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1. Introduction

In this note (following the results recently obtained by M. Marjanovié for

exp functor and exponentially complete spaces) we consider the covariant Map,
functor in the category of Hausdorff topological spaces and continuous mappings,

and introduce the notion of functionally complete spaces. The obtained results,
concerning this functor and this notion, are formally similar to those in [4]
and [5] concerning exp functor and exponentially complete spaces.

I thank Professor M. Marjanovi¢ for several conversations on this paper.

2. Preliminaries

,
Let 96=(0, M) be the category whose objects O are all Hausdorff topo-
logical spaces and morphisms M all continuous mappings of these spaces and
let X be a fixed object of the category 7%. We suppose that all spaces and all
mappings that we consider in this paper belong to P6. For any Y& O, let
Map, (Y) denote the set of all continuous functions from X into Y taken with
the compact-open topology. We shall also use sometimes the notation ¥* for
Mapy (Y). Since ¥ € O, we also have Map,(Y) € O (see [3], p. 151 Prop. 1.1).
If fEM and f:Y— Z, let Mapy (f):Map, (Y)—> Mapy(Z) be a mapping defi-
-ned by [Mapy (f)](g) =fog for each g & Map,(Y). Then, the mapping Map,(f)
is continuous (see [3], p. 165 Ex. 4C). If i& M is an identity, then Map (i)
is also an identity and it is easy to see that if f, and f, are in M and f,of,
is defined, then Mapy (f,of;) =Mapy (f;)oMapy(f,). So Mapy:J6— Y6 is a
covariant functor and the image of % under Mapy, denoted by Mapy (Y6), is
a subcategory of 9.

The equivalences in &4 are homeomorphisms and for two spaces Y and Z
in 96, Y~ Z will mean that ¥ and Z are homeomorphic.

Let {Y,®, A} be an inverse system over the directed set A. Since Map,
is covariant, {Mapy (Y), Map, (7), 4} will also be an inverse system.
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3. Commutation of functor Mapy with inverse limit

Now, we will prove the following statement (see also [1], p. 57. Prop. 3.6):
3.1. Map, (lim{Y, ©})~lim {Mapy (Y), Mapy (7)}.

Proof. Put Y, =1lim{Y, n} and consider the mapping

H: Mapy (lim {Y, =}) — lim {Mapy (Y), Mapy (m)}

defined by B —{puof)
=P« 5>

for every f& Mapy(Y.), where p, denotes the restriction to the subset Y, of
the natural projection of I1{Y, |« & 4} onto Y.

This mapping is well defined. Indeed, if «, B & 4 and a<f, then
[Mapy (=)] (pgof) =paof
since, for each x € X,v and thus f(x) € Y, We get('
(Mapy (8)] (Pgof)) () = (mEopgof) (x) =7 (Ps [ £ ()]
=Pa [f (O] = (Poof) ().

Consider also the mapping
G :lim {Mapy (Y), Mapy ()} — Mapy (lim {Y, =})
where, for an arbitraty point f={f,} € lim {Mapy(Y), Mapy ()} (hence f, <
Map, (Y.)), the mapping G (f): X — Yo is defined by

(G (N () ={/a )}

for every x < X. To justify this definition, first of all, we obéerve that {G (/)] (%)
is indeed a point of Y, for each x € X. If a<fp we have

78 [fp ()] = (=B ofp) (x) = ((Mapy (w5)] ’(f 8)) (%) =fx (%).
Moreover, G (f) is a continuous mapping i.e. G(f) & YZ since, for each

x £X, we get
[PsoG (N (X) =Pa ({fa (x)}) =foc (x)

and, hence, p,oG (f)=1fy.
We now show that G and H are bijections inverse to each other.

(@) (GoH)(f)=f for each f& Y2, because if xe X, we have
UG H) (@) = (G IH (N ¥) = {(pouof) ()} = {2 [f ]} =1 ().
®) (HG)(f)=f for each f={f,} € lim{Mapy(Y), Mapy (w)}, since
(HoG) (f) = HIG (/] ={PxoG (N} = {fi} =

It remains to prove that the mappings G and H are continuous.
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(c) The continuity of H. Let (C, U,) be an open sub-basic set of the space Yy,
where C is a compact set in X and U, is an open set in Y,, and let ¢, denote
the restriction to the subset lim {Mapy (¥Y), Mapy ()} of the natural projection

of H{Yf |« & 4} onto YZX. It is sufficient to show the continuity of the com-
position gq,cH. :

FE @oH) (G, U] & gIH(NIE G, Uy
& G(Peof D) E(C U, = paof €(C, Uy & palf(O)] C U,

& f(O)Cp'U) & fe(Cp7 UL)
and consequently
(@0 H) ™ [(C, U] =(C, p;* (U)).

This completes the proof since p_'(U,) is an open basic set in Y.

(d) The continuity of G. Since X is a T,-space, S=(C, p;!(U,)) is an
open sub-basic set in Y& ([3], p. 153 Prop. 1.3). If f={f,} € lim {Mapy (Y),
Mapy ()} we get

FEGT(S) < [GNIC) CritU) & [GNIX) Ep;' Uy, YXxCC
S{f@Icp'(U), VXEC & fu(x) €U, VXEC S f,(C) T U,
S LEWECUY © feql(CUy.
Hence, G (S)=¢;!(C, U,) is an open basic set in lim {Mapy (Y), Map(m)}

and thus, G is a continuous mapping.

Let {Z, p, B} be another inverse system in Y over the directed set B.
If ®:{Y, n}— {Z, p} is mapping of these two systems, then it obviously defines
a mapping Map, (?):{Mapy(Y), Map, (m)} - {Mapy (Z), Mapy (p)}. So we have
two induced mappings Mapy (lim @) and lim Map, (®) and we will prove that

they are the same up to the composition with homeomorphisms. More precisely
we have the following proposition:

3.2. Given a mapping of inverse systems
D ={o, 9} :{Y, =, A} > {Z, o, B}.

Then, there exist two homeomorphisms H and K such that diagram

=
Map, (lim {¥, =}) ——— lim {Mapy (¥), Mapy ()}
Mapy (lim @) l | lim Mapy (®)

Mapy (lim {Z, ¢}) T li‘il {Mapy (Z), Mapy @}

commutes.

Proof Let H and K be homeomorphisms form 3.1 related to {Y, =}
and {Z, p} respectively, and let Py and Qg denote the restrictions to the subsets
lim{Z, o} and lim {Mapy (Z), Mapy (¢)} of the natural projections of Il {Z; | 8 B}
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onto Z; and of H{Zﬁf | 8 € B} onto ZgY respectively. Now, for f & Y%, B & B,
e e (05 KoMapy I ®)] (1) = (©5K) (im Be)
=0 ({Pﬂolim Dof})=Pgolim Dof.
On the other hand, according to the definition of a limit mapping,

[Qpolim Mapy (@) HI(f) =1 olim Mapy ()] ({7a°/3)

=[Mapy (a)] (Do) o) = PpoPe@ o f-
But, for x £ X

[Pgolim Dof](x) =Py ({if DLFEID =6 (Poey [F (D)D)

= (PpoPg(°f) (%).
Thus the commutativity of the diagram follows.
Hence, by 3.1 and 3.2, two functors Map, and inverse limit commute.

4. Functionally complete spaces

Let us introduce the following definition: A topological space Y is function-
ally complete relative to X if Y~Mapy (Y). A trivial example of such a space
is the singleton space.

For a Y& O, put Y=Y©, and for n=1, 2, ... let

Y™ =Map, (YD),
Let ¢ & X be a fixed point. Consider the mapping
‘ P YO > YO

P (f)=f(a)

for every f & Y, which is continuous and onto (see [3]; p. 165 Prop. 4.5).
Denote p,: Y — Y@ by p®, and for n=1,2, ... let

defined by

P> =Mapyg (pG=0): YD — Y0,
then all mappings p®™, n=0, 1,..., are continuous and onto. So we get an
inverse system of maps and spaces

(0 ) Q)
Pa a Pa
YO PO V@ (o Y . Yt .

Let '
Y@ = lim {¥Y®, pim},

then Y is an object in Y6, and applying 3.1 to lim {Y®, pf;")} we immediately

get
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4.1. The space Y is functionally complete relative to X.

Proof.
Mapy, (Y @)~ lim {Mapy (Y®), Mapy (ps")}

—lim {Y@*D, pIt Ny,

where the last relation follows from Th. 3.15 in [2], p. 219.
Consider now a mapping f: Y— Z belonging to 76. Put f=f©, and for
n=1,2,... let )
f®=Map, (f¢D):Y® —» Z0,
So we get the following diagram

() P

Y(O) < Y(l) P R I Y(") s Y(n+ 1 < .
f© J], fo J], fo i fla+D i

ZO  FO . ZW  ZtD) ..

0
Pl P

which we will call the induced diagram.
4.2. All rectangles of the induced diagram commute.

Proof. It is known that the first rectangle commutes. (see [3], p. 165
Ex. 4C). Since Mapy is a covariant functor, the commutativity of all other
rectangles immediately follows.

Let {f®}:{Y®, pt} — {Z'™, p®™} be the mapping of these inverse systems
and let £/ =lim {f®}, then f© is continuous ([2], p. 218 Th. 313). We will
prove that f( is also functionally complete relative to X in the sense that f ()
is equal to Mapy (f)) up to the composition with homeomorphisms.

4.3. For any f:Y— Z in 6, the mapping [ : Y@ — Z is functionally
complete relative to X.

Proof. Applying 3.2 to the mapping of the inverse systems {f®}:
{Y®, pt} — {Z®, p™} we have

H h
Map (Y @) —— lim {Y®*D, pr+D} —— Y
Mapy (f@) l ‘ lim {f(n+1} . f
Mapy, (Z() —lim {Z@*D, pttD} —— Z(©)
. K k

h and k being the obvious homeomorphisms. Since the rectangles are commuta-
tive we obtain

Mapy (/@) = (koK) of @o(ho H).

4*
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5. Imbedding theorem

~ Now we propose to determine a subcategory of &6 all of whose objects
are functionally complete relative to X and to prove that for each ¥ €O there
is a Z & O which contains Y and is functionally complete relative to X.

Consider the mapping
Jo: YO > y®

where, for each point y & Y©, j (y): X— ¥ denotes the constant mapping in
Y® which sends X into the single point y. The mapping j, is an imbedding
({31, p.- 163 Prop. 4.1). For each n=1,2, ... let

= MapX (.in_l) . Y(n) —_— Y(n+1).

The mappings j,, =0, 1, ..., are continuous and so we get the following
sequence of spaces and maps

jO jl jn
YO » yO 5 7O 5. . s YW 5 Ya+D) 5,
5.1. For each n=0, 1, ..., j,(Y®) is a retract of Y®*D with the retraction
Juop 1 Yo D s o (X0,

Proof. This assertion is valid for =0 ([3], p. 165 Prop. 4.6).
Let n>0. If f<j, (Y™), then there is g & Y™ such that
f=Jn(8) =[Mapy (j,_)I (8) =Jn—1°8&-

Obviously, p®™o j, is the 1dent1ty mapping on Y®, for each n=0, 1, ..., and
so we have '

(Jnob?) (f) =[Mapy (j,_10PL O (f) =ju_r0P" Do f=
=Ju10PV V0 ju 108 =jp_10ly_pog =Jju_io8=1.
Hence, j,op® is a retraction of Y@*D onto j, (Y®).
For each n=0, 1, ... let
Jo,8=Jn0Jny0" * + 0 jo: YO — Y&+,
Consider the mapping
Joyo: Y= lm {Y@#*1, partD} — y e
defined by o ’
Jo,o ) ={Jo,n M}n=0,1,

for every y € Y. This mapping is well defined. Indeed, for n=1, ..., we get
PO Loon D=L 100 Jo,n—1) D= (20 7)) oy nas 0)) =
=[Mapy (P¢V0 j,_ D] (Jo,n1 ) =P D0 jir_10Jo,n1 (9) =
= ly@-1°Jo.n1 () =Jo,n—1 M)

52. If f is an arbitrary point in j, ., (Y) and =, H{Y(") ln=1,2,...}
— Y™ denotes the natural projection, then

: [7n i1 () € Jiuy (YD)
for each x & X and n=1,2, ....
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Proof. Since fE j, ,(Y) there exists y € Y such that j, () =f and
thus j,,,_, (") =m,(f) for each n=1,2,.... Let n=1 and x € X be arbitrarily
given. We must show that [x, ()] (x) € j, (Y), that is to say, [7, (/)] (x): X > Y
is a constant mapping in Y. But, this is true because

[0, (1) =T o, 1 O] () = [(Jy0 o) W] (%) =
=Liso Jo N ) = Uiy M) = B)-
Suppose that [x,. (/)] (x) € j,_, (YD), Since
i 2 () =Jo ne1 ) = (s 10 Jo, ) () = Mapy (j,)] (o, » (0)) =
=J, 0,1 (f)

[T 2 ) =5 [y (X)) €4, T

which completes the inductive proof.

we have

5.3. Each Hausdorff space Y can be imbedded in an functionally complete
space. |

Proof. We will prove that Y can be imbedded into the functionally
complete space Y. Since h:Y*— Y is a homeomorphism (sec 4.3) it is
sufficient to show that j, , is an imbedding of Y into Y.

It is easy to verify that j, . is one-to-one. Moreover, since all mappings
Jo.n are continuous, so is j,, (3], p. 40 Cor. 5.8). Therefore, it remains to
prove that j, ., is an open mapping. For this purpose, let ' denote an open
set in ¥. Then (a, ) is an open sub-basic set in Y®. Let ©’ denote the restric-
tion of the matural projection =, to the subset Y=. Then (w})"'({a, V)) is an
open basic set in Y= and, hence

P=jp, e MNNOEDTH (@ V) =Jo,o NY* N7 (&, 7))
is an open set in j, ,(Y). Therefore, to prove that j, , is an open mapping it
suffices to show that j, ,(V)=2P.

First, let f & j,, ., (V). Then, there exists y & ¥, such that j, ,(y)=/ and,
consequently, j, (») =7, (f). By this equality

= (D@ =L, M@=y V
and, hence, =, (f) € (a, V). This implies that < =;!((a, V')) and, hence, clear-
ly, fEP. ‘
Conversely, if & P consider the point y, ==, (f)](a) € V. It suffices to
show that j, ., (y,) =f or equivalently,

Jo,n—1 (y0)=Tcn(f) n=12,...)
Let us establish these equalities by induction.

Let n=1. Since f & j,, ., (Y) there exists y € Y such that j, , (») =/ This
implies j, () =7, (f) and, hence, = (f) is a constant mapping.

Therefore

[, ) = [, ()] (@) =50 = [/o ()] ()
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and, hence, j,(y,)=m,(f). Now suppose that j, , ,(¥,)=m,(f). According to
this inductive hypothesis, we have .

Jo.n Vo) = (Jn° Jo, n1) O00) =i [, () =71 (P07 [0, ()]) =

=[Mapy (ju_10P¢ ) (1 () =y 0PI Vo, ().
Hence, for each x &X, by 5.1 and 5.2, we obtain

Lo, n Gl (%) = (Jp—10P8 D) (7 (1T =710 () ()

and, thus, j, ,(y)=m, ., (f). This completes the inductive proof.

Hence, u=hoj, ,:Y— Y is an imbedding of Y into Y,

By this theorem Y is non-empty if Y is non-empty and, hence, there
exist non-trivial examples of the functionally complete spaces.

5.4. u (Y) is a retract of Y,

Proof. To prove this, we shall show that j, ,(Y) is a retract of Y=
with the retraction r=j, ,op@on]: Y > — j, . (Y).

Let S € Jo,o(Y). Then there exists y & ¥ such that j, ., (y)=f and, thus,
Jo =] (f). Consequently, we have

r(F)=Jo, o B [x7 (1D =Jo, o P Lo DD = o, 0 ) =1-

Denote by Map({® the functor corresponding te each ¥ & O the space Y,

and to each mappmg f:Y—>Z in J6 the mapping f(©:¥Y(@ > Z@_ Then
we have

5.5. Map{ is a covariant finctor from 6 to itself.

Proof. If i:Y— Y is the identity mapping, then all i®:Y® — Y® gare
identity mappings and so is . If f:Y— Z and g:Z— W are in 9%, then
(go )W =gWo f@ which easily implies (go f)« =g o flo),

Hence, Map{? (#6) is a subcategory of the category % which has the
desired property.
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