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1. Definitions and Notations. Let > a, be a given infinite series with the
n=1 '
sequence of partial sums {s,}. Throughout the paper we suppose
7\n=u‘1+p’z+"'+un’ y'n:lnﬁkn—lﬂ
such that :
0=2 <A <A<« <h;;—>00, 88 B—> 0.

Let the sequence-to-sequence transformation is defined by

1 n z
> Uiy Sye

Apsyv=1

(1.1) -

If {t,}& BV, we say that {s,} (or i an) is absolutely summable (R’, 2,, 1)

n=1
or symbolically we write
: {s3E|R, A, 1].

v In fact |R’, %,, 1| is equivalent to | R, 2,, 1|. See Mohanty [7], footnote
to the page 298.

Let f(¢) be a periodic function with period 2n and integrable in the sense
of Lebesgue over (—m, w). Without any loss of generality, we .assume the
Fourier series of f(¢) to be given by

> (a,cosnt+b,sinnt)= "> A,(1).
n=1 n=1 .
Then the conjugate series of the Fourier series of f(¢) will be given by
> (b,cosnt—a,sinnt)= > B,(f).
n=1 n=1

Throughout the paper we use the following notations:

(1.2) (D(t)=%(f(x+t)+f(x—t))‘

(1.3) ¢(t)=%(f(x+t) —fx—1).
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(1.4) F (t)=t"1 [ F(u)du, for any function F ().
0

(1.5) P(0=® () D, ().

(1.6) SO =9 @)=, ().

(17) Agnzgn—grhhl‘

(1.8) L=exp(nf(log(n+ 1)) (e>1).

2. Introduction. Recently, the present author [1], proved the following
criterion, for the absolute convergence of Fourier series at a point ¢=ux, by
using a theorem on absolute Riesz summability of Fourier series obtained by
author himself. :

Theorem P. If (i) ®()EBV(0, %) (i) 8()g(k/) BV (0, =) and
{n'~4, (x)} € BY, for 0<a<l, then 3 4,(¥) | C, 0], where

n=1
B@W=1"1[dD @)
0

and g (k/t) stands for any one of the following functions:

k\'*e  k k\l*e k- k[, kyite
(log—) , log~<log2 —) y eee, log— ... logpwl—(logp ——) -,
t t t t { 4

where log, =log log,_,, log,=log, ¢>0 and k is some suitable positive constant
taken for the convenience in analysis. :

Many authors like Mohanty [6], [8], Mazhar [5], Chandra [11, [2], [3]
have given the criteria for the absolute convergence of Fourier series and allied
series, at a point #=x, by using the absolute Riesz summability theorems cor-
responding to the conditions imposed upon. the generating function of Fourier
series and allied series. In what follows we give a direct proof of the following
NEW CRITERIA for the absolute convergence of Fourier series and conjugate
scries, at a point 7= x. ‘

Theorem 1. Let

2.1 d>0<b<l<c and bc=1+d,

and let t=°P(t) & BV (p, ) for all y with 0<‘y\<7r, and that, as y— 0

(2.2) Pi(n=00".
Then - ’
(2.3) {log (n+1))*94, ()} €| R, L,, 1]

is  the necessary and sufficient condition for

2.4) S 4,09 (og(n+ 1)) €[ C, 0]
n=1
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Theorem 2. Let (2.1) holds and let t;bS(t) € BV (y, ™) for all y with
0<y<mw, and ghat '

2.5 - \ S M=0O0", as y—> 0. Then

(2:6) {(og(n+1))*“B,(x)} € | R, L,, 1]

is the necessary and sufficient condition for ‘

2.7) > B,(x)(log(n-+ 1))Y €| C, 0.
n=1 E

3. For the proof of the theorems, we require the following lemmas. Lemma 1
and Lemma 2 are due to Das [4].

Lemma 1. Let A, be any sequence and let > a, < |R', \,, 1|. Then

n=1
'S a,&|C, 0| implies and is implied by {)\—7\"%] E|R, r,, 1]
=1 " )

+1 12

n

Lemma 2. For any {A\,}, {b,}E|R, A, 1| and {d}& BV implies
{bd} €| R, My, 1]

Lemma 3. Let A\,=L,, that is exp (n/(log(n+1))°). Then

{Z_Ln_a_"f} € |R', L,, 1| is equivalent to {(log(n+1))° a,,}ve |R, L,, 1].
n+1~ “n
This follows by combining Lemmas 1 and 2.

Lemma 4. Let (2.1) holds. Then, uniformly in 0<t<m,

224

3 L, (og (m+ 1)) g (m, t)! —O@),
m=1 ; }

. cos nt sin nt
where g (n, t) stands for either or - :

n n

Proof. Let T'=the integral part of exp (# 2/1+®), Then, we write

T oo
=2t 2 =2t 20 sy
n=1 T+1

Now, by using g(m, 1)=() (m™ 1) and changing the order of summation,
we have

2:=0 {mél (log (m + 1))dm——1]

=O{(log 1)**1}

L, (log (n+ 1))?

n
n>e*I (qg+4), where g is the integral part of ¢, we have, by Abel’s lemma

uniformly in 0<#<=. And since { } is monotonic increasing with
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n

> mg(m, r)r J

m=m’

S, = [ of3 14 (log (n+1)) max

n=1 NL,, l<m’<n

-0 {t-l S #1 (log (n + 1))d~c}

n=T
=O{r (og T)1* 4= = O (179),
uniformly in 0<z<m.
Combining Z and Zz, we follow the proof of the lemma.

4, Proof of‘Theorem 1. We have

ki1

An(x)z--z_ftb(t)(cos t~_ﬂ)dt+£f®(t)_smntdt
T nt T nt

0 0

Z%fntd)(t)a%(st;”)dt
_Z [(I)(t)d fm(Sh;Zu) du

t

ftCI)(t)g Sm’”)dt
__f flfﬁﬁ u.J_fq)(t)d[
du u
: 0

(by changing the order of integration)

sinnt

2 0
— [ (@O -0, @) r—
TC[/ 0t( nt

__/‘tP()‘<Siztnt)dt; (by 1.5)

—*ftP z)‘<smnt)dt
_ftP(t)_<smnt)

=Il ‘}‘12,‘ Say;

)dt (by (1.4))
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Now, integrating by parts, we have

. 1
I, ::E[l‘Pl (l‘)ti (fln nt):ln
T ' t nt 0

2 fro e

£
n

=) 1%+ ifP1 ) (nt sinnt -+ cosnt — smnt> dr
13

nt
0

(by (2.2) 1

=©<n-1—b)+©(flPl<t>ldt)
0

=0 @179,
by (2.2). And, integrating by parts, we have

1+ 9 (smnt)dt

—4fd(t ”P(t))fu”b (M)du.

And, for i<t<7c and 0<<b<1, we have
n
¢ o
_fwwi(smnu)du: ) ___“smnt +n17bsin 1
ou\ nu n

) t
+(l+b)fub“1Mdu
n

n,

sin nt .

= —tb +n1-bsin 1
n

t’
+ +b)n“bfsinnudu

1

n

(i<l"<t)
n

37
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(by the second mean value theorem)

in nt
~P RO @),

Therefore, combining 7, and I,, we have
4, () =0 @ 1)+ O @12

ki3

e bP(r»{ o S (rm1m b)}

..
1
"

sin nt

@.1) ~ O (n=1-b) »—3/'d(z-bp(z))tb

1

n

since, for large n,
1

t—b(P(t)eBV(—, n).
. n

In view of Lemma 3, (2.3) is equivalent to

{L,,A,,(X) (log (n -+ 1))d] EIR, L, 1,

4.2
( ) Ln+1“Ln

where L, is defined by (1.8). Now to prove the theorem we first prove

(2.3) is necessary Since\i A, (x)(log(n+1))*< [C, 0] implies
3 4@ 080+ DY E R, L, 1]

n=

Therefore it follows, from Lemma 1, that (4.2) is necessary. And hence (2. 3)

is necessary.
Now, finally, we prove
(2.3) is sufficient. Since (2.3) is equivalent to (4.2), it is enough to show
that (4.2) is sufficient. Now from (4.2), it follows that {r,} = BV, where, by

(L.1),
(4.3)

Z m m(x) (lOg (m + 1))d

n+1m1

And, frcm (4.3), we have

1 +1)=—-At¢, , — .
4,(x) (log (n+ 1)) by =
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Therefore

S |4,/ ()] (og (n+ 1) < S A, |+ i%il
n=1 5 ) -

O

+32(;)

By using (4.1), we have

5

S L, A4, (%) (l0g (m+ 1)
m=1

1

S LA, (x) (log (m+ )¢

m=1

m=1

+0O |d(tP(2)| b i A(—i—) .
n=1 n

}

o £t 55 (1)

g\_\”‘

sin mt

'S L, (log (m+ 1)y
m=1 -

n=m

{by changing the order of summation)

+Q{ f ]d(z‘—bP(t))]} (by Lemma 4)
1 ' )
~OW),
since, for large n,
B 1
t bP(t)EBV(—n—, n)

and l
o d
S _(og(m+ DY 5 finite.
i m1+b

This terminates the proof of Theorem 1.

39

(by (4.2))

(by (4.3))
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5. Proof of Theorem 2. We have

%B,, (x) = f¢ (¢)sin nt dt
0

nt

_ S . cos nt
(.)/ $(?) (smnt+ )dt

B [L[J(t) cos[nt dr
0

n

T

=—ftu[)(t)(%(m;'m)dt

0
; ("*2’%)0 cosm; '
+5]f¢(t)dtf b_u( )du

nu

t

a3

_ _/'t¢(z)%(°°:t”t)dz

0

+f¢(t)dzfi(cosnu/nu) du
. : ou

+of¢(z)dtf %.(coz:?)fiu
=*‘[t¢(t)§;<cozlzt)dt

+f%(cojtm)dtfnp(u)du

0

(by changing the order of integration)
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gosnrc 1 fnp(t)dt

k17

= §() ‘Sinn;+ 0s nt di -, () cosnm
[ s (smm )

0

(by (1.4) and (1.6))

l

— g, (m) 28_'15 (j +f) <S(t) (smnt%—%t@)dt)

— ¢, (m) LT

0

+1I, 4+ 1I,, say.

Now, proceeding as in Theorem 1 for’I1 and 7, and using =% S (¢) € BV (y, 7y

and (2.5), for y:i, where n is sufficiently large, we have
n

L= (n~17b),
and
L= 1% — S(m) CoSn T
fd(z v s (1) 1 S
Therefore

cosn T

B, (x) = O(n“1 ”)——(% (7) + 5 (%))

COS nt

+— [d(t bS ()t —

n

COos i’lt

= O @1-0) +—fd(z 05 @) et

1
by using (1.6) and the fact that { (m)=0.

Now, proceeding as in Theorem 1, it is easy to see that (2.6) is neces--
sary and sufficient for (2.7).

This terminates the proof of Theorem 2.
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