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~The following two theorems appear in [2, p. 13].
Theorem 1: Inequality on Indices; [4\B:B]>[4: 4N B]

Theorem 2: Equality of Indices: If [4()B:B] and [4(JB: 4] are finite
and relaively prime, then ‘ ,

[AUB:B]=[A: 4N B] and [AUB: 4]=[B: AN 4].

In this paper we propose to t.ckle the problem of finding the most gene- -
ral conditions for the validity of equality of indices. For this purpose we first
study the conditions of above theorem 2. We take up the case when 0(4UB)
is finite )

We know that

and [AUB:B]=%‘$.

Since A, B are subgroups of A4(JB, their orders will divide the order of
AUB, and so let

0(4UB)
AUB: Al =———=
[AUB: 4] oA

0(4UB)=KO(4) =K' 0(B).

From the condition of theorem, it follows that

(k,ky=1.
Now, let
0B _ 0«
* K K’
Then
(ow) O(A))=1
W v/
and as 0(4 B) divides both 0(4) and 0(B), we must have

w=v0(4NB)
for some integer v, Thus we have
0(4) 0(B)

0(4UB) =
(4UB) v0(4NB)
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Now, we first give a new proof of a counting principle given in [1, p. 39].
A counting principle: 1f A and B are finite subgroups of G' of orders 0(4)
and 0 (B), respectively, then
_o0o®B
0(ANB)
Proof. Denote AN B by D and let
' A=1.D+x,D+ .-+ +x,D,

B=D.1+Dy,+ «+-+x¥,

0 (4B)

be two coset decompositions of 4 and B. Then
AB=(1D+x,D+ -+ +x,D)(D1+Dy,+ -+ +Dy,)
=(14+x,4+ - +x)DA+y,+ -+ - +Vp)

We show that x, Dy,’s are disjoint. For this let us assume on the contrary
that x, Dy, and x, Dy, have an element in common (x;7 X; ¥;7))- Then we have

X d,y;=x; d,y; (d,d, & D)
or
—1 —1
xp x;di=d,y,yi".
Since the first is in 4 and second is in B, we have that both belong to D.
Thus we have for some d,,d, & D,
X=X dy, ¥;=4d, ¥
and hence we find that »
x;D=x, D and Dy;=Dy,

which is contrary to the fact that x,D’s and Dy,’s are distinct.
Hence

_0A) 0B) oy OADOB)
0(D)y 0(D) 0 (D)
Now as ABCA\JB, we have 0(4B)<0(41J)B), or
0()0(B) _ 0(4)0(B)
0(4NB) vO(4NB)

so that v=1 and 4B=AB. Interchanging 4 and B, we have BA=BUA=
— AU B. Hence we have AB=BA in this case i.e. 4 and B commute.

As it will be shown below, this condition plays an important role in our
problem,

Theorem 3 If A and B are finite subgroups of a group G, then in
order that the equality of indices :

[AUB:Bl=[A: AN B]

- 0(4B)=n0(D)m

and
[AUB: A]=[B: AN B]

hold, it is necessary and sufficient that A and B commute ie. AB=BA.
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Proof. In this finite case the proof is facilitated by the following expres-
sions:

0UUB) |4 5. 0AUB)
0(B) 04

&[B;'Aﬂglzﬂ
0(ANB) = 0(4NB)
04 0(B)
=0 =
0(4B) (BA) 04N B)

let AB=BA. Then A\ JB=AB= B4, from which it follows that 4{JB is
of finite order. Thus, what we have to prove reduces to

0(4UB)__0(4) . 0(dUB)__0(B)

[AUB:B]=

[A: AN B]=

0B) 0A4NB 0(4) 0(4NB)
ie. 0(4B)= M in both cases-as A(JB=AB, and which is true.
04N B)
Again, let
[AUB:B]=[A: AN B]
ie. [A4UB: B -2 _ 0¢B)

S 0(4NB)  0(B)

Hence the index of B in A(J B is finite and so we have 0(4B)=0(B)
0(4B) /0(B)=0(4B), so that as ABC A(JB, we have AB=AJB. Similarly
BA=A{)B whence we have AB= BA, which completes the proof.

To prove the result for general 4 and B i.e. when they are not necessa-
rily finite, the above method fails and we are to follow another course. We
first of all extend the Lagrange’s theorem for a group G to the set 4B where
A and B are two subgroups of a group. We state our result in the

Theorem 4. Jf A and B are subgroups of a group then the set AB can
be partitioned. into cosets of A (or B) such that they all have the same number
of elements and that they are mutually exclusive.

Proof. If 4 is equal to AB, we have nothing to prove. If not let a
residual element in AB be x, Then A x,C AB. If A and Ax, together are equal
to AB, we are done otherwise we continue likewise and thus have cosets A,
Axy Axpy.nn.. Since an arbitrary x< 4B also belongs to Ax, these cosets toge-
ther must cover 4B. Now we show that they are mutually exclusive.

Let, on the contrary, two non-indentical cosets, say, Ax; and Ax,, have
an element in common, so that g, xs=a,x;

whence Ada x5=Aa,x, ie. Axs=Ax,

so that they are indentical contradicting our hypothesis. Similarly for B. Hence
the result,

Let us call the cardinality of the set of dinstinct cosets (right or left) of
AB w.r.t. 4 the index of 4 in AB denoted by [4B: A].
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Obviously we have
0(4B)=[4B: 4]0 (4).

From above theorem taklng A or B to be the whole group @, Lagrange’s
theorem follows.

Now we prove the - following theorem which will straightway lead to the
solution of our problem.

Theorem 35 (Equahty of Indlces) If A and B are two subgroups of a
group G, then we have

[AB:B]=[A:AﬂB]

such that the cosets have a 1-1 correspondence and have the Jorm xB and x AN\ B,
_respectively, x & A. »

Proof: — Call ANB=D. Let AB be decomposed into cosets 1. B,
Xy B, xgB,..... Then we ascert that the cosets 1.D,x,D,xgD,.... are all
distinct in A. For if x3D=x,D (A#p), then x; =x,d for some d € D and then
Xy B=x,dB=x,B contrary to our assumption. Hence there are at least as many -
distinct cosets of A(YB in A as there are of B in AB. Hence [4B: B] < [4; AN B].

Again let 4 be decomposed into the distinct cose's 1.D,y,D,ysD,....
Then we assert that the cosets 1.B,y, B, ys B,... are all distinct in 4B. For if
nB= yuBO\;&p,), then y, =y,b for some b& B. Obviously y;.y, both belong to
A, 50 that b=y, ' y,E 4, ie. b&D. So the cosets y,D and y,D have in common
the element y, =y, b, contrary to the assumption. Hence there are at least as many
distinct cosets of B in AB as there are of AN Bin A. Hence [AB:B]>[A:A()B].
Thus it follows that [4B: B]=[4: A B].

Likewise, it can be shown ‘that
[AB:A]=[B: AN B].
Now, we tackle our problem in the following: "

Theorem 6 (Equality of Indices): — A necessary and sufficient condition
that

[AUB:Bl=[{A:ANB] and [A\JB:A]=[B:ANB].
where- the indices are finite, may hold is that A and B commuie ie. AB=BA.

Proof. Let AB=BA. Then each of these is also equal to 4{JB and the
theorem reduces to the equalities [AB:B]=[4:4NB] and [AB:A]=[B:A B]
which hold due to theorem 5.

Again, let. the equalities hold. Then by theorem 5 we have
[AUB:B]|=[AB:B] and [AUB: A]=[A4B:A4].
It follows that in each case A(JB= AB. Interchanging 4 and B and using the
same argument we have A4|)B— BA. Hence 4B = BA and the proof is completed.

Theorem 6 may not hold when the indices are not finite for [4 ) B: B] may
be equal to [4B: B] without A JB being equal to AB. Nevertheless the suffi-
cient part of the theorem holds in general which we state as -
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Theorem 7 (Equality of Indices): If AB=BA, then
[AUB:B]l=[4: AN B]
and [AUB:Al=[B:ANB).
The proof follows along the same lines as in theorem 6 without assuming the

indices to be finite,

Now finally we remove the difficulty of non-applicability of theorem 6
for nonfinite indices. For this we use necessary part of theorem 5. Let all dis-
tinct cosets of A B in A4 be represented in the form {xAN B:x& X (say)}. Then
cosets of B in AB have the form {xB:xcX}. If 4 and B commute, then the
same will be cosets of B in A({JB, and if the same are cosets of B in A B,
then 4B=A(JB. Similarly for BA. And we will have that 4B = BA.

Here we have denoted the set of cosets with curled brackets.
Theorem 8 (Equality of Indices): — Let
{4:ANB}={xANB:xEX} and {B:ANB}={yANB:ycY}
then a necessary and sufficient condition that
[AUB:B]|=[A:4ANB] {AUB:B}={xB:x < X}
[AUB:A]=[B:ANB] {AUB: A} ={yA:yc Y}

hold is that A and B commute.
From theorems 6 and 2 follows the result that:

If [AUB: 4] and [4(JB:B] are finite and relatively prime, then 4 and B
commute and A|JB=AB=BA.

REFERENCES

[11 Herstein, I. N., Topics in Algebra, (1969) Vikas Publications, Delhi.
[2) Marshall Hall, Jr. The Theory of Groups, The Macmillan Co., New York.

Department of Mathematics
Indian Institute of Technology,
Hauz Khas, New Delhi-29 (India)



	105.tif
	106.tif
	107.tif
	108.tif
	109.tif

