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1. Introduction

This paper is a continuation of the paper [1]. We devote it to the study
of classes of topological structures in %/. To study a class of topological struc-
tures we have to make it to be capable of studying. It means that we have to
provide it with a class of rules. According to [2] the rules are those ones which
are admissible for a class, i.e. the rules which preserve some intrinsic properties
of objects in it. Admissible rules for a class of topological spaces we shall call
continuous rules. These rules preserve convergence of filters of the spaces. We
shall define and characterize them in the paper. We shall also define and cha-
racterize some another rules, namely the rules that will preserve those proper-
ties of topological spaces which continuous rules do not preserve. These proper-
ties are closedness and openness of objects of a space, and rules are closed and
open rules. Afterwards we shall deal with the problem of induction and coin-
duction of topologies and with topological spaces having some local properties.

This paper make a logical whole with the paper [1]. All we have said
about the results of that paper is also valid here. Further, all notations,
terminology and involved abbreviations in the paper are taken over from [1].

2. Admissible rules for a class of topological spaces

Let us consider a class of topological spaces on the level i+ 1 and denote
it by Top,,,. As we have already said a rule in %/ will be admissible for Top;
if it preserve some intrinsic properties of its objects. The basic property which
characterizes a topological space is convergence of its filters. We assume that
admissible rules for Top, ., are those ones which preserve this property. We call
them continuous rules. Provided with these rules the class Top, , will become
a fundamental semigroupoid.

Now -we shall proceed to define continuous rules. Let (s;..1, 75,15 Pinq (Gii0)

and (s] 1 T Pii (t,,,)) be two objects of Top,,, that we shall denote simply
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by 7., and 7, , respectively. A rule @, ;:7,—7  will be continuous if

convergence of a filter f,,, € fi,, (p;,,) to an object s; of s5,,, implies conver-
gence of the filter @) (f;,,) C [, (pH_l) to the ob]ect @ (s;) of S At
this @ i41 18 @ rule of p,,,(t,,) to p " (; ;+1) Which assigns, to a filter of
Jiv1(Pisy), @ filter of fi. (P,)) and @] is a rule of s, to S;.,- Before we
give a precise definition of a continuous rule we have to specify the rule @ +1

Certainly, if ), :p;,, ()P, (¢,,) is a funhom and ¢, (b,,,) a filter
basis on p, , (#,,,), then @ (g 1 (b;,.1)) Is a filter basis on p|_, (¢ +1)- Moreover,
if' g;,,(b;,,) is a filter, then @,  (q,.,(;,,)) is not in general a filter but

| !
only a filter basis. However @  (g;,,,(b;,,)) is a filter on Py ()

If we define a rule <I):H p,+1(t,-+1)—+p;+1 (t,fH) in such a way that

O (@1 (bi)) = (I)‘ o @ +1(b,+1)) then we shall have an induced rule
by the rule @ . This rule assigns, to each filter of p,, , (z; +1) a filter of
Py () We shall call it a filter rule. It is a filter preserving funhom. To
simplify notations we shall write it without the sign *, ie. simply as o 41 and
call it a funhom for short. However, whenever the funhom @ ;.1 1S applied to
a filter it will always mean the filter rule. We take this stipulation for any
other funhom. Now we can define continuous rules.

Definition 1. Let (5, %15 Pryy(f,y)) and (s, 7, s P (1)
or simpy t;., and 7 T be two topological spaces. By a continuous rule of ,
to 7,,, we mean a pair of rules (9] , @; @/ ,), where @; it i§ a covariant fun-
hom of p;,, (;,,) to P ,(t;,,) and @  a rule of 5, to S;,1» such that the

following condition holds:

1+1(Tl+1 (Sl)) I_H_] ,+1((I)N_|_1(sz))
for all 5, <5, .

; Thus, continuous rules in a class Top, , preserve a property of topological
spaces called convergence of filters. However, there are properties of topological
spaces which these rules do not preserve. These properties are closedness and
openness of objects of -a topological :pace. Because of that we shall define the
rules which will preserve these properties. We define first the rules which pre-
serve openness of objects. Such rules we call open rules. Their definition is as
follows:

Definition 2. Let (S.q5 Tiups Piyy (tiyy)) and (s, . 7, p;+1(l’+1))l
or simply 7;,, and 7, , be two topological spaces. A rule O,_,:¥, 1T Ty We
shall say to be open if the following condition holds:

T;_H (0;,_‘_1 (Si)) l;;+1 0:‘+1 (Ti+1 (S))

for all s; & s;,,. At this O; 1 is-a covariant funhom of p;,, (t;,)) to ;| (#7,,)

and O, a rule of s;,, to s _,.
In what follows we- shall be concerned with characterizations of continuous

and open rules. First with continuous rules. However, before doing it we must

explain what we shall understand by an adjoint pair of rule pairs. Let @, ,:

7, 7., and @, i be two rules for relating topological spaces

i+1 —(—1 Tis1
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7,,; and 7., which consist of pairs of rules, @

i+1 i+ ((I)H-I" 1) and (D
_(d)“rl, 1+1) Then by an adjoint palr <<Dl+1, 1+1> we understand two
adjoint pairs (D}, l+1> and (D, ,+1> The definition of adjointness is
usual and can be found for instance .in [3]. In an adjoint situation as it is
(D, D;,>, ®,,, is left adoint to (I),+1 and ®,,, is right adjoint to O, ..
The ad ointness in the case of (@ (D" 1> is reduced to the statement s;=

i+1?
L ’+1 (s) © @/, (s)=s], where s, & 5;,,; and & . Hence, 04 L1 1s left inverse
to (I):’+1 and ED”H is right inverse to @ . If <<I)l +1» ©;.) is an adjoint pair

- of rules between topological spaces (s, +10 Tt Do (i) and (spqs 7L,
y +1(ti +1))s then-we can prove the following :
Proposition 1. The following statements are pairwise equivalent:
1) @,,, is a continuous rule. -
2) The images of open (closed) object& under the rule (~le i are open (closed)-
3) For every object t; of p,, (t ) there is a unique rule

,+1 (Ot+1(t))-> 01+1 ((D +1(t))

4) For every object t; of p;,, (t;.,) there is a unique rule

i+1
@ (Ciiy (1)) ~> C L (D, (1))-

Proof 1) & 2). Let ¢, be a 'r+1 -open object and let an s; of s;,, be such
that s, <p; ,+1(t,) Then from the ad ointness we have the existence of a unique
rule @7 (s) — ¢, of p| (] +1) Hence we have 7 (D7, (s)) I +1 . Because
of contmmty of ®,,,, ie. from Dy (Ti4q (5) l—1+1 Toan (g (s,.)) we
have further @] 1 G ()) gy t;. Hence e o i1 (Tie1(s)) and  there
exist an object #; and a rule p; of 7,,(s) such that @ , (p):
@ » (t)) — t;. Because of adjointness we have the existence of a unique rule
P; € T4, (s) such that pj:t;— @] (). From the antiresiduality property of
filters we have that (131 i () is a H-open object. Let us consider now the case
of closed objects. Let t be an T (-open object, then % 1(t) is closed in
p,+1 (t;+,). From ad ointness we have Cng () A" ;=05 = CI)'_H (B @) A

1+1 (#)=05 and also deduce  that Q. , (‘ﬁl“ &)V (Dz+1 (t)=1,. Hence,
_H_l(?fH_1 () is a complement of the object <D+1 (. i ®,+1 (1 @)=
"5,+1(<D1+1(t)), and since (I)’+1(t) is open then (I)+1 (G @) is closed.

To prove the converse statement we must reword the definition of conti-
nuous rules. According to the Proposition’ 10 from [2] we have the continuity
conditions @’ it (T (5) = 1T +1 (@7 () s equivalent to: for every object
t; of 7 1 (@7 - (s,)) there exist an object 7, and a rule p; of t,,,(s) such that

i+1(pi).®i+1(t,)—>ti. If t ETIH(CDI“( ) then (I)'+1(t)€¢,+l(s,) Hence,
there are an object # and a rule p; of 7,,,(s) such that p;:t,— (I)l. ™ (@)
Thus, there exists a (unique) rule @, (p,): 9P (t)—~ tl
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2) & 3). Let ¢, be an object of p; (7 ;) and 0, () its interior. Then
ff>;. (0 +1(tlf)z is open. From the ~definition of the operator O, there is a
unique rule' @, ,(0;, ()~ O; +1 (@, (7)) making commutative the diagram

&,
N

(0}, (1)) — 0., (¥, (1))

Conversely, if , is open then O ,(f)=1f;. Hence (TJI +1(0; +1(t;))=(1~);. AR
then from the diagram follows that Oy, (&, ()~ (O], (1)) =], ().
Thus @, (7)) is open.

2) < 4). Let ¢, be an object of p;,;(#,,). Then C. (@ (1)) is closed
in p (). According to 2) (I);+1(C;+1(®:’+1(tt))) is closed in p;,, (¢;,,). From
the definition of the operator C,,, there is a unique rule

Copy (8) > B}, (Cy (P, (1))
making commutative the diagram
6,1 (C (@, (®)))
7N

t

i Ci+1(ti)'
Hence because of adjointness there is a unique rule
(D;+1(Ci+1 (ti)) g C;'+1((D;+1(ti))'

Conversely, let 7, be a closed object of p_ ,(#;, ;). Then C., (@) =1. If we put
Q. (@) insEead of ¢, in 4) then we have a unique rule @, (G, “(@ +1(tl’.)))—+
C (@, (P " (t))). Hence there are unique rules @, (C; o1 (@), ()~
—Cpy (@ (@, (1))~ C .1(#)=t;. From the adjointness there is a unique
rule C;., (P;, (1))~ @ (). Hence C,-H((D:.H(t;))m(l);Jrl(t;). Thus @}, (7) is

closed. :
A continuous rule obviously preserves compactness properties of spaces.

Proposition 2. If a space (s, 15 Pryg (t1y)) 18 a continuous image

of a completely compact (c.-compact) space (S;.y> Tirys Pis1(tiny)) then it is also
completely compact (c.~compact).. .
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Proof. Let i1 be a filter on p; +1(t,) distinct from 0, (with
Rk (f;,.;)<cy), then @, () is a filter on Div1(ty,) different from o,

i+1
(and Rk (; +1(Fy 1)) <cy). Hence we have 01 F Ty (8) A ff),f +1(Fi,)- Furthermore
we have

Di+1:7éq);'+1(7i+1 () A ’(T);-_,.](ﬁ.;.l) }_;+1q);+1 T DA
®;+1®;+1(ﬁ+1) l_‘:'+17;+1(q);‘;ti (Si)) N Jf;q—l R
The proposition which follows will give a characterization of open rules.

Proposition 3. Let (s.,,, Tix1s Divq (ti1))) and (S;_H,‘ T p1e ,plf+1(tl.’+1)

or simply v, and 7, +1 be two topological spaces and Wi =Y, w10 YY) arule
of T4y into 7, 11+ Then the following statements are pairwise equivalent:

1) W.., is an open rule.

2) The images of open objects under W, are open.

3. For every object t, = Divy (84 there exists a unique rule ¥ (0 (1)~
0., (¥}, @)

4) There exists at least one basis of Ti+1 SUch that, under the rule ¥

i+1°
all the members of this basis have open images:

Proof. 1) = 2). Let ¢ be an open object. For any s, € s, +1 Such that

5; <, (#) there exists an 5, € S;+; such that s, <, and W (s)=s]. Certainly

. , , " , , l YN
we have now T () =T Y () it Vg Gy () Fi Y (%), Thus
W (@) is open.
2) & 3). Let 1, be an open object of Divg(t;+1), then there exists
lec Oy (1) — t;. Under ¥, +1 We have ¥ (0,., (1))~ W, (). On the other
side there is lcc O (Vi @)~ %, +1(%) and hence a unique rule

lP;,,_; (Oi+ 1 (ti)) - O;_f_] (1{};4_1 (t.))
making commutative the following diagram

lF;'.(.l (ti)
RN

¥}, 10y (8))——— 0], , (¥, ,(1)).

Conversely, if #, is open then O;,(t)=t; and from the diagram we have
‘If';.H(O,.H(t,.)):‘P';.H(t,-)NO;H(‘F;H(ti)). Hence Wi (¢) is open.

2) = 4). Since the objects of every basis are open, then their images are
also open.

4) = 1). Let 4;+1(b;,) be a basis of Ti+1- Suppose that the images of
all objects of g¢,,,(b;,,) are open. If b; € g;.1b,.,) and s, <b; then we have
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’ e ’ 3 ) / '-_/——1 3 ., Cg H.

7 (P 6)) it Vi (Fier 5) i Vi (B). Since i (s) 1s a basis of

7,4, (s}) then we see that 7, (¥  (s)) |—;+1‘I’;+1(r,.+,(s,.)).bi . .
Since under an open rule the image of a closed object need not be

closed, then we have to define a rule which will have this property. Such a rule
we shall call a closed rule. ‘ ‘ ' :

Definition 3. By a closed tule of a space (S;+1> Tivy> Piv1 (i)
into (s],¢» Tip> P (t 1)) we mean a rule ©,,, such that, for every closed
object of p.y(t;,) the image of ¢, under @, is 7, -closed in pj (%)

A characterization of these rules is given by the following

Proposition 4. 4 rule O, :(Si15 Ters Doy (Gin))) — (Sii1s Tig1s
P;.1(,) is closed iff there exists a unique rule C, (0, ()~ 0,5, (Cpy (1))
Jor every t; & pvy (fis1)-

Proof. The proof is dual to the proof of 2) < 3) in the Proposition 3.,

" Proposition 5. Every continuous rule D,., of a completely -compact
space (S;.q> Tiypq1» Pivi (Lwy)) into a Ty-space ’(si+1, Tiyp Pty ) isa closed
rule.

Proof. Let ¢, be a closed object in p,.,(%4,). Then it is completely
compact:- According to the Proposition 2, @, () is also completely compact.

Since 7, , is a T,-topology then @, ((t) is closed.g

Now we shall define a special subclass of continuous rules which will
allow Us to involve an appropriate notion of isomorphism between tc pological
spaces. Such rules in Top,., we shall call topological rules or homeomorphisms.
Their definition is as follows.

Definition 4. By a topological rule or a homeomorphism between topo-
loglcal spacces (Si+1: Tiv1o pi+1 (ti+1)) and (Si+1’ Ti+19 pi+1(t,'+1)) we mean a bi-
jective covariant funhom @, =(®;, , @ ) such that the following diagram

i-1?
4
i+1 , ’
Py (tivd) ‘ pi+1(ti+1)
: i
,
Ti+1 ‘ T
|
Si+3 > S
7/
(I)H'l

commutes.

Two topological spaces (5,,1» Tre1> Pray Givn)) a0 (S ps Tryps Dipys (711))
we shall say to be topologically equivalent or homeomorphic, written symbolically
bY (Sye15 Tre1s Pivr Ge)) 22 (s Topgs Piy1(t 1)), if there exists a topological
rule @0 :(Sihqs Tirrs Pivr (Bi)) = (S;_,_I: T;+1, p;+1(t;+1))'~

A property of a space we shall say to be a topological invarignt if when-
ever it is true for one space them it is also true for every space homeomorphic
to this ome. With this terminology, every topological property of a space is a
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topological invariant and homeomorphic spaces have the same topological inva-
riants.

Proposition 6. If (Siey» Trays Pivs (tiry)) and (s, T Prpy ()
are two topological spaces and ®,., a rule of (S;cys Tiiqs Pivy (8 1)) t0 (S, 4,
C Teps P 1t y)), then the following statements are pairwise equivalent:

1) ®,., is a topological rule.

2) t, is 7. -open (t,, -closed) iff ©,  (t) is =,  -open (7, -closed).

3) We have (D;_|_1(0i+1 (ti))§0;+1(q);+1(ti)) (®;+1(Ci+1 (ti))NC;+1(q);+1(ti))) N
. 4)If qt‘+1,(bi+1), is a basg’s Of (Sia1s Tisys Div1(ti)), then U (N L))
is a basis of (8,5 711> pi+1(tl.+1)).

Proof. Outline of the proof. From commutativity of the diagram we

have that 7., (5) by & = T (@7 (5)) b=y Prpy(8)- Hence, f; is open iff
®@_,(t) is open and moreover @, (0, #))~0; +1(®;,, (7)), whence

(D;'+1(Ti+1 (Si)) = T;_H ((D;/_‘_l (Si)) .
The @ranthetical contentions follow by taking_ complements. If #; is 7, ,-open
and @, , the right inverse of @, ,, then @  (#) is 7;.,-0pen. The result is
then obvious. The converse is easy to be proved.

The following proposition can serve for establishing when a continuous
rule will be a homeomorphism. Since the proof is simple we omit it.

’ P/rop9s1t}on 7 A continvous .rule. D, (s,+.1, Tiegs Divy (te)) —
Gipr> T Py () is a homeomorphism if there exists a continuous rule

’

i G Pt+1 (t;+1)) —> (Si41> Tiv1s Pis1 (t11)) such that both Q0% =

1

1. and ¥, @, =1 .
Tt i+l i+1 Tkl l

3. Induction and coinduction of topologies

In this section we shall be concerned with stipulation of topologies by
means of rules. Namely, if @, (8115 Pivy Ee)) > (s;.+1,p;.+l(t;+1)) is a rule -
‘between two pairs consisting of a class and a fundamental semigroupoid between
which there exists a strict domination and if on one of these pairs is defined
a topology then we can transfer this topology to the other pair by means of
the rule ®@,,,. If a topology is defined on (s;.,, P+ (f1)) its transferring to
(Sip Pigs (t,,,)) by means of ®@,,, we shall call the topology induced by @, ;.
On the other side, if a topology is defined on (s;,, p; , (t;,,)) its transferring
t0 (S;415 D1 (t;+,)) by means of @, we shall call the topology coinduced by
®@,,,. To define these notions we need some preliminaries.

Certainly, we can involve many different topologies on a pair (s,
Divi(tin))- Let Tii (8,015 Py (fi41)) denote the class of all possible topologies
on (S;,,, Pieq (t;r1))- We involve rules in it in the following manner. For two
objects Ty, T;+1 € Tiiy (81415 Piv1 (t+1)) We define

Ti+1 |““i+1'5;~+1 iff 7, () ey T;-+1(Si)

6 Publications de P'Institut Mathématique
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for all s; & s;,,. We also define, in" a usual manner, an initial and a terminal
object in T,i; (8;5q5 Pisq (;+1)). These objects we call an initial and a terminal
topology on (8,1, Py (%;+1)). By these notions we have

Definition 5. Let @, ,:(s +1,'r,+1,p,+1(t,+1))—>(sl+l, z+1(’1+1)) be
a rule ‘between a topological space (Siyq» Tis1sPisq(tyy)) and a pair (s Ay
l+1(tl+1)) By the topology induced on (.sl+1,p,+1(tl+1)) by the rule @,,, we
mean an initial topology in T,,, (s w10 Pipg () for which @, is continuous.

The space with induced topology has the property of being the vertex of
a particular fc over the space (8.1, Tirqy»> Pieq (4,))- Namery it is the vertex
of fc with respect to the class of spaces formed on the same underlaying pair
Siy1s Prp1thpn))-

The definition of coinduced topology is dual to the above one. If
W00 Doy (G )~ (slf+1, T;.+1,p;.+1(l;+l)) is a rule then by the topology
coinduced on (S, P;s; (¢;+1)) by the rule ¥,,, we mean a terminal topology
in T;yy (415 Pisq (4;+,)) for which W,,, is continuous. The space with this
topology has the property of being the covertex of lcc over (s 1 T Iy +1(’, 1))
with respect to the class of spaces on the same pair (s;,,, 241 (f141))-

In the same way we define induction and coinduction of topologies from
classes of topological spaces. These definitions go by means of classes of rules.

In what follows we shall be concerned with invariantess of properties at
the above defined transferrings of topologies. We regard first the case of coin-
duced topologies.

Propositioﬁ 8. Every coinduced topology of T,-topology, n=1, 2, 3,
by means of an insertion rule is itself a T,-topology. :

Proof. The proof is simple and we itlustrate one case only. Let us con-
sider a space (s, T;+1,‘p:.+1(t;+l)), a pair (8,5 Py (t+;)) and a rule @, :
(s,+1,p,+1(t,+1))—+(sl+l, Ti+1> Pie1 (G41)). If 7, is a Tp,-topology then for
8, 8 € 8., we have (I)H(s);éd)hq(s) =7, (@ () A T, (D, (5)) =04 q.
Let 7., be a topology on (s;.y, p;+q (#4,)) for which fI_),-Jrl is continuous. Then
we have (D;’Jrl(si)qéq);;l(s,.) = D (T G AD, (744 (5)) =04, Since @, is
an insertion rule then we have the result immediately.

Proposition 9. Every coinduced topology of a T,(Ty)-topology by
means of a closed insertion (insertion) rule is itself a T,(Ts)-topology.y

Much less properties are preserved under induction than comductlon In
a general case we have only.

Prop051t10n 10. An induced topology of a completely compact (c,-
-compact) space by a surjective rule is itself completely compact c.-compact), - -

Proof. The proof follows from the Proposition 2.,
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4. Spaces with local properties

Before we finish this paper we shall briefly regard one more question.
It is concerned with properties which possess objects of a space. Namely, certain
objects in a space can possess a property and that the space as a whole does
" not possess it. We shall say then that the space possesses that property only
Tocally, We define such spaces as follows. :

Definition 6. For a space (S;;,, Tje1» Pi+q (fie1)) We shall say to pos-
sess a property P locally if for every s; € s;,, there exists a neighborhood ¢
having this property.

Some other definitions may also be given. However,  we employ this
one and regard only one property. It is complete compactness. The spaces with
this property are locally completely compact spaces. A characterization of these
spaces is given by the-following

Proposition 11. A Tyor a Tyspace (S;iys Tiwys Ppvr (tine)) 1S locally
completely compact iff for every s;,C s;., there exists a t;< 7;.(s;) such that
C,.; () is completely compact.

Proof. If ¢, is a neighborhood of s; then so is C,,, (7). From complete
compactness of C,.,(#) we have that the space is locally completely. compact.
Conversely, let ¢, be a completely compact neighborhood belonging to ;. (5).
If «,,, is a T,-topology then by the Proposition 23 of [1] 7 is closed.

Denote O,.,(#) by t,. Then ¢, & 7., (5) and there exists a unique rule
C;., () — t;. Hence we have that C,., () is completely compact. Namely, every

. | Sm——
filter f,,,5£0,,, such that f,,; -, Cis; (7)) has an adherent object in # which
is also in C,,(#). In the same way we have the case of a T,-topology.,

Local complete compactness together with the axiom (T,) implies regularity
of a space. Therefore it can serve as a link between the axioms (T,) and (T5).

Proposition 12. Every locally completely compact T,-space is regular.

Proof. It is easy to show that for every ;& 7., (s) and a #; & 7., (s)
there exists a unique 7,,,(s,)-rule C,,, (#;)) > ¢, and that by the Proposition 13
of [1] the space is regular.y
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