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1. Introduction.

This paper represents a further step in realization of our program initiated
by the paper [2]. In that paper we proposed an axiomatized system X as a
foundation for mathematics. Our program has been then to show that this
system provides an adequate framework for (all) mathematics. To show this we
adopted two ways. The one is to organize the umiverse %/, being a model for
the limit system X_ of X, in' a whole with specified internal relationships
among its objects subjected to certain laws, a whole which will allow certain
reasonable creations in itself and the other to formalize such an organization
in a system falling, in general features, under the scheme of the 2. The structure
of the whole that we intend to form will be, in a certain extent, a reflection
of the structure of the real world. We regard that the real world is organized
in a perfect manner in that, the attainment of such an organization ought to
be our aim. If we attain this aim, then the formal system will display, in
symbolic form, a structure of the world. Moreover, it will contain in itself all
existing logical systems. Thus, all this considerations may be also regarded as
a way towards systematization and unification of (all) mathematics.

With the paper [3] we began to consider the structural organization of 7.
As we saw there, for a complete - organization of %/ we have to organize it
horizontally and vertically. Since the organization of %/ is rather complex then
we shall be concerned with it a little more. Certainly, there are various ways
to organize 9/. However, at any organization one thing is always present. It is
its - fruitfulness. An organization in %/ will be fruitful if it is such to form
wholes which will be capable of certain creations. Thus we shall differ. two
types of organizations in “/. The one without creative aspects and the other
with these aspects. The first type of organizations we shall call simply plane
organizations and the second spatial organizations in 9/. Hence we shall also
have terms — plane and spatial structures in /. It is obvious that plane orga-
nizations in 9/ are horizontal and spatial are both horizontal and vertical. They
are always horizontal if the classes are mot initial, i.e. if they are not universes.

Types of possible organizations in %/, both plane and spatial, are many
and varied, but they all go to make a universal mathematical structure, which
provided with dynamics will make a universal mathematical organism. If we are
able to form such an organism then it will represent, with a certain degree of
accuracy, an abstract image of the world, if not biological, then at least physical
one. On the way towards this aim we shall deal with some particular types of
possible organizations in /.
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In this paper we shall deal with a type of spatial organization in /.
Namely, we shall organize a class on a level with defined plane organization
over a class which is strictly dominated by this one to obtain a spatial structure
in 9/ that we shall call a topological structure in ;. For that purpose we shall
regard two classes s§;., and ¢;,, of certain mathematical i-objects such that
S;4;=<t;,,, where < denotes the strict domination.

Let 5;,, be a discrete class and let on 7,,, be defined a class of rules*
Pi+q such that p,. (z;,)) is a fundamental semigroupoid. These two notions s,
and p,,,(t;+,) are starting concepts for our further intentions. From them we
shall form a spatial structure in %/, called a topological structure, in which
relationships between objects of s;,, and subclasses of p;.,(#;,.,) will be its
essence. More precisely, the essence consists in insertion of objects of s;,,, into
Di+; (t,4,) as certain distinguished objects for some subclasses of it. At this we
assume that subclasses of p,.,(#,,) are organized to be filters. Then inserted
objects of s;, , are d-limit objects for certain filters of f;. (p,+1), where f;., (p;1,)
denotes the class of all filters on p,,,(¢,,,). Thus, we assign to each object
5;Cs;. a filter of fi,,(p;,,) in such a way that the insertions of objects of
84, IR Divq (i) are d-limit objects of the filters assigned to these objects.
Certainly, this a351gnment is not arbitrary but controled in a sense. The condi-
tions which regulate it are: conditions of separation, of cardinality and of
compactness. Thus, besides assigning the way in which it is to be done is also
important. Hence as a conclusion we have that, the basic features of topological
structures are: relationships of objects of s;,, and certain organized subclasses
of p;,,(t;+,) and the conditions which regulate these relatioships.

In the paper we shall first define topological structures and then deal
with various ways of their introducing. Afterwards we shall deal with the
conditions which regulate formations of these structures. We shall devote the
most part of the paper just to these conditions. Many well-known resuits from
general topology concerning these questions will be generalized by this paper.
To recognize this one can compare the famous books on the field by Kelley [4],
Kowalsky [5], Dugundji [1], and so on. Some new results will also be given.

Since we have finished the general discussion about the spatial organization
of 94, particularly about formations of topological structures on a level in %/
we shall explain our further plan concerning this question. In several subsequent
papers under the title ,,Topological structures on classes and some anothers
we shall regard classes of topological structures and admissible rules in them,
generalization of the notion of topological structure, then discuss formations of
spatial structures when is defined a plane structure on the class s,,, and for-
mations of spatial structures on already formed spatial structure. This spatial
structure in %/ we shall call a hypertopological structure. We shall see that two
consecutive universes of <%/ can be organized in a spatial whole by a hyper-
topology. At this the universes %/, and %/, are to be organized by a topology.
Thus, a spatial organization both horizontal and vertical can be realized by a
hypertopology. However, we shall see later that all these organizations are only
special cases of a general spatial organization in /.

At the end of this section we mention that terms and notations in this .
paper are taken over from the author’s two papers [2] and [3]. However, there
are some exceptions. So, a homomorphism between two fundamental semigroup-
oids we shall call here a fundamental homomorphism or a funhom for short.

*) We also use here the term a rule for a connective between two objects which
satisfies the conditions emphasized in [3].
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Furthermore, a sequent -and a presequent of two objects in a fundamental
semigroupoid we shall often denote by means of the signs \/ and A, respectively.
Thus, if ¢;, 1, Ep;., (¢;1,) thent; A ¢, will denote their presequent. We regard further
that all fc and lec in this papar are umique. New terms and notations will be
emphasized throughout the paper. The logical symbols occuring in the paper
have the usual meanings.

2. Definition of basic concepts.

In. this section we shall define the concepts which are basic in
the paper. They are a topology and a topological space in </. The starting
elements for the purpose are a  discrete class s;,, and a fundamental
semigroupoid p;.,(¢;.,) such that s, <p,, (#,,). We Kkeep them fixed
throughout the paper. Our purpose here is to form a spatial structure from
these two concepts which will distinguish itself, in a constructive sense, by its
beginning and its end and which will have this property at each step of the
construction. If we denote the beginning of the construction by o and the end
by 1, then all we have just said practically means that, the structure that we
mean to build in %/ has to contain the objects o and 1 and also the beginning
and the end of any its subclass. Certainly, an /-semigroupoid formed on p,,, (¢, ,)
will fulfill all these conditions. However, since we want to include the class
S+, in such a conmstruction, then we shall require that p,,,(#;.,) be such to
allow its inclusion in the construction. The question arises, in which way. The
way which we shall follow here is to utilize objects of s;,, in formation of
d-limits over certain filters of f;, , (p,.,). Thus, if I, ., is an injective single-valued
rule of s;,,, into p;.,(t;,,) and 7;,, a many-valued rule of s,,, to p;,,,(*,.,)
which assigns, to each object s; of s, , a filter 7,,,(s;) on p,,,(f;.,) then the
above story means that, there have to exist a rule ;,,:[,,~>1;,, such that
the images of objects of s;,, under G, =T, N4> T;4,) are cocones in
Pivi(ti,). The covertex of such a cocone U, (s) for an 5,&s;,, is a d-limit
object of the filter =,., (s;,,). Certainly, it is not unique. By an (i+ 1)-topo-
logy in %/ we shall mean a many-valued rule v, , for which there exists such
a rule v, ,, and by an (i + 1)-topological space, a trlple (Sit1> Tivgs Pivq (t,H)) To
make 7,., to be reasonable and fruitful in the organizational sense we must impose
certain conditions upon it. First, if 7,,, was such that I, ,(s) ©7,.,(5), 5,8, 4

|

then for the principial filter 7, (s;) generated by I, , (s,) we would have I, ,, (s;) —
Fir174, (5). However, we adopt this as a general requirement upon T, ,.
Namely, if —;,, is a many-valued rule of s,,, to p,,,(#;,,) which assigns, to
each object s; of s;.,, a principal filter —,, (s,) generated by I,,;(s,), then we
require -that r—,ﬂ(s) Fi+1Ti+ (5)- To impose the next condition we need some
preliminaries. Let us consider an inverse rule of the rule =,,, defined as follows

Tl;‘i @)= {Silsi E 5 &1HE T, ()}

Hence we have that (Vs,&7,71 () 3p; € piv)) (97 Liy (s)—>1;). Thus, the objects
I, (s) precede the object t; with respect to certain rules of p;,,. If we denote by
I, (5)<p; t; the fact that I, , (s,) precedes ¢, with respect to a rule p;&p;. , , then the
above expression we can write as (Vs, & 7, +1(t D ;. (5) <p;: ). In that manner we
have that objects of a filter may be preceded by many objects of I, (s;.,). We
ensure this by the following requirement upon =,

(Vs ©8;4) (VEET, L (5) (HI;E'%H () Il(vsie Sieq) (Fiay (~§;)‘pi1£)]§fiETi+1 (Sz/)]
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As we have seen in the above discussion, if v, has the inverse rule =;;| then
an object #;&7;,,(s;) is preceded by all objects of 7, , (T,+1(z‘,))

The above condition on 7,,, can be expressed purely in terms of filters.
Clearly, t;&7;,, (s;):m-i e (sl') ;1 t,-, where ¢, denotes a principal filter generated
by ¢, and since this holds for all s; such that L, (s))<p; t;, then the sequent
of {v,. ()| 1, (s})<p;t{} denoted by \/{*r,ﬂ(s,)f 1(5))<p;t{}  satisfies  the
condition

V{Th‘—](sl{) ’ L., (s?) <p; tz{}f“ﬂq I
and for the presequent of
' {\/ {Ti+1(sl{) ’ [i+1(S;') <p; t:}‘ t’iETH—l s }9
denoted by means of the sign A in front of brackets, we obtain

ANV i) | L (D)<t} [ H1E %,y (DY
Moreover, since this relation holds for all 7,&1,,, (s,), then we have
/\{\/{THI(SI) ‘ Il+1 (Sl)'(_l’t tl ! Ly FTt+1( )}l_z+1 i+1 (S)
Now we can summarize all the above discussion in the following. 7

Definition 1. By an (i-+ 1)-topology or simply a fopology on the

pair (S,H,le(t,H)) in 9 we mean a many-valued rule <, i8> (f,)

which assigns, to each object s; of s;,,, a filter 7,,,(s) of p,,,(t,,) in such

a way that, there exists a rule v, ,:[,, —~7,,,; where I, , is an aneCtlve

single-valued rule of s, +1 MO p; .y (4,,), such that for every s,€s,,,, T, (s) =

= 1> Mt 7. (8) is a cocome in p;,, (#,.) and which for every s5,Es;,,
satlsfles the following conditions:

Tl ()i Tie (8- ;
T2: A {\/{Ti+l(sl{) | Ii+1(S;')<“I’it;'} I HE T (Si)}'_iJrl T (5)-

The filter =, , (s) we shall call the =, ,-neighborhoods filter of s;, and
its elements, v, ,-neighborhoods of the object s, For a filterf;, , of p,., (¢, )
we shall say that 7, ,-converges to the object s; if f; .., 7. (5)-

The triple (51+1’ Tio1s Piog(ti,)) we shall call an (i+1)- or simply a
topological space in .

The convergence in the above definition means the convergence to objects
of the class s,.,. If a filter §,,, satisfies the condition f,. ;. 7. (s) and if

I,., (s;) isits d-limit object in I,.,(s;,,), then we have the existence of a p;, ,-rule
Dt ,+1(3 )1, (s), where I, (s) is the d-limit object w;,,(s;). Since the class
L. (s5;+) 1is discrete, then the only possibility is that p; is the identity of
1, (s), ie. that I, , (s,) I, (s). Hence, f,., has the same limit as the filter
7,1 (s), 1.e. it converges to the object s,. For this convergence we say that it
is along the filter t,,, (s) and call it a t, ,-convergence.

- In one of the following cections we shall specify particular types of
topologies on (s;.,, #;,,(#;,,) by separation axioms. Here not entering into these
axioms we shall mention some types of possible topologies on (S;,1, Piy1 (tis1))s
those which will be extreme in the class of all topologies on (5,5 P:yq(f,,1))-
If the rule v, is such that =, (s;)=—;,, (s}, then such a topology we shall
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call the discrere topology. Under this topology the only filters which converge
fo s, are the first filter o;,, of f;.,(»;,,) and the principal filter —._,(s;). The
first filter because it converges to every object of s;,,, namely for everys; &, , we
have 0., -;,171.1(5;). If the rule 7, is such that for all 5, € s,,4 Ti (D=L,
where [;,, is the last filter in f;,, (p;,,), then we have the trivial topology:
Under this topology all filters converge to every object of the class s;,,.

In the remainder of this section we mention that, in future, always when
there will be no possibilty of confusion we shall write s; instead of I, (s) or
simply consider that s;,, is strictly contained in p; ., (¢;,,). Moreover, to simp-
lify terminology, instead of an w,,,-neighborhoods filter of an object s,& ;.
we shall simply say a neighborhoods filter of s,.

3. Reformulation of basic concepts.

In the previous section we have defined the concept of a topological
~structure on a level in %/. In this section we shall study other . ways of intro-
ducing this structure and also their connections with already given definition.
By the way we shall introduce some new concepts. They are openness and clo-
sedness of objects in a topological space and also the concept of a basis for
topology.
First we shall reformulate the Definition 1 by specifying the semigroupoid
Dy (.. We have already said that p;,, (z;,,) is to be such to allow inclusions
of objects of s;,, in formation of a structural whole in %/. The way which we have
employed consists in inserting these oObjects as d-limit objects for certain filters on
P+ (t;,,)- Now we shall specify these filters. We assume that they are those filters whose
ranks are greater or equal to a fixed cardinal cg. By therank of a filter we mean the
smallest cardirality among all the cardinalities of the possible bases of it. Let us denote
by p,., (;, )% asubclass of p; , , (;,,), not neccessarily full, which consists of all objects
and rules of neighborhoods filters =, ,(s;),s;Es;,,. Then, for every object
t,Ep;.(t;, ) there exist 5;Cs;,, and a rulep,&p,,, suchthat I, ,(s)<p;t; The
objects of the class p;,, (f;,,)°8 We shall call open objects. These objects have the
following property: if ¢, Cp;.,(f;, )% and s, s, then the existence of a rule
P; < p;,, such that I, (s)<p; t; implies #,E 7, (s). We can Tultilize this pro-
perty to define the open objects.

Definition 2. For an object ¢,Cp, ,(t;.,) we shall say to be open
if the existence of a p,&p,;,, such that I, ,(s,) <, ¢; for an 5,&s;,  implies that
t,E7;,,(s). For a filter we shall say to be open if it has a basis consiting of
open objects.

Since we want to give a new definition of topology by means of the class
Piyi (6, )%, then we have to investigate its properties. They are given in the
following

Proposition 1. The class p,;., (t;.,)% possesses the following properties:

i) It contains the strictly first object oS and the last object 1;

i) it allows fc formation on each subclass and lcc formation on each <cg-
subclass of it.

Proof. Let ¢,,,(b,.,) be a <cgsubclass of p, (%)% . This class is
certainly contained in a neighborhoods filter =, (s,), for an s, &s;, ;. Then from
the definition of filters [3], in which are now . specifiecd cones and cocones
to be fc and lcc we have that, together with ¢, (b;, ). 7;,; (s) also contains
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its Jec. Let us consider now fc ¢,,, over an arbitrary subclass r,,, (q, +y of
Pivq ()@ with the vertex b. Since all rules of »,,,(z,,,)% belong to neigh-
borhoods filters, then so do the rules of ¢, ,. Thus, for an a,&r,,, (a) there
exists a o; & @;,; such that ¢,:a,— b, and ¢; belongs to a neighborhoods filter.
On the other side we have the existence of an s, &s,,, and a rule p,Cp,,,
such that s; <, a. Hence, a; Cv,,,(s) and because of the antiresiduality pro-
perty of filters also that b, &, (s)). The property i) follows from ii).

The -property i) in the above proposition is not independent from  ii).
However, we write it separately to emphasize that the strictly first object o5 and.
the last object 1; exist in p, ,(#,,,)% . To mention here that filter generated by
the object of we shall call the null filter. It is obviously the first object o

in the semigroupoid f; , (p;,,)-

Besides the properties given in the above proposition the class p,,, (¢,,,)®
also possesses the following property:

i+1

iii) for every s;& s, there exists an object ,&p,,  (f,, )% and a rule
Pi€piyy such that I, (s) <pt; and for each pair 7, t/Ep, ,(f;,,)% such
that [, (s) <51, and I, (s) < t; With respect to the rules p), p/Ep,, .
the existence of a rule p,Cp, ,, p;:¢,— ¢, or p,:t;— t, implies holdness of the
formula Ceym (P, p.; PY) respectively Coom (P}, P P)).

The above property is in fact a connection between objects of s,,, and
Piva (11,1 - '

By utilizing the properties of the class p,, (f;,,)% We can give a new
definition of topology. In what follows we shall give this definition and estab-
lish its connection with already given definition.

Definiton 3. By a cg-topology on the pair (s;,,, p;,, (%) in % we
mean a subclass p,,, (#;.)% of p,,,(z;,,) which possesses the properties i) and.
ii) of the Proposition 1 and the connection property iii) given above.

Now we shall show that “this definition is logically equivalent to the
Definition 1. At this we Ccertainly consider that the ranks of mneighborhoods
filters are > cg.

Proposition 2. Definition 1< Definition 3.

Proof. From the Proposition 1 and the discussion behind it we have
the direct implication. Conversely, let /4, ,(s,) be a subclass of p, (¢, )%,
the class of objects of which consists of all those objects 7, p;., (f;,,)® such
that §;< ¢, for an s, s;,, or more accurate I, , (s;) < ,; ;, Where I, denotes
an injective rule of s;,, to p;.,(¢,,,). However, according to our stipulation
we write s; instead of I,,, (s). From ii) we have that </, ,(s) is a cgfilter

e ——y . .
basis. Then, t,,, (s)=c/,,, (s;) defines a filter for which s, is d-limit object
and which is such that s; -, 7, , (s,). Hence T, holds. Further, if t,& /, ., (s)
and 5; <« ,;1;, then clearly 7, & c/f;,, (s} and thus there exists a 1,& /4, (s)) and
a¢q;:1;— 1, c/f; , (s;) such that the formula €., (p}, g; p}) holds in p;,, (¢, )% ;
a® this pis;—>¢] If ;&7 (s) is fixed and s]<p; 7, then we have 7, (s)—
b, t, and moreover VAT )| s <t} iy 1, Hence AV AT )| 8] <ot}
T ) g AME €T, (59} Denote A4 E T, (s)} by 8;,;- Then
obviously 3, ; ;. 7;,, (s;). On the other side §;,, has a basis, the objects of

i+1
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which are Covertices of lec’s over subclasses of «/;,,(s). From the definition
of filters we have that these objects belong to ,.,(s), whence 7,,,(s) —;,,8;,,.
Then,r; , (s)=3;,, and T2 also holds. Thus, the rule 7, :s;,,~— p,,, (#;,,) such

that Ti+1(si):<jyi+1(sz) iS a tOPOIOgy on (st+1’pi+1 (ti+1))-t]

Now we shall define certain operators on a fundamental semigroupoid,
respectively an /-semigroupoid p,,, (#,,,) and show that a topology can also be
involved by means of them. We first define an operator of complemeniaiion
on p;.,(¢;,,), i.e. an operation by which we shall be able to distingnish objects
in it. Let p;,;(%,,) be a fundamental semigroupoid which contains the strictly
first object of and the last object 1, and let %,., be a funhom of p, L1t to
itself which satisfies the following conditions:

a) G, assings, to each object 1, &p, (¢, ,), an object %, () in such
a way that the presequent 7, A%, ., () of £, and ¥, (¢,) is equal to the objec:
0% and the sequent #;V 5., (¢, to the object 1;

b) Dy (2) = tlpﬂ = Cbl’o (%H—l )= %ﬂ”l (t?’i);
) (VP EPi (60) (Bis1 Bisr ) =P).

A funhom of p,,, (#;,,) to itself which satisfies the above conditions we
shall call an operator of complementation on p,,, (z;,,). The condition b) above
means contravariantness of %,;,,. Thus, an operator of complementation is a
contravariant funhom of p; , (#;,,) to itself satisfying the conditions a) and c).
The condition ¢) concerns both rules and objects. If p;, (¢, ,) is an l-semigrou-
poid, then we require moreover that Biv1 Is a cy-funhom €4 < Cpyy» 1.€. a funhom
of the [semigroupoid p, , (¢,,,) to itself which preserves fe and lcc over any
its ¢,~subclass, where ¢, <c,. More correctly, it rewrites fc into /cc and con-
versely. Thus, the definition of an operator of complementation is as follows.

Definition 4. By an operator of complementation on an I-semigroupoid
Piy(f;,,) We mean a contravariant funhom %, of p;,,(t;.,) to itself which
satisfies the following conditions:

61:Ei.1 is a ¢funhom for every c,<c,(,.
G2V, ) NG (1) = &LV G (t)=1).

%3: (vpi Epi+1 (ti+1)) (%ﬂzﬂ %iﬂ (pi) :pi)'
The pair (p; ,(t;,1); Gi.,> we shall call a complemented I-semigropupoid.

A unique contravariant funhom @, satisfying the condition %2 is
obviously an operator of complementation. In one of subsequent papers we
shall be concerned in more details with these and some other funhoms being
near to these ones. ‘

Let us define now certain new operators. They are a closure and an
interior operator. We first define a closure operator. Let p,_, (¢ .1 bean lsemi-
groupoid and C,,, a covariant funhom of p,,,(¢,,) to itself. For this homo-
morphism we shall say to be idempotent provided C, 1 Cin (0)=C;  (p) for
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every element p; of p; ., (#;,,). We shall say that it is a suc-funhom if there
exists a natural rule v,,,:7;,,— C;,, such that w, , (t): L (t)—~C; () is fc
in p;,,(t;,,) with the vertex C,_, (¢). Here I,,, denotes the identity funhom
of p;,, (#.,). According to the stipulation made in the introduction the mention-
ed fc is unique. We have called C,,, a suc-funhom because it assigns, to each
object of p; ., (t;,,), its successor. Furthermore, if the funhom C,,, is such to
preserve fc over any < cg-subclass, then we shall call it a fc<% -funhom. With
the above notions we define a closure operator as follows.

Definition 5. By a closure operator on an [-semigroupoid p;  (#;,,)
we mean a covariant funhom C; ; of P, +1(t,,) to itself which fulfils the
following conditions:

C1:C,,, is a suc-funhom.

C2:C,,, is an idempotent funhom.

C3:C;,, is an fe<< -funhom.

C4:C,,, leaves fixed the first object of p,,, (¢;.))-

The pair {p; ., (t,); C;,,> we shall call a closure I-semigroupoid.

By means of this cperator we can define a topology. Let {(p;,, (t;.1);C;. 1)
be a closure l-semigroupoid. The image of p,,, (¢,.,) under C, , is a subclass
of p,,,(t;.,) consisting of the objects C, , (#), t,&1t;,, and the rules C,, ,(p),
P; ©p;.,- This subclass of p,,, (¢,,) we shall denote by C,,,(p;,)- I p,, (%) is
also a complemented /-semigroupoid, then %;,, C,,, (p;.,) isasubclass of p; ; (%),
the class of objects of which consists of complements %;,,C;,,(#;,) of the objects
C,.,(t)of C; ,(p;, ). In the following proposition we shall show that 7; , C;,,(p;, 1)
fulfils the conditions to be a topology.

Proposition 3. Let (p;.;(t;,); Birp Cir1y be a complemented closure
I-semigroupoid. Then the image G;.,C;. (p;,;) of pi. () is a topology.

Proof. We have to show that %;,,C;.,(p,,,) satisfies the conditions
i) and ii) of the Proposition 1. First we show i). Let us consider the object
03Ep,. ;). According to C4, C; ,(0))=0}. Hence 0j€C,,,(p;,,) Since
B+ (0)=1,, then 1,&€%;,,C;;(p;,,)- From the properties of the objects 1;
and C, ., (1,) we have C, (1)~ 1; and hence 1 6Cz+1(Pz+1) Since %lﬂ(l,)—
Wos then OSE%HI l+1(p1+1)

Now ii). We show first that %,;,,C,,,(p;4,) allows lcc formation on each
< cg-subclass. Let 7,.,(a;.,) be asubclass of p;,, (¢;,.,) such that G, Cpy (54y)
is a c,subclass of ¥,.,C;i,(p;r)), Where c¢,<<cg. Then from the definition
of %;,, we have that lecs (B Cioy (F11)) = Bis1 J€2(Ciyy (rii ) and because
of the property C3 of C,., that G, fe=(Cpsy (ri11)) = Bie1 Cray S (11 (@10)-
Hence, since fcu (r;y,(a;)) is in p;, (#:4,), then 5, Ciy fea (1 a;,1)) is in
Biv1 Civr (Prsy)- It means that lecs (G, Cppy (714)) 8 also in Fruy Gy y (£144) and
that this one allows lcc formation on each <Ccg—subclass. Let us consider now
an arbitrary subclass ¢;.,(b,.;) of p,.,(#;,,) and show that fc over its image
unde’ %1 Cipy I8 i Bhuy Cipy (s Denote  fe(Fi1Ciny (@i11)) BY Cruye
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Certainly, Cjy;=%;.,lcc(Ciyy(4:,), and hence G, (C;,,)=lec(C, (4, )
being in p;,, (#,,). Let k; be the covertex of this lcc. C; | (lec(C; ,(q;,,))) is
obviously a cocone over C,,,(g;,,) with the covertex C,,, (k;). Since F;,,(C;,,)
is a unique lec over C,. ,(4;,,), then there is a unique rule ¢,:C,_ , (k)—>k,
such that for every C,,,(b,) commutes the diagram

C'i+1 (bz)
(AN

k; Cii1 ()

On the other side, from C1 we have the existence of a unique fc k;—~C,, , (k).
Hence C, , (k;)~k;, respectively Cii16i1(Cii)~Gr1 (Cryy)- Thus, G, (Crly)
is in C;,(p;,,) and since %i+1%i+l(¢i+1)=ci+l 1t 1s also in %1 Gy (£i44)-
Thus, %;,,C;,,(p;,,) allows fc formation on any its subclass.

The next operator that we mean to involve is an interior operator. Its
definition is dual to the definition of a closure operator. Because of that we
shall write it without any comment.

Definition 6. By an interior operator on an l-semigroupoid p;,, (#.,)
we mean a covariant funhom O,,, of p, (¢, to itself which fulfils the
following conditions:

01:0,,, is a prede:-funhom.

02:0,,, is an idempotent funhom.

03:0,_, is an lcc<¢s -funhom.

04: 0, leaves fixed the last object of p;,, (#;.))-

The pair {p, ,(t;,,); O;,,> we shall call an interior I-semigroupoid.

The term, a predec-funhom is dual to the term a suc-funhom. Thus, it
is a funhom which assigns, to each object of p,.,(#,,), its predecessor. The
remaining terms are quite clear.

Now we shall show that a topology can also be involved by means of
this operator. Let p;,,(#,.,) be an Il-semigroupoid and O,,, an interior operator
on it. By O, ,(p;,,) we shall denote a subclass of p, ,(#;,,) whose class of
objects consists of the objects O, , (7)), 1,E¢;,, and the class of rules of the rules
Oi+1 (pi)a piEPt‘«)—l‘

Proposition 4. The subclass O;_,(p;,,) of an interior l-semigroupoid
Di(t:, ) is a topology.

Proof. Outlineof the proof. Before all 1,0, , (p;,,)- From O,,, (07)— o]
and 0;>0,,, (0}) we have O,,,(0})~ 0} and hence of €O, ,(p,,,). Certainly,
O,,;(p;.,) allows lec formations on < cg-subclasses. Now we show that it also
allows fc formation on any subclass of it. Let O;,,(g;,, ;.,) be a subclass
of O, (p;,y). Clearly, fc over O,,,(¢;,) is in p;,,(¢;,,). Denote its vertex
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by V. Then O, (fc(0;,,(q;,,)) is- a cone over O, (¢,,) with the vertex
L0 P 1(v) From the definition of fc we have the existence of a rule vi—O,., (v)
such that the diagram

Vi 0. ()

A

Oi+1(bz)

commutes for every O,,, (h)CO;,, (q;+,). Further, from O1 and the uniqueness
we have O,.,(v)~v, and thus the closeness of O,,,(p;,.,) under fc formation
on every its subclass.

There is an obvious property of the defined operators given in the
following

Proposition 5. The operators C,,,, O.,, are determined uniquelly up
to equivalences.y

Hence we have that topologies involved by means of these operators are
also unique up to equivalences.

In the next proposition we specify a connection between the operators C;,
and O;,, expressed by means of the operator %, ;.

Proposition 6. Provided C,,, is a closure operator, O, , an interior
operator and F;,, an operator of complementation on an [-semigroupoid, there
is the following relation

1+1 %ﬂl+1 1+1'%i+1'

Proof. We have to show that the rule %;,,-C;, %, prosseses the
properties 01 —-04. It is obviously a covariant funhom. We show first O 1.
Let us consider an object t,Cp; ., (¢;,,)- Its complement is the object F;,, (#,)-
By applying to this object the funhom C,,, we obtain fc

Pis1 (Bie1 () Bria t)>Ci 1 Biir @)

The funhom Cz+1 rewrltes It 1nto lCC %t+l (Pl+1 (%l+1 (tz))) %l+1 i+1 ((pl+1 (t )">t

Furthermore we have ((77)1+1 l+1%t+l 91+1 l+1 51+1 i %)t+1 z+1’?§z+1 (t)
Thus it fulfils O2. The proportiecs O3 and O4 are easy to be shown. For

instance @1 Ci 1 Grpy (1) =Bii1 Cisy (o}) = Bir (03) = Ly

From the above connection between operators O;,; and C, ; we have that
an object 4P, (%,,) is closed (open) iff its complement %, ,{t,) is open
(closed). To determine closed objects in p;,,(t;;,) we define the concept of an
adherent object of s,,, to an object of p;,, (%, )-

Definition 7. For an object 5,& 5,,, we shall say to be aczreat to
an object 1,Ep; ., (¢, iff 7, () NGFED, -

If we take fc over an object #;&p; . (f;.,) together Wlth the class of all
its adherent objects, then we have that the vertex #; of this fc is a closure of .
Certainly, 7, is obtained from #; by adjoining objects of s, ,, or more accurate
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of I, 1(Sz+1)’ which are adherent to the object #. This operation obviously
fulfﬂs the conditions to be a closure operation. Hence we have an obvious

Proposition 7. An object t,Ep,,  (t;,,) is closed iff it contains all
its adherent objects.

In the remainder of this section we shall define the concept of a basis
for topology and show that this concept completely characterizes a topology.
~ Let us denote by g, , (b;.;) a subclass of p,.,(#,,) of a space
(8,415 Tis1»> Pivq (8,1)) Which consists of all objects and rules of bases of neigh-
borhoods filters =, (s), 5,&s;,,, one for each neighborhoods filter. This class
possesses the following property: for every =, ,-Open object ¢, and every s,Es;,,
such that s;<,; ¢; there exist an object b;,&¢q;  ; (b;,,) and arule p,<p, , , such s; i<p} b
and p;:b~t; and for which the formula €, (p{> p;; P}) holds. We utilize the
properties of this class to define a basis for topology.

Definition 8. A subclass ¢, ,(b;,;) of p;, (t;,)% of a cgspace
(8,15 Divy ()%, piyi(t;.) we shall say to be a basis of this space if for every
object #,Ep;, (f;,,)® and every s;Cs;,, such that s« ¢, there exist an object

b;cq,.;(b;,,) and a rule p,Ep,+1(t,+l) such that s;<,~b; and p;:b—~t;.

Certainly, from' the property iii) of p,,,(#;,,) we have holdness of the
formula Ceo, (27, i3 P)-

A space (Sz+1 > Pisa (tx+1) &, Piyq (tl-l-l)) pOSSGSSCS at’ least one baSIS’ Pisq (tz+1) e
itself. By means of the notion of a basis we can characterize togpological space.
The characterlzatxon is given by the following

Proposition 8 Let the subclass q;,, (b;,,) of p;., (¢;,)% possesses the
Jollowing property:

B For each s, s; , the subclass i1 ) 0f G, (B;.), theclass of 0b_]€CtS of which
B)  consists of all those objects b,=gq, ., (b;,,) such that s<b;, is a filter basis.

—
Then the rule <,  :8. D (t;,,) such that <, , (s)=c/H;.,(s) is a topology
having q;., (b, ,,) as basis. Conversely, every topology on (s;.q, P;+,(t;,,) can be
obtained in this way.

Proof. Analogously to the proof of the Proposition 2 we have that the

rule 7,,, such that 7, (s)=c/,,,(s) defines a topology on (s;,, pi,; (t:r1)-
If ¢. is on object of p,,,(t;+)®, then for each s;Cs;,, such that s;<b, we can
find a b;cq;., (b;+)) and a rule p,&p;,; (4;,,)% such that s<b; and p;:b—>t;
Hence, g;,,(b;.,) is a basis for the topology.

Conversely, let 7;., be a topology on (s;, p; +1(z‘, +p) and g;, (b;.,) a basis.
If </f; .. (s) is a subclass of ¢,.,(b;,,) and r, Ti41(4;,,) its<<cg —subclass, then lcc
over this class is in p;,,(%;,)%. Provided k; is the covertex of this lec, there
exists a unique p;:s—~k; From the definition of a basis we have the existence
of an object b,&q;,,(b;,,) and a rule p;E p;., (¢, ) such that s, < b; and
D;:b—~k;. Hence we conclude that </;,,(s,) is a filter basis. Certalnly, there

exists one such topology on (5,1, Py (tin1))4

One can also define the motion of a cobas1s for topology, but we omit
to do it.

5 Publications de I’Institut Mathématique
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4. Separation axioms.

In the introduction we have said that in formation of a topological
structure in %/ there are conditions which regulate this formation and that among
them there are separation axioms. The choice of the conditions which govern
the formation of a topological structure ought to be such to ensure certain good
properties of it. We choose separation conditions so to ensure the unique con-
vergence of its filters and distinguishability of its objects. Thus, our choice of
these conditions is the usual one. By their specifying we obtain various kinds or
various realizations of the structure. We devote this section to formulation of
separation conditions and characterization of structures embodied by them. By the
order we have

Definition 9. A topology =,,, is a T,-topology, and the space
(Sis1s Tivp Pivr (D)) a Ty-space if the following axiom holds

(1) ' '_'i+1(S;)l—i+17i+1(5'i)3si=s;-

Certainly, a discrete topology on (s;,,, p;., (#;,,)) is always a T,-topology.
We have also an obvious.

Proposition 9. If Card (p,,,(t;,,)<cs, then the discrete topology is
the only T-topology possible on (s;,., P;.i(t;11)4
The next proposition gives a characterization of T-topological spaces.

Proposition 10. The following statements are pairwise equivalent:
D) (81005 Tip1s Pigy (1,1) 18 a T-space.

2) Given two object s;,5,€5;,, such that s;7#s, there is an object
L, ST, (5) such that —is;<t,. ~

3) The only presequent of the objects of =;,,(s;) is s

4) The objects of s;,, regarded as contained in p, ,(t,,,) are closed.

Proof. Let s; be an object of s;,, such that s;< ¢, for all ;& (s),
then certainly —;, (5) ;.1 7;.1(s). Hence because of 1) we have s)=s,.
Thus, for the case of disjoint objects s; and s; there must exist an object
;& 7., (s) such that —1s;< 7. From (7T,) we have that s, is the presequent of
the objects of ;,;(s;). By 2) we have that s; is not their presequent for all
s;# 5;. In such a way we have shown 1) = 2) and 2) = 3). Now we show
3) = 4). If s, s, then s; is not the presequent of the objects of =, +1 (),
hence 7., (5) A ;.1 () =0;,,. Thus, the only object adherent to s, is just s.
Hence, s, is closed in p;,,(%,,). Certainly, in a more precise writing ought to
stay I,,,(s;) instead of s,. Finally we show 4) = 1). From —; +108) iy T (5))
= T () Ay (5) # 0;,, follows that ) is adherent to s, and because of 4)
that s;=s;.g

Definition 10. A topology =;,, is a Tj,topology, and the space
(Si315 Tiv1s Piyq (8:.1) a T,-space if the following axiom holds

(T S8, = Ty ) N Ty (S;)=0i+1'
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The above condition means injectivity of the rule 7, ;. Thus, a topologi-
cal space (S, Tio1 Pigq (tiey) is a Tp-space if the rule =, , is injective. Cer-
tainly, this condition guarantees uniqueness of the limit, of course, if the limit
exists. Thus, in a T,-space every filter, except v,,, which in any topology converges
to all objects of s;,,, converges to at most one object of s;,,. The converse
statement, if every filter in a space converges to at most one object then thls
space is a T,-space, is also valid.

From the expression —; ., (5)) b1 %5, (5) we have =, (5) =41 Tiry ) A
7,1 (s). Hence we have further that =,,,(s) ATy, (s) # 0;,4. If the topology
is T,-topology, then s,=s,. In that way we have proved the following

Proposition 11. Each T,-topology is T,-topology.y

Certainly, the converse statement is not true. The discrete topology on
any space is always a T,-topology. A characterization of T,-spaces is given by
the following

Proposition 12. The following statements are pairwise equivalent:

1) (1415 Tiwrs Pisvy (ti) B8 @ Ty-space.
2) Any two distinct objects of s;,, possess disjoz'nt neighborhoods.

3) If s, % 5,, then there exists a neighborhood t; v, ,(s;)) such that s, is
not contained in C; ().

Proof. The proof is obvious. From disjointness of filters t;,,(s;) and
Ty (59 follovvs disjointness of their obJects Then for a t;E7,,(s) we have

Ti 01 (5) At;=0, ., and hence that s; is not in C; , (¢,). The converse is obvious.;

So far we have not taken into account that besides open filters there are
also clo'ed filters in a topological space. For a filter we shall say to be closed
if it possesses a basis consisting of closed objects. If 7,,,(s;) is a neighborhoods
filter in a space (8;,1» Tj,1 Pisq (i) and C; ., a clo ure operator on p, ., (£,4)
then C,,, (t;,,(s)) is a filter whose basis consists of closures of basis objects
of 7;,,(s). The following axiom will concern these filters.

Definition 11. A topology =;,, is a T,-topology, and the space
(S;415 Tiy1o Pivq (:+1) @ Ts-space if the following axiom holds

(T3) x+1(Tt+1(S)) T1+1( )

for each s,&s;,,

A space which is both a Tj-space and a T,-space we shall call a regular
Space.

The condition (7,) above means that the closure operator C,,, acts fixed
on the neighborhoods filters in con idered space. Thus, in a T,-space all neigh-
borhoods filters are closed. In the next proposition we give a characterization
of these spaces.

5*



68 Milan Purié

Proposition 13. The following statements are pairwise equivalent:

1) (Sivps Tiwrs Piva (tiyy) is a T;-space.

) (Ve T, ()3 t,E T ) Aln e, () (p; Ci.i (t;) — 1)

D VEEP LGV sE8,.) (€ )=t & T 5,< 1) > 3a,b,Cp,,,)
L )®@Alp CP)6,<a, &pit;—b; & a; \Db; =0)).

Proof. 1) & 2) follows from definitions. Namely, from the definitions
of C,,, and Ty-spaces we have the commutative diagram

f.

i

AN
/

/ h
t; fC = Ci +1 (tt’)

Conversely, a subclass of t,,,(s,), the class of objects of which consists of the
objects C;,,(#) is a basis of 7,,,(s). '

2) = 3). Certainly, %,,,(¢,) is open object such that 8; < E1q (¢). Hence,
Bi:1(@) €7 (s) and by 2) there exist an object @, 7;,,(s;)) and a unique

rule C,, (@)~ %,..(t) and hence further a unique rule #,—%;,,C;,, (a).
If we define ,=%;,,C;,,(a), then obviously a; \b;=0"

3) = 2). For an arbitrary object a; €p;,, (¢, & ET,,(5) = O0;,,(a) E
741 (5;). Clearly, @, O;,,(a;) is closed object not containing s; and hence there
exist open objects b; and ¢, and a unique rule p, such that s,<b,, p,:%,;,, O;,, (a)
—¢; and b; \¢; =05 Since s;< b; then b, &7, (s;). We have further the unique
rules G, (b)— Gi,1(c) and G, (¢)— a; and hence the result.,

From the statement 3) of the above proposition we have that for every
closed object #; and every s; of s;,, which is not in this closed object, the objects
@; and b; such that #,— a; unique and s;<b; are disjoint. Thus, the axiom (T)
means separation of closed objects of p,,,(#,,) and objects of s, .

So far formulated axioms are independent. However, there is the follo-
wing connection among them.

Proposition 14. (T5) & (T)) = (T,), i.e. each regular space is Ty-space.

Proof. Let 7, ,(s)A7,,(5) # 0;,,, then for all #,&r,,,(s) we have
s;<t; and hence —; ., (5) ;.7 (s). Since 7, ;(s) is open we have
Tiv1 () =i 117,41 (). Symmetrically we obtain t, ., (s) ;. 7, +1 (). Thus =, (s)=
Ti1 (57 If (T}) holds, then s;,=s). Hence (T,) holds.y '

In the remainder of this section we formulate axioms by which we shall
separate objects of p,.; (%, ).

Definition 12. A topology «,,, is a T,topology, and the space
(1410 Tiw1s Py (1)) @ Ty-space if the following axiom holds

(T) . (V:5,CP 1 1)) (Coyy (B)=1&C, (1) =t] & LAt =0) =
@4 C1) @q,ETL) (@A d,= ).
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A space which is both a T,-space and a T-space we shall call a normal
space. : ,
This axiom is not a consequence of the axioms (7T)~(T5). However, the
followmg assertion holds.

Prop051t10n 15. Every normal space is regular -

Proof. It is enough to consider an object s, instead of #. Because of
(T,), s; is closed and the result follows immediately from (T,).,

In the next proposition we give a characterization of T -spaces.

Proposition 16. The following statements are equivalent:

D) (Siv15 Toars Piyr (tiiy)) i a Ty-space. ’

D) (V1€ (040 G () =1) (Y 4,E P, (61,); 4, € 1) B E P (610);

a & ) G piE Pis) (7 Ciyy (@)~ @)

Proof. Since g € f, then there exists a rule #,—a, and from the definition of

0,., a unique rule .~ O, ,(a). Certainly, 7, and %, , O,,, (g, are disjoint closed
. . . ’ b I .

objects. From (T,) there exist objects a;i<t; and b,&%,,, O; ,(a,) such that
a; Ab; = 0S. Hence we have the existence of a unique rule C;,, (@) = ;.1 ;. (b).

On the other side we have unique rules %;,, 0;,, (6)— O,,, (a)— g, Thus there
is a unique rule C,,, (d})— a;

Let us prove the converse. If # and ¢, are two arbitrary disjoint closed
objects in p;_ (¢ +1), then there is a rule t,— @,,, (¢). Hence %, , ()< 7, and
there exists an g, e, t; such that C,,, (@)~ G, (?) is a unique rule in p, , (#,,)-
Hence we have then #—@,,,C;, (a), ie. %zn ,“(a)Et If we defme
a;=%,;,1Ci1 (@), then a; \d, = 05

The last axiom in this section will sharpen the axiom (T4) Its formulatlon
is as follows

Definition 13. A topology =;,, is a T, topology, and the space
(S; 01> Tiv1 Pivg (G,1)) @ Tyspace if the following axiom holds

Ty (V. ;€0 (e ) (Coy (1) =t or Cy (1) =1 & [ NE=0) =
A, 1) @d; €1)(a,Nd, = 0)).
A space which is both a Tgy-space and a T,-space we shall call a com-

pletely normal space.
The following proposition is obvious from the definition.

Proposition 17. Each Tsspace is a T,space.,
Hence we have then that every completely normal space is normal.

5. Cardinality axioms.

In this section we shall deal with the second group of axioms which
govern formation of topological structures in %/. They are cardinality axioms.
By means of these axioms we shall go a step further in making precise the relation-
ships betwen objects of s,,, and certain subclasses of p;,,(f;.,) in a space
(Si41> Tir> Piry (t141)). By the way we shall define a new concept and a cardinal
concerned with it.
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In the Section 3 we have stipulated that the ranks of all neighborhoods
filters are >cg, where cg is a fixed cardinal. Certainly, the ranks of all filters
of f;,,(p;,,) are bounded above by Card (p,,,(#;,,). Therefore, for every
topology on (8,4, Py, (f;.,) there exist a least cardinal number « such thas
Rl (7;,,(s)) <« for all s;&s;, ;. This cardinal number we shall call the rank of
the space (S;,1> 711> D; H(t, +1)) With respect to the topology =, ;.

Definition 14. By the rank of a space (S;,,, Tir1s Pivi (1) With
respect to a topology rt;,;, we mean the sup of all neighborhoods filters
Tis1 (S)’ SIES1+1’ Le.

Rk( i+12 T1+1’ p1+1 (tr+1)) Rk (T1+1) =Ssup {Rk (Tz+1 (S)) I S e +1}

If Rk (r;,,)<cs for a space with the topology <;,,, then we shall say for
it to be of the first category. The rank of spaces with the discrete and the
trivial topologies is equal to 1.

Besides the just defined cardinal number we can define one more number.
It is concerned with the bases of a space. Among all the bases of a space
(Si11> Tiw1> Pigq (t;.y) there are those of minimal cardinality. We call their
cardinality the basis degree of (s;,, 7;, 1, P;,1 (¢;,,)) or simply of the topology 7, ;.

Definition 15. By the basis degree of a space (S;., Ti.1> Piri (tis1))
we mean the minimal cardinality of all its bases, i.c.
Bd (115 Typ1s Pisi(tiny)) = Bd(7;, ) =min{Card (4;,, (b;,,) | 4;,, (;,,) a basis

of ( +f1" Tl+1’pl+1(t 1))}

Bd (S; .15 Tis1s Pis1(t; 1)) <Cg, then we shall say that the space is of the

i

second category. Any basis g;,, (b;,,)) such that
Card (9;,1 (5; 1)) =Bd(S; 15 Tiy1s Pivi (inr)
is a minimal basis.

Let qt+l(b1+1) be a mlnlmal baSIS Of (S1+1’ i+1° p1+1(tt+1)) a‘nd dyt+1(s)
a subclass of it being a basis of 7,,,(s) for an 5,Cs;,,. Then

Rk (7, (s)) < Card (/1 (5)) < Bd (8;, 15 Tip1s Pivy (Fi40))-
Hence we have. -

Proposition 18. RE(S;,.1» Tiris Piv1 Gia) <BA(S; 15 Trp1s Piv1 G )

The basis degree of spaces with the trivial topology is always 1, while
those with the discrete topology is equal to the cardinality of s;,,.

In the rest of this section we define a new concept and a cardinal number
concerned with it.

Definition 16. For ‘an object ¢, of a space (8,15 Tip1s Pisg (Eisr))
we shall say to be densely near by an other object ¢; of the space if v, ,(2):
1t—C, () is reducible through ;.

Certainly, if #; is densely near by the object 1, of the space, then C, (1)~ 1,.
The smallest possible cardinality of such objects in a space (5;,1» Ti1» Pirq (fis1)
we shall call the separability degree of the space or of =, , for short.

Definition 17. By the separability degree of a space (8;,,» T;.15 Pir1 (tis1)
we mean the minimal cardinality of objects being densely near by the object 1,
of the space. In symbols

Sd (5,15 %415 Pist (4, )) = Sd (7;, ) = min {Card (z,) | 7, densely near by the object

1, Of(sx+1’ i+1s Piva (tz+1))}
If Sd (s; . 1» T, 15 Pry1(t: 1)) < C, We shall say that the space and topology are separable,
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The separability degree of the trivial topology -is always 1, while of the
discrete topology it is equal to the cardinality of s;_,.

If we regard a minimal basis of a space (8;.;> Ti.1» 2; +1(t, +1) and take
into account the definition of bases we can prove the following.

Proposition 19. Bd(si,1s Tisrs Pre1 (G4 >S54 (Sirs Tivrs Py (G
Since- the proof of this proposition is obvious we omit it.

6. Compactness axioms.

In this section we shall formulate the third group of axioms which govern
formation of topological structures in %/. A~ space formed on (s, 51 Piat (7))
according to these axioms will distinguish itself by a “stronger connection
between objects of s;,, and filters of p;,, (¢;,,)). Namely, the axioms will ensure
that a sufficient number of filters have their d-limit objects in s;,,, i.e. that
the space possesses a sufficient number of convergent filters. We formulate
here a type of these axioms and in a separate paper we shall consider some
another types of them. For their formulations we shall have to involve certain
new concepts.

For the present formulation of compactness axioms we need the concept
of an adherent object to a filter. Its definition is amalogous to the definition of
an adherent object to an object -of a space.

Definition 18. For an object s;0fs;,, in a space (5,1, Tiyq> Pyt (ti11))
we shall say to be adherent to a filter f,,, of p,,,(#,,) if the condition
fi+1/\Ti+1(Si)3,éDi+l hOIdS' . ’

Certainly, if s, is adherent to {;,, then there exists a filter g, , being different of

Dl+1 and SUCh tha‘t gl+l I—l+l i+l (Sz) and gl+1 l_1+1fz+1 Forlnstanceg,H f1+1 /\Tz+1 ( )
issuch a filter. Conversely, if there exists a filter g;,,0;,, which converges to s;

and such that g,k f;,, for a filter fis1€ 141 (Pi40)> then T;+1(S)/\a x+lgt+1
for each object a; of f,,,. Since g,,,70;,,> §; is adherent to every object of f;,,
and thus to f;,, itself. Hence we have the followmg

Proposition 20. An object s;=s,,, is adherent to a filter {,,, iff there
exists a filter converging to s; and satisfying the conditions §; ,#9; ., and
Givilin fi+1'l
: Now we can formulate desired axioms. These axioms will guarantee the existence
of adherent objects of all or certain filters in a space. Let ¢, be a cardinal
number > cg.

Definition 19. A space (S, 715 Py (4,,)) and its topology =,
we shall say to be completely compact (c,-compact) if the following axiom holds

(C) (vfz’+1€f;‘+l (pi+1); fi+17épi+1 (& Rk (fi+1) Y)) (BS E +1) (Tz+1 /\Tz+1(s)7£01+1)

Thus, a space is completely compact if each its filter possesses at least
one adherent object. Certainly, a space is completely compact iff it is ¢,-com-
pact for all ¢, <c,p. If ¢,<c, and a space is c,-compact then it is also
cycompact. From Rk (f,,)<cs we have that j;,, is a principial filter and
thus that it possesses an adherent object. Hence, the notion of c,-compactness
is only important for cardinals>c¢s. The complete compactnesss can be charac-
terized by convergence of ultrafilters.
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Proposition 21.- A4 space (5,1, %115 Piy1(;11)) is completely compact
iff every ome of its ultrafilters is convergent.

Proof. Let the space be completely compact. Then each ultrafilter I
posscsess an adherent object s;&s;,,. Hence we have v, A+, (s)70,,, and
from the property of ultrafilters, being atoms in f,,,(p,,,), we have
;1101 Tisq (5). Conversely, let every ultrafilter converges in the space. Then from
fi1740;; We have the existence of aultrafilter b,,, such that v, }—,.,f, o If
9,11 Tiq(s), then according to the proposition 20. we have that 5, is a

dherent to ;.

In what follows we shall be concerned with properties of objects in a’
compact space. For that purpose we must define the concupt of a compact
object ina space.

Definition 20. For an object #,Cp,, (t;,,) we shall say to be comp-
letely compact (cy-compact) in (s, 71> Py, (5,)) if every filter f,,, of
Piyi () such that f, 550, and f,, 1~ (and Rk (f;,,) <c,) possesses an
adherent object in it. .

Proposition 22. Every closed object of a completely compact (¢c,-com-
pact) space is completely compact (c.~compact). ‘

Proof. Let ¢, be a closed object in a completely compact (c,-compact)
Space (Sz:+19 Tisr1s Pisa (ti+1))' Every filter fi+1_SUCh that fi+1:/£0i+1 and fi+1 I_i+1 7
(and Rk (f;.,) <c,) possesess an adherent object s;&s;,,. Thus 7, (s,) N
A %1 8) Afip #0;,,. Hence s; is contained in C,,, (#,). Since #; is closed then
§; is also contained in it.- '

The closedness of an object in a compact space is obviously a compac-

tification of that object. The converse statement of the above one is also valid
if the axiom (7)) holds.

Proposition 23. Every completely compact object of a T,-space is closed.

Proof. Let #, be a completely compact object of a T,-space (8115 Tigps
Pii1(t,1). Then for an s; of C, , (z) we have =, ,(s)A #,;%0,,,, and then the
existence of a ultafilter v, ., such that v, }—,,, 7, (s)A¢. Since ¢, is completely

compact then b, , also converges to an object s; of 7, Because of (T, s;=s; and
§; is. contained ia t.p

7. Conclus_ion.

In this paper we have dealt with formation of topological structure
on a fixed level in </ and with the conditions which govern this formation.
By these conditions we have distinguished certain- kinds of topological
structures that we have characterized then. We have not entered into a deeper
study of these structures since it has nmot been our main purpose. Because of
that we have presented here only those results that we have regarded the most
important ones. These results overlap, in the main, the well-known results given
in the cited literature. However, they have now a wider sense and make a
logical whole in the new approach to. the problem. This approach is the most
important for us because it enables us to attain the wanted aim emphasized in
the Introduction.
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Later, in a paper, we shall deal with a more general kind of organization
of spatial wholes in %{. This organization will be more frec than the above one.
We shall show that each topology is only a special case of such a general
organization in /.
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