CERTAIN THEOREMS ON SELF-RECIPROCAL FUNCTIONS

Pratap Singh

(Received June 10, 1971)

"The object of this paper is to prove certain theorems on self-reciprocal functions".

1. Introduction

Let

(1.1)
$$\psi(p) = p \int_{0}^{\infty} e^{-pt} f(t) dt, \ R(p) > 0,$$

then we say that $\psi(p)$ is operationally related to f(t) and symbolically we write as $\psi(p) = f(t)$ or $f(t) = \psi(p)$.

Mainra, V.P., [3] has defined the kernel $\tilde{w}_{u,v}^{\lambda}(x)$ as

(1.2)
$$\widetilde{w}_{u,v}^{\lambda}(x) = \sqrt{x} \int_{0}^{\infty} \int_{0}^{\infty} (y/t) J_{u}(xy/t) J_{\lambda}(y) J_{v}(t) dt dy,$$

 $R(u, v, \lambda) \ge -\frac{1}{2}$ and proved that it is a Fourier kernel.

Two functions f(x) and g(x) are called $\tilde{w}_{u,v}^{\lambda}(x)$ transform of each other if they satisfy the integral equation

(1.3)
$$f(x) = \int_{0}^{\infty} \widetilde{w}_{u, v}^{\lambda}(xy) g(y) dy.$$

If g(x) = f(x) i.e. $f(x) = \int_{0}^{\infty} \tilde{w}_{u,v}^{\lambda}(xy) f(y) dy$, then f(x) is said to be self-reciprocal in the $\tilde{w}_{u,v}^{\lambda}(x)$ transform and is denoted by $R_{u,v}^{\lambda}$.

2. Theorem 1 (a): Let (i)
$$f(x) = g(p)$$
 (ii) $x^{2m-1} f(1/x) = \psi(p)$ (iii) $x^{m-1} f(1/x)$ be $R_{u,v}^{\lambda}$, then

 $x^{-m}\psi(1/x)$ is the $\tilde{w}_{u,v}^{\lambda}(x)$ transform of $t^{m-1}g(t)$, provided that $x^{m-1}g(x)$, $x^{m-1}f(1/x)$ and $x^{2m-1}f(1/x)$ are bounded and absolutely integrable in $(0, \infty)$, $R\left(m+u+\frac{3}{2}\right)>0$, R(m+v+3/2)>0, R(m+v+3/2)>0.

Proof: Let

(2.1)
$$\varphi(p) = x^m \widetilde{w}_{u, v}^{\lambda}(x).$$
 Then
$$\varphi(ap) = (x/a)^m \widetilde{w}_{u, v}^{\lambda}(x/a).$$

(2.3) Also
$$g(p) = f(x)$$
.

We notice that $p^m \varphi(p)$ is continuous in $(0, \infty)$.

From (2.2) and (2.3) applying Goldstein's theorem, we have

$$\int_{0}^{\infty} \varphi(ta) f(t) \frac{dt}{t} = \int_{0}^{\infty} g(t) \tilde{w}_{u,v}^{\lambda}(t/a) t^{m-1} dt$$

or

(2.4)
$$\int_{0}^{\infty} \varphi(pt)f(t)\frac{dt}{t} = p^{-m} \int_{0}^{\infty} \widetilde{w}_{u,v}^{\lambda}(t/p) g(t) t^{m-1} dt.$$

Interpreting we have

$$\int_{0}^{\infty} \widetilde{w}_{u,v}^{\lambda}(x/t) (x/t)^{m} f(t) \frac{dt}{t} = p^{-m} \int_{0}^{\infty} \widetilde{w}_{u,v}^{\lambda}(t/p) g(t) t^{m-1} dt$$

or

(2.5)
$$x^{m} \int_{0}^{\infty} \widetilde{w}_{u,v}^{\lambda}(xt) t^{m-1} f(1/t) dt = p^{-m} \int_{0}^{\infty} \widetilde{w}_{u,v}^{\lambda}(t/p) t^{m-1} g(t) dt.$$

Since $t^{m-1} f(1/t)$ is $R_{u,v}^{\lambda}$ we have

$$x^{2m-1}f\left(\frac{1}{x}\right) \stackrel{\cdot}{=} p^{-m} \int_{0}^{\infty} \widetilde{\omega}_{u,v}^{\lambda}(t/p) t^{m-1} g(t) dt.$$

Also $x^{2m-1}f\left(\frac{1}{x}\right) = \psi(p)$, by Lerch's theorem we have

$$\int_{0}^{\infty} \widetilde{w}_{u,v}^{\lambda}(tp) t^{m-1} g(t) dt = p^{-m} \psi(1/p).$$

Or $x^{-m} \psi(1/x)$ is the $\tilde{w}_{u,v}^{\lambda}(x)$ transform of $x^{m-1}g(x)$.

Thus the theorem is proved.

Now suppose that $x^{m-1}g(x)$ is $R_{u,v}^{\lambda}$, then from (2.5) we have

$$(2.6) x^m \int_{-\infty}^{\infty} \widetilde{w}_{u, v}^{\lambda}(xt) t^{m-1} f(1/t) dt = p^{1-2m} g(1/p).$$

Suppose $p^{1-2m}g(1/p) \stackrel{0}{=} h(x)$, then we have from (2.6)

$$\int_{0}^{\infty} \widetilde{w}_{u,v}^{\lambda}(xt) t^{m-1} f(1/t) = x^{-m} h(x)$$

or $x^{-m}h(x)$ is the $\tilde{w}_{u,v}^{\lambda}(x)$ transforms of $x^{m-1}f(1/x)$.

Hence we can state the theorem as:

Theorem 1 (b): Let (i)
$$f(x) = g(p)$$

(ii)
$$h(x) = p^{1-2m} g(1/p)$$

(iii)
$$x^{m-1}g(x)$$
 be $R_{u,v}^{\lambda}$, then

 $x^{-m}h(x)$ will be $\tilde{w}_{u,v}(x)$ transform of $x^{m-1}f(1/x)$, provided that conditions of the theorem 1 (a) are satisfied.

Theorem 2(a): Let (i)
$$f(x) = g(p)$$

(ii)
$$x^{2m+1}f(1/x) \doteq \psi(p)$$

(iii)
$$x^{-m-1}f(x)$$
 be $R_{u,v}^{\lambda}$, then

 $x^m\psi(x)$ is the $\tilde{w}_{u,v}^{\lambda}(x)$ transform of $x^{-m-1}g(1/x)$, provided that $x^{2m+1}f(1/x)$, $x^{-m-1}f(x)$, $x^{-m-1}g(1/x)$ are bounded and absolutely integrable in $(0, \infty)$.

Theorem 2(b): Let (i) f(x) = g(p),

(ii)
$$h(x) = p^{-2m-1}g(1/p)$$

(iii)
$$x^{-m-1}g(1/x)$$
 be $R_{u,v}^{\lambda}$, then

 $x^m h\left(\frac{1}{x}\right)$ will be $\tilde{\omega}_{u,v}^{\lambda}(x)$ transform of $x^{-m-1}f(x)$, provided the conditions of the theorem 2(a) are satisfied.

We can prove these theorems by taking $\varphi(p) = x^m w_{u,v}^{\lambda}(1/x)$ and proceeding as in the proof of the theorems (1 a, 1 b).

Theorem 3(a): Let (i)
$$f(x) = g(p)$$

(ii)
$$x^{2m-1/2} f(1/x) = \psi(p)$$

(iii)
$$x^{2m-1}f(1/x^2)$$
 be $R_{u,v}^{\lambda}$, then

 $x^{-2m}\psi(1/x^2)$ will be $\tilde{w}_{u,v}^{\lambda}(x)$ transform of $x^{2m-1}g(x^2)$, provided that $x^{-m}f(x)$, $x^{2m-1/2}f(1/x)$, $x^{m-1}g(x)$ are bounded and absolutely integrable in $(0, \infty)$.

Theorem 3 (b): Let (i)
$$f(x) = g(p)$$

(ii)
$$h(x) = p^{1/2-2m} g(1/p)$$

(iii)
$$x^{2m-1}g(x^2)$$
 be $R_{u,v}^{\lambda}$, then

 $x^{-2m}h(x^2)$ is the $\tilde{w}_{u,v}^{\lambda}(x)$ transform of $x^{2m-1}f(1/x^2)$, provided the conditions of the theorem 3 (a) are satisfied.

We can prove these theorems by taking $\varphi(p) = x^m \tilde{w}_{u,v}^{\lambda}(\sqrt{x})$ and proceeding as in the proof of theorems (1 a, 1 b).

Theorem 4(a): Let (i) f(x) = g(p)

(ii)
$$x^{2m+1/2}f(1/x) \doteq \psi(p)$$

(iii)
$$x^{-2m-1}f(x^2)$$
 be $R_{u,v}^{\lambda}$ then

 $x^{2m} \psi(x^2)$ will be $\tilde{w}_{u,v}^{\lambda}(x)$ transform of $x^{-2m-1}g(1/x^2)$, provided that $x^{-2m-1}f(x^2)$, $x^{2m+1/2}f(1/x)$ and $x^{-2m-1}g(1/x^2)$ are bounded and absolutely integrable in $(0, \infty)$.

Theorem 4(b): Let (i) f(x) = g(p)

(ii)
$$h(x) = p^{-2m-1/2} g(1/p)$$

(iii)
$$x^{-2m-1}g(1/x^2)$$
 be $R_{u,v}^{\lambda}$, then

 $x^{2m}h(1/x^2)$ is the $\tilde{w}_{u,v}^{\lambda}(x)$ transform of $x^{-2m-1}f(x^2)$, provided the conditions of the theorem 4 (a) are satisfied.

We can prove these theorems by taking $\varphi(p) = x^m \tilde{w}_{u,v}^{\lambda} (1/\sqrt{x})$ and proceeding as in the theorems (1 a, 1 b).

Theorem 5: Let f(x) be bounded and integrable in $(0, \infty)$. Then a sufficient condition for f(x) to be $R_{u,v}^{u+v+1/2}$ is that it should be of the form

$$f(x) = \frac{\Gamma(5/4 + u/2) x^{-\frac{1}{2}(u+v+1)}}{\Gamma(1 + u/2 - v/2) \Pi i} \int_{c-i\infty}^{c+i\infty} e^{\frac{1}{4}sx^2} M_{-\frac{u+v+3}{4}, \frac{u-v}{4}} \left(\frac{1}{2}sx^2\right)$$

$$Xx^{-\left(\frac{u+v}{4}+1\right)} \varphi(s) ds \text{ where } \varphi(s) = \varphi(1/s).$$

Proof: Let

(2.7)
$$\chi(x) = \int_{0}^{\infty} (sx)^{\frac{u+v-1}{2}} e^{-\frac{1}{2}s^{2}x^{2}} W_{\frac{1}{4}(1-u-v), \frac{u-v}{4}} \left(\frac{1}{2}sx^{2}\right) f(x) dx.$$

Assuming that f(x) is $R_{u,v}^{u+v+1/2}$, we have

$$\chi(s) = \int_{0}^{\infty} (sx)^{\frac{u+v-1}{2}} e^{-\frac{1}{4}s^{2}x^{2}} W_{\frac{1-u-v}{4}, \frac{u-v}{4}} \left(\frac{1}{2}sx^{2}\right) dx \int_{0}^{\infty} \widetilde{w}_{u, v}^{u+v+1/2}(xy) f(y) dy.$$

On changing the order of integration we have

$$\chi(s) = \int_{0}^{\infty} f(y) \, dy \int_{0}^{\infty} (sx)^{\frac{u+v-1}{2}} e^{-\frac{s^{2}x^{2}}{4}} W_{\underbrace{1-u-v}}_{\underbrace{4}}, \underbrace{\frac{u-v}{4}} \left(\frac{1}{2} sx^{2}\right) \widetilde{w}_{u,v}^{u+v+1/2}(xy) \, dx$$

$$= \int_{0}^{\infty} f(y) \, dy \int_{0}^{\infty} x^{\frac{u+v-1}{2}} e^{-x^{2}/4} W_{\underbrace{1-u-v}}_{\underbrace{4}}(x^{2}/2) \widetilde{w}_{u,v}^{u+v+1/2}(xy/s) \, \frac{dx}{s}.$$

Since
$$x^{\frac{u+v-1}{2}}e^{-x^2/4}W_{\frac{1}{4}(1-u-v),\frac{u-v}{4}}(x^2/2)$$
 is $R_{u,v}^{u+v+1/2}$, [3], we have

$$\chi(s) = \frac{1}{s} \int_{0}^{\infty} (y/s)^{\frac{u+v-1}{2}} e^{-y^{2}/4s^{2}} W_{\frac{1-u-v}{4}, \frac{u-v}{4}} (y^{2}/2s^{2}) f(y) dy = \frac{1}{s} \chi(1/s).$$

Let $\varphi(s) = s^{1/4} \chi(\sqrt{s})$ then $\varphi(s) = \varphi(1/s)$. From (2.7) we have

(2.8)
$$\chi(\sqrt{s}) = 2^{\frac{u+v-3}{4}} \int_{0}^{\infty} (su)^{\frac{u+v-1}{4}} e^{-su/2} W_{\frac{1-u-v}{4}, \frac{u-v}{4}} (su) f(\sqrt{2u}) du / \sqrt{2u}.$$

Applying inversion formula we have

$$f(x) = \frac{x\Gamma(u/2 + 5/4)}{\Gamma(1 + u/2 - v/2) \prod_{i}} \int_{c-i\infty}^{c+i\infty} e^{\frac{1}{4}sx^{2}} M_{-\left(\frac{u+v+3}{4}\right), \frac{u-v}{4}} \left(\frac{1}{2}sx^{2}\right) (sx^{2})^{-\frac{v+u+3}{4}} \times \chi(\sqrt[4]{s}) ds$$

or

$$f(x) = \frac{\Gamma(5/4 + u/2) x^{\frac{-u+v+1}{2}}}{\prod_{i} \Gamma\left(1 + \frac{u-v}{2}\right)} \int_{c-i\infty}^{c+i\infty} e^{sx^{2}/4} M_{-\frac{u+v+3}{4}}, \frac{u-v}{4} \left(\frac{1}{2} sx^{2}\right)$$

$$\times s^{-\left(\frac{u+v}{4}+1\right)} \varphi(s) ds$$

where $\varphi(s) = \varphi(1/s)$. Thus the theorem is proved.

3. Examples: (1) Let $\varphi(s) = \frac{\sqrt{s}}{1+s}$, then we have from theorem 5

$$f(x) = \frac{\Gamma(5/4 + u/2) x^{-u/2 - v/2 - 1/2}}{\prod_{i} \Gamma\left(1 + \frac{u - v}{2}\right)} \int_{c - i\infty}^{c + i\infty} e^{sx^2/4} M_{-\frac{u + v + 3}{4}, \frac{u - v}{4}} \frac{(sx^2/4)}{1 + s} \frac{s^{-(u + v + 2)/4}}{1 + s} ds$$

is $R_{u,v}^{u+v+1/2}$. On taking v=0 and evaluating the integral we have

$$x^{-(1+u)/2}e^{-x^2/4}M_{u+3}, \frac{u}{4}(x^2/4)$$
 is $R_{u,0}^{u+1/2}$.

(2) Let $\varphi(s) = \frac{s}{1+s^2}$, then we have from theorem 5

$$f(x) = \frac{\Gamma(5/4 + u/2) x^{-u/2 - v/2 - 1/2}}{\prod i \Gamma(1 + u/2 - v/2)} \int_{c-i\infty}^{c+i\infty} e^{\frac{1}{4}sx^2} M_{-\frac{u+v+3}{4}}, \frac{u-v}{4} \left(\frac{1}{2}sx^2\right) \times \frac{s^{-(u+v)/4}}{1+s^2} ds \text{ is } R_{u,v}^{u+v+1/2}.$$

On putting v=1 and evaluating the integral by residue theorem we have

$$x^{-u/2-1} \left[-\frac{1}{\sqrt{2}} (1+i) e^{-ix^2/4} M_{\frac{u}{4}+1, \frac{u-1}{4}} \left(\frac{1}{2} ix^2 \right) + e^{ix^2/4} M_{-\left(\frac{u}{4}+1\right), \frac{u-1}{4}} \left(\frac{1}{2} ix^2 \right) \right]$$
 is $R_{u,1}^{u+3/2}$.

REFERENCES

- [1] Erdélyi, A. & others; Tables of Integral Transforms Vol. I & II.
- [2] Goldstein, S., Proc. Math. Soc., 21, 1932, 103-25.
- [3] Mainra, V. P., Bull. Cal. Math. Soc., 50, (1958).
- [4] Titchmarsh, E.C., Introduction to the theory of Fourier Integrals, (second edition), 1948).
 - [5] Watson, G. N., Quart. Jour. of Math. (Oxford), 2, 1931, 298-309.

B.I.T.S., Pilani, Rajasthan, India