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1. Introduction

In this paper all the matrices considered are friangular and invertibles.
If A=(a, ) (n=1,2,...,1 <k<n) is such a matrix, we will denote by
A~t=(a, V) its inverse matrix, i.e., 4"14A=44"1=1 We will use the follo-
wing terminology: If R is any fixed class of sequences, we will say that a
matrix (a,, ;) is 0(R) — regular if, for any (r,) & R, we have

(1.0 ' 5, =0(r) = > a,85=0(r,), (n—> );
k=1
R — regular if
(1.2) Spoel, = 3 a,  Sip2l,s (n—> «);
k=1

0 (R) — mercerian if
(1.3) > G 15k=0@,) = 5,=0(,), (n—> );
k=1

and R — mercerian if
' n
(1.4) D Ui S 2t, D S,oxr, (> o).
k=1

If R contains only the sequence r,=1(n=1, 2,...), then the matrix which
satisfies (1.1), (1.2), (1.3) and (1.4) will be called O(1) — regular, regular,
0 (1) — mercerian and mercerian, respectively. For this classical case, we have
shown the following result ({1, th. 1}):

Theorem A. A matrix (3, ,) which satisfies the condition

(1.5) liminf{men|~:§|8n,k|}>0

n~—>ow

is 0(1) — mercerign. If, in addition, the matrix (3, ,) is regular, then it is
mercerian.
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Using theorem A we gave a simple proof of Mercer’s classical theorem,
and established some other mercerian theorems (see [1] to [5]). The purpose of
this paper is to extend these results by assuming that R contains a certain class
of regularly varying sequences. A sequence (r,) is said to be regularly varying if

(1.6) lim (@l>=h(t) exists for every >0

n—>00
r’l

~ (see [6]). It is well known (see, for example [6, p. 56]) that (1.6) implies the
existence of a real number B such that A (r)=r8. This number 8 is called the
order of the regularly varying sequence. We shall denote by Rg the class of all
slowly varying sequences of order B. In particular, a regularly varying sequence
of order 0 is called a slowly varying sequence. If (r) & Ry, then it is easy to
see that r,=nPL,, where (L,) € R,. The essential properties of regularly varying
sequences have been studied by J. Karamata ([6] and [7]), and the O(R,) —
regularity and R, — regularity theorems by M. Vuilleumier ([8, th. 4.1]). Her
results specialized to triangular matrices can be stated as follows:

Theorem B. 1° In order that a matrix (a, ) will be 0(R,) — regular,
it is mecessary and sufficient that '

(1.7 : > |, | k™7=0(@m""), (n— o),
: k=1
for some 7 > 0. ‘ ; . »
2°. A matrix is R, — regular if and only if (1.7) holds together with the

n
condition > a, ,—1, (n—> ).
k=1

From theorem B we deduce a necessary and sufficient condition for a
matrix to be O(Rg) — regular, which is: :

Theorem C. A matrix (Yn, 1) 18 O(Rp) — regular if and only if there
exists o < 8 such that '

n k -4
. ' —}=0(1), (n— ),
(1.8) kglivn,kl(n) 1), (- o)

and is Rg—regular if and only if (1.8) holds together with the condition

k\B

(1.9) ém( )+1, (1> oo).

n
Then, we will show (théorém 1), that a matrix (a,,;) is 0 (Rg) — mercerian if and
only if :

S| (T -0t @,
k=1 AR )
for some « < @, and that a matrix (a, ;) is Ry—mercerian if and only if it is

0 (Rg) — mercerian and if
n 8
Jim (z P (f-> )=t
n—00 \z._.1 ) n

7
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On the other hand, we shall show in theorem 2 that a 0 (Rg) — merceriari matrix
(a,, ) is Rg— mercerian if

oy 268
(1.10) lim (z an,k<—> ):1‘
‘ n—>w \r_1q n

Then, using theorem 1, we shall extend our theorem A to regularly varying se-
quences, by showing that a matrix (a,, ,) is O (Rp)—mercerian if

. . n—1 k\*

hmmf{jamn\— > [a,,,k\<~—\)}>0,

n—r w0 B k=1 / B
for some a<§ (theorem 3); if in .addition the relation (1.10) holds, then in
view of theorem 2, the matrix (g, ,) is already R, mercerian. Finally, as a
consequence of ‘these results, we shall show that Mercer’s classical theorem can
be extended to slowly varying sequences (theorem 4).

2. Results and Proofs

Theorem 1. A matrix (a,, ,) is O (Rg)—mercerian if and only if there
exists a<< such that

2.1 S 0 ﬁd:Oll, — w0);
@1 k;\a,kl(n> (1), (1> o)

and is RB—'mercerian if and only if (1.1) holds together with the additional
condition

2.2 ~ lm ( S a3 (—k—f) ~1.
k=1

n— oo n

/ . . ) -
Proof of theorem 1. Set 7,= > sy, (n=1,2,...).
k=1 ’
As (a, ;) is an invertible matrix,

& (—D)
S;;:Z n, k" Ty (I’l=1,2,,,‘),
k=1

In other words, it is evident that the relations (1.3) and (1.4) for R = R, means
that ‘

(2:3) C 4=00) > 3 =00,
k=1
respectively that
2.4) tyr, = 3 aSOte=r,, (n— ),
k=1 -

for every r, & Rg. Setting v, . =aD(m=1,2,..., 1 <k<n), we see that the
conclusions of theorem 1 follow from theorem C. In fact, according to theorem C,
the property (2.3) is equivalent to (1.8), and (2.3) together with (2.4) is equi-
valent to the relations (1.8) and (1.9).
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Theorem 2. An O(Rg)—mercerian matrix (a,, ,) is Rg—mercerian if

@.5) fim (él a . (5)5) _1.

n—>w n

Proof of theorem 2. Since (a,, ;) is O(Rp)—mercerian, we know by the
first part of theorem 1, that there exists «<[3 such that
2.6) 3 | (5) —0(), (n—> o).
k=1 n
Hence, by the second part of theorem 1, we have only to show that (2.5) and
(2.6) imply

n 8
.7) S oGP (f‘_> > 1, (n—> o).
k= n
Let
det 7 k g
(2.8) ¢, = za,,,k(——), n=1,2,...);
k=1 n
we have

k=1 n
and
n _ [} n _ 'k B
(2.9) 5 af:k’(i) 1= 5P () e
k=1 n k=1 n
Writing :

8
A, =S ,3’(5), n=1,2,..., 1<k<n),

\n
it follows from (2.6) that

< <] =D < a3 £a=0 —>0).
(2.10) IZI]A,,,kjgkzllan,k () zt (n) (1), (n )

Also, it follows from (2.6) that =
8 f—a 3
@.11) Ay | =] "P( )=(5) |a£,‘z?\(5)s
n n n
B—a n
(L gl e
n n o

for k=1,2,3,.... Since by (2.5) and (2.8), ¢,— 1 (n— ), it follows from
Toeplitz-Schur’s theorem according to (2.10) and (2.11) that

é 5,"( )(1—ck)+0 (n—> o),

which proves, in view of (2.9), our statement (2.7).

Theorem 3. A matrix (a, ,) is 0(Rg)—mercerian if there exists a <
such that

2.12) hmmf{ i ,,kl(k)]>o.

n—> o —_
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Proof of theorem 3. According to theorem A, a matrix (3,, ) =(a,k*n™%)
‘which satisfies condition (1.5) is O (1) —mercerian, i.e., (2.12) implies

2[8( D]=0(1), (n— o).

Now as
D) = (ko).
‘we have

élank i( )=0(1), (n—>c0),

for some o <<, which implies our result according to theorem 1.

Using theorems 2 and 3, we will now generalize Mercer’s class1ca1 theorem
for slowly varying sequences.

Theorem 4. Let « denote a real number, and let

s, (m=1,2,3,...).

1
¢ (s::) = ;
1

=
I M=

Then,
(2.13) S,>L, < as,+(1—-a)c,(s,)=L,, (rn—> ),
for every (L,) € R,, if and only if «>0.

Proof of theorem 4. For «=0, the conclusion is obvious, because we
know that (¢, (s,)) is not a mercerian transformation. For « <0, we can use the
following lemma of the author ([2, p. 28]): Let

L= 018k (m=1,2,...),

k=1

be a regular summability method. If there exists a divergent sequence (s;) such
that

Q.14 > 4 k5, =0(5), (n— o),
k=1 :

then («,, ;) sums at least one divergent sequence. In fact, setting in the last lemma

ty=as,+(1—a)c, (s, (n=1,2,...),
ie., :
l—«a

n

, 1<k <n—-1

.15 oy =
o -+

1—o

, k=n
n

and s =n"Y* (n=1,2,...), we see that (2.14) is satisfied and consequently
that (2.13) cannot hold for any a<CO.
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For a>>0, we first' note that if the matrix (o, ,) is defined by (2.15) theh

fim (z cxn,k)zl

n—w \r Ty

lim (i e (i);r)=a+l;'a,

n—>c0 l_r

and

for “every O<r<1 Consequently, (v, ) satisfies the conditions of theorem C
for B=0. It follows form the last theorem that

s, =L, > z oy, 1S 2 L
k=1

for every (Ln) € R,, and thus ‘according ‘to theorem 2, it is enough to show that
s ©t,=0(L) = S—O(L), (n—+oo) '
for every (L,) & R,. But as
5=t DaE) ),

/4

" (n—_—> OO)’

it is sufficient to show that

(2.16) =0(L) = ¢ ()=0(L), (1> ),

for every (L) € R Now sirice © '

s —cl(s) and s, n ey (s,) — (n—l)cl(s,, 1), n~——2‘,v3,...)';

we have:
tnz Z b;'lskcl(s}()9 (n:2, 3‘,'.‘.),'
k=1
with .
0,k#n or n—1

(2.17) b,,=¢ —a@m—1), k=n=-1
s o an—at+1, k=n '

According to theorem 3, the reletion (2.16) will be proved if we show that for ;
every «>0 there exists >0 such that 7
]
@.18) lim inf(lbn,n|-!b»n,~n_1 | (1 ~i) >0,
n— o n
As by (2.17),
1\=7 , 1\="
Ibn,n[—lbn’n_l|<1 —4> =ocn—oc+1~oc(n~1)<1 —-»)* =
n

n

:1_“7)"{—0(——1"): (l’l—>' OO),
n

we see that (2.18) holds, and thus theorem 4 is proved.

Acknowledgement. This work is dedicated to Professor L. Jansen, from
Battelle Institute, Geneva, Switzerland, I am also very grateful to Professor
R. Bojanic for his help in this paper.



Some Mercerian Theo.ems for Regularly Varying Sequences 177

REFERENCES

[11S. Zimering, Uneextensiond’unthéoréme de R. Rado— R. P. Agnew et ses appli-
cations aux théorémes merceriens. Thesis, University of Brussels, Belgium, (1965).

(21 8. Zimering, Une extension d’'un théoréme de R. Rado et ses applications aux
théorémes merceriens, Comptes-Rendus de I’Académic de Sziences de Paris, vol. 260, pp.
2965—2966, (1965).

[31S. Zimering, Mairices limites d’une matrice triangulaire et leur application aux
théorémes merceriens, Comptes-Rendus de I’Académie de Sciences de Paris, vol. 260, pp.
3248—3250, (1965).

f[41S. Zimering, Un théoréme mercerien, Indian Journal of Mathematics, vol. 8,
Ne 2,-pp. 71—75 (1966).
[51S. Zimering, On the equiconvergence between two Noerlund transformations, Proc.
Amer. Math. Society, Vol. 19, Ne 2, pp. 263—267, (1968). )
C/fé] J. Karamata, Sur un mode de croissance réguliére; théorémes Jondamentaux,
Bull. Soc. Math. de France, vol. 61, pp. 55—62, (1933).

_171J. Karamata, Sur un mode de croissance réguliére des fonctions, Mathematica,
(Cluj), vol. 4, pp. 38—52, (1930)."

[81 M. Vuilleumier, Comportement asymptotique des transformations linéaires des
suites, Thesis, University of Geneva, Switzerland, (1966). :

[91S. Mazur — W. Orlicz, Sur les méthodes linéaires de sommation, Comptes-
Rendus de I’Académie de Sciences de Paris, vol. 196, pp. 32—34, (1933).

Department of Mathematics
The Ohio State University
Columbus, Ohio 43210

12 Publications de I'Institut Mathématique



	171.tif
	172.tif
	173.tif
	174.tif
	175.tif
	176.tif
	177.tif

