}: X^{(\omega)} \to X^{(n)}$ be the natural projection, then the sets of the form $(u^{(\omega,n)})^{-1}(U)$, where U is open in $X^{(n)}$ and $n=1, 2, \ldots$, constitute a basis in $X^{(\omega)}$ ([2], ch. VIII, 3.12). Now let $F^{(\omega)} \in X^{(\omega)}$ and let $u^{(\omega,n)}(F^{(\omega)}) = F^{(n-1)} \subset U$, where U is open in $X^{(n)}$. Then $j^{(n,\omega)}(F^{(n-1)}) \subset (u^{(\omega,n)})^{-1}(U)$ and this proves that

$$\operatorname{cl}(\bigcup \{j^{(n,\omega)}(X^{(n)}) \mid n \in N\}) = X^{(\omega)}.$$

3.6. $\bigcup \{j^{(n,\omega)}(X^{(n)}) \mid n \in N\}$ is the set of all non-branching points of $X^{(\omega)}$.

Proof. If
$$F^{(\omega)} \in \bigcup \{j^{(n,\omega)}(X^{(n)}) \mid n \in N\}$$
, then by 3.4 (d),

$$j^{(n)} \circ u^{(\omega, n)}(F^{(\omega)}) \in \overline{X^{(n+1)}}$$

and $F^{(\omega)}$ is a non-branching point of $X^{(\omega)}$.

On the other hand if $F^{(\omega)}$ is a non-branching point of $X^{(\omega)}$, then there exists an n_0 such that $u^{(\omega, n)}(F^{(\omega)}) \in \overline{X^{(n)}}$ for $n \ge n_0$. Then, by 3.4 (b) and (c),

$$F^{(\omega)} = j^{(n_0, \, \omega)} (u^{(\omega, \, n_0)} (F^{(\omega)})) \in j^{(n_0, \, \omega)} (X^{(n_0)}).$$

Denote $X^{(\omega)}\setminus \bigcup \{j^{(n,\omega)}(X^{(n)})\mid n\in N\}$ by $\operatorname{br}(X^{(\omega)})$ (branching points of $X^{(\omega)}$). Now we will prove that for each $F^{(\omega)}\in\operatorname{br}(X^{(\omega)})$ and each $n\in N$ there exists an $F_n^{(\omega)}\in\operatorname{br}(X^{(\omega)})$ such that

$$u^{(\omega, n)}(F^{(\omega)}) = u^{(\omega, n)}(F_n^{(\omega)})$$

and $F^{(\omega)} \neq F_n^{(\omega)}$. Thus, each element of br $(X^{(\omega)})$ will be branching in this set.

Let $X \stackrel{f}{\Longrightarrow} Y$ be a pair of mappings and $\widetilde{X} = \{x \mid f(x) = g(x)\}$. When f and g are continuous (and X and Y compact), then \widetilde{X} is a closed subset of X. For the mappings $f^{(1)}: X^{(1)} \to Y^{(1)}$ and $g^{(1)}: X^{(1)} \to Y^{(1)}$, let $\widetilde{X}^{(1)} = \{F \mid f^{(1)}(F) = g^{(1)}(F)\}$.

3.7. Let $X \stackrel{f}{\Longrightarrow} Y$ be two continuous mappings of a compact space X into a compact space Y. If

$$f(\tilde{X}) \setminus f(X \setminus \tilde{X}) = \varnothing, \ g(\tilde{X}) \setminus g(X \setminus \tilde{X}) = \varnothing$$

and

$$f(X \backslash \tilde{X}) \cap g(X \backslash \tilde{X}) = \emptyset$$

then $\widetilde{X}^{(1)} = (\widetilde{X})^{(1)}$ and

$$f^{(1)}(X^{(1)}\backslash \widetilde{X^{(1)}}) \cap f^{(1)}(\widetilde{X^{(1)}}) = \emptyset$$

$$g^{(1)}(X^{(1)}\backslash \widetilde{X^{(1)}}) \cap g^{(1)}(\widetilde{X^{(1)}}) = \emptyset$$

and

$$f^{(1)}(X^{(1)})\backslash \widetilde{X}^{(1)})\cap g^{(1)}(X^{(1)}\backslash \widetilde{X}^{(1)})=\varnothing$$
.

Proof. It is obvious that $(\tilde{X})^{(1)} \subseteq \widetilde{X^{(1)}}$. If $F \notin (\tilde{X})^{(1)}$ then $F \cap X \setminus \widetilde{X}) \neq \emptyset$ and let $x \in F \cap (X \setminus \widetilde{X})$. Then, $f(x) \in f(F)$ and $f(x) \in f(X \setminus \widetilde{X})$ Thus $f(x) \notin g(X \setminus \widetilde{X})$ and $f(x) \notin f(\widetilde{X}) = g(\widetilde{X})$, what implies $f(x) \notin g(F)$. Hence, $f(F) \neq g(F)$ and $F \notin \widetilde{X^{(1)}}$. This proves $(\widetilde{X})^{(1)} = \widetilde{X^{(1)}}$. If $H \in f^{(1)}(X^{(1)} \setminus \widetilde{X^{(1)}})$, then H = f(F) and $F \notin \widetilde{X^{(1)}} = (\widetilde{X})^{(1)}$. Then, again $F \cap (X \setminus \widetilde{X}) \neq \emptyset$ and we can conclude that $f(F) \neq g(F)$ what proves the first relation in 3.7. The second relation follows from the first by symmetry of assumptions in 3.7.

If $H \in f^{(1)}(X^{(1)} \setminus \widetilde{X^{(1)}})$, then H = f(F), $F \notin \widetilde{X^{(1)}}$. Let $x \in F \cap (X \setminus \widetilde{X})$, then $f(x) \notin f(\widetilde{X})$ and $f(x) \in f(X) \setminus f(\widetilde{X}) = f(X \setminus \widetilde{X})$. But $f(x) \notin g(\widetilde{X})$ and $f(x) \in g(X \setminus \widetilde{X})$ what implies $f(x) \notin g(X)$. Hence, $f(F) \neq g(X)$ for every $K \in X^{(1)}$. This proves the last relation in 3.7.

3.8. If X is not a singleton space, then for each $F^{(\omega)} \in \text{br}(X^{(\omega)})$ and each $n \in N$ there exists an $F_n^{(\omega)} \in \text{br}(X^{(\omega)})$ such that $F^{(\omega)} \neq F_n^{(\omega)}$ and

$$u^{(\omega, n)}(F^{(\omega)}) = u^{(\omega, n)}(F_n^{(\omega)}).$$

Proof. Consider the mapping $k: X^{(1)} \to X^{(2)}$ defined by $k(F) = \langle F \rangle$. Then for the pair of mappings

$$X^{(1)} \xrightarrow{k}_{j(1)} X^{(2)},$$

we have $\widetilde{X^{(1)}} = j(X)$ and

$$k\left(X^{(1)}\backslash\widetilde{X}^{(1)}\right)\cap j^{(1)}\left(X^{(1)}\backslash\widetilde{X}^{(1)}\right)=\varnothing$$
,

because

$$k(F) = \langle F \rangle \supset j^{(1)}(F) = \{\{x\} \mid x \in F\},$$

if $F \in \widetilde{X}^{(1)}$ and when X is not a singleton space. Evidently,

$$k(\widetilde{X}^{(1)}) \cap k(X^{(1)} \setminus \widetilde{X}^{(1)}) = \emptyset$$
 and $j^{(1)}(\widetilde{X}^{(1)}) \cap j^{(1)}(X^{(1)} \setminus \widetilde{X}^{(1)}) = \emptyset$

so that we can apply 3.7. By 3.7,

$$\widetilde{X}^{(n)} = (j(X))^{(n)} = (\overline{X^{(1)}})^{(n-1)} = \overline{X^{(n)}},$$

where the last equality follows from 3.4 (a). Put $k = k^{(1)}$, then it is easy to see that $u^{(1)} \circ k^{(1)} = 1_{X^{(1)}}$, what implies $u^{(n)} \circ k^{(n)} = 1_{X^{(n)}}$. Now, let $F^{(\omega)} \in \text{br } (X^{(\omega')})$ and $n \in N$. Let $F_n^{(\omega)}$ be such that its r-th coordinate $(F_n^{(\omega)})_r = u^{(\omega, r)}(F^{(\omega)})$ for $r \leq n$ and $(F_n^{(\omega)})_r = k^{(n, r-1)}(u^{(\omega, n)}(F^{(\omega)}))$ for r > n, where $k^{(n, r)} = k^{(n)} \circ \cdots \circ k^{(n)}(k^{(n-1, n-1)}) = k^{(n-1)}$. Since $u^{(r-1)}((F_n^{(\omega)})_r) = (F_n^{(\omega)})_{r-1}$ for r > n, it follows that $F_n^{(\omega)} \in X^{(\omega)}$. Since $(F_n^{(\omega)})_n \notin X^{(n)} = X^{(n)}$, it follows that $u^{(\omega, n+1)}(F^{(\omega)}) \neq F_n^{(\omega)})_{n+1}$. Since $k^{(n, r)}((F^{(\omega)})_n \notin X^{(n-1)})$ for r > n, then by 3.6, $F_n^{(\omega)}$ is a branching point of $X^{(\omega)}$. This concludes the proof of 3.8.

In view of 3.8, the points of br $(X^{(\omega)})$ are branching in this set and br $(X^{(\omega)})$ is dense in itself in a set theoretic sense. Of course, br $(X^{(\omega)})$ is also dense in itself as a topological space. Thus, no proof of the following corrolary of 3.8 need be given.

- 3.9. If card (X) > 1, then card $(br(X^{(\omega)})) \ge c$ and the set $br(X^{(\omega)})$ is dense in itself.
- A. Pelczynski proved in [9] that T(C) is a unique compact metric zero-dimensional space having an everywhere dense set of isolated points and a Cantor set of non-isolated points.

Taking X to be a finite discrete space, then all points of $\bigcup \{j^{(n,\omega)}(X^{(n)}) | n \in N\}$ are isolated and br $(X^{(\omega)})$ is dense in itself as it follows from 3.8 and 3.6. Hence,

3.10. If X is a finite discrete space and card (X) > 1, then $X^{(\omega)} \approx T(C)$.

REFERENCES

- [1] M. Čoban, Note sur topologie exponentielle, Fund. Math. 71 (1971), 27-41.
- [2] S. Eilenburg and N. Steenrod. Foundations of algebraic topology, Princeton (1952).
 - [3] K. Kuratowski, Topology (Russian), Moscow, vol. I (1966) and vol. II (1969).
- [4] V. Kuznecov, On spaces of closed subsers, (Russian), Dokl. Akad. Nauk SSSR 178 (1968), 1248-1251.
- [5] M. M. Marjanović, Exponentially complete spaces I, Glasnik Mat. 6 (26) (1972), 143-147.
-]6] M. M. Marjanović, Exponentially complete spaces II, Publ. Inst. Math. t. 13 (27), (1972), 77-79.
- [7] M. Marjanović, Exponentially complete spaces III, Publ. Inst. Math. t. 14 (28), (1972), 97-109.
- [8] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951). 152-182.
- [9] A. Pelczynski, A remark on spaces 2^X for zero-dimensional X, Bull. Acad. Polon. Sci. Ser. Math. 13 (1965), 85-89.