A CHARACTERIZATION OF CRAMÉR REPRESENTATION OF STOCHASTIC PROCESSES

Z. Ivković and Yu. A. Rozanov

(Communicated May 13, 1972)

Let $X(t), t \in [a, b]$ be a complex valued stochastic process with $EX(t) = 0$ and $E|X(t)|^2 < \infty$ for each $t \in [a, b]$. The interval $[a, b]$ may be finite or infinite. We consider the process $X(t), t \in [a, b]$ as a curve in the Hilbert space H of all random variables with finite dispersion. The scalar product in H is defined by $(X, Y) = EXY; X, Y \in H$. Let $H(X; t)$ be the linear closure in H generated by $X(s), s \in [a, t]$. We will suppose that $X(t), t \in [a, b]$ is continuous from the left (which yields the separability of the spaces $H(X; t), t \in [a, b]$) and regular (i.e. $\bigcap_{t>a} H(X; t) = 0$).

Let $Z(t) = \|Z(t)\|_{n=1}^{N}, t \in [a, b]$ be a stochastic process (considered as a vector column), where $Z_n(t), t \in [a, b], n = 1, N$ are mutually orthogonal processes with orthogonal increments. N may be finite or infinite. Put $F(t) = EZ(t)Z^*(t) = F_{jk}(t)\|_{k, j=1}^{N}$, where $Z^*(t)$ denotes the transposed matrix of $Z(t)$.

Matrix function $F(t), t \in [a, b]$ has non-zero elements only on the principal diagonal and we denote them by $F_{nn}(t) = E|Z_n(t)|^2, n = 1, N$.

Let $L_2(F)$ be the Hilbert space of all complex valued vector row functions $f(t) = \|f_n(t)\|_{n=1}^{N}, t \in [a, b]$ for which

$$\int_a^b |f(u)|^2 dF(u) < \infty.$$

The scalar product in $L_2(F)$ is defined by

$$<f_1, f_2> = \int_a^b f_1(u) dF(u) f_2^*(u); f_1, f_2 \in L_2(F).$$

Consider the class of all distribution functions F (defined on $[a, b]$ and being bounded, nondecreasing and continuous from the left). We write $F_1 \succ F_2$ if and only if the measure induced by F_2 is absolutely continuous with respect to the measure induced by F_1. Let R be a class of the distribution functions
equivalent with respect to the relation \succ. We will consider the arbitrary finite or infinite sequence of classes

$$R_1 \succ R_2 \succ \cdots \succ R_N.$$

The fundamental result in [1] is the following:

For a given sequence (1) there exists the process $X(t), t \in [a, b]$ such that

$$X(t) = \int_a^t g(t, u) \, dZ(u), \quad t \in [a, b],$$

where

1. The processes $Z_n(t), n = 1, N$ in $Z(t) = \| Z_n(t) \|_{n=1, N}$ are mutually orthogonal with orthogonal increments and

$$E \left| Z_n(t) \right|^2 = F_n(t) \subseteq R_n, \quad n = 1, N$$

2. $H(X; t) = \sum_{n=1}^N \oplus H(Z_n; t), \quad t \in [a, b]$

3. For $F(t) = E Z(t) Z^*(t), \quad t \in [a, b]$ then $g(t, u) \in L_2(F)$ as a function of $u \in [a, t]$ ($g(t, u) = 0$ for $u > t$).

We call Cramér representation of the process $X(t)$ the representation (2) with 1, 2, and 3. The sequence (1) or $F(t), t \in [a, b]$ is the spectral type of $X(t)$.

It follows from the theorem of complete system of unitary invariants of a selfadjoint operator in Hilbert space [5] that the correlation function of $X(t)$

$$B(s, t) = (X(s), X(t)) = EX(s) \overline{X(t)}, \quad s, t \in [a, b]$$

uniquely determines the spectral type of $X(t)$.

We will say that the family of functions $g(t, u) \in L_2(F), \quad u \in [a, t]$ (where the parameter $t \in [a, b]$) is complete in $L_2(F)$ if for any fixed t from

$$\int_a^s g(s, u) \, dF(u) f^*(u) = 0 \quad \text{for all} \quad s \in [a, t]$$

follows $f(u) = 0, \quad u \in [a, t]$ almost everywhere with respect to F (i.e.

$$\int_a^t f(u) \, dF(u) f^*(u) = 0.$$

Theorem 1 ([3], see also [4]). The process $X(t), t \in [a, b]$ has Cramér representation (2) if and only if

$$\min_{[a, t]} B(s, t) = \int_a^t g(s, u) \, dF(u) g^*(t, u), \quad s, t \in [a, b]$$

where the family of functions $g(t, u), \quad u \in [a, t]$ is complete in $L_2(F)$.

Proof. It follows immediately from Cramér representation that $B(s, t)$ has the form (4). To prove that the family $g(t, u)$ is complete observe that any
element Y of $\sum_{n=1}^{N} \oplus H(Z_n; t)$ is of the form $Y = \int_{a}^{t} f(u) \, dZ(u)$, $f \in L_2(F)$. As $Y \in H(X; t)$ it follows that $(X(s), Y) = 0$, for all $s \in [a, t]$ implies $Y = 0$, what is equivalent to the condition of completeness of $g(t, u)$.

Now, let $B(s, t)$ be of the form (4) with the complete family $g(t, u)$. Then we can always find the process $Z(t) = \| Z_n(t) \|_{n=1, N}$, where $Z_n(t)$, $n = 1, N$ are mutually orthogonal and with orthogonal increments, for which

$$EZ(t) Z^*(t) = F(t)$$

with $F(t)$ from (4). So the process

$$X(t) = \int_{a}^{t} g(t, u) \, dZ(u), \quad t \in [a, b]$$

has the correlation function (4). We only have to prove that the condition 2. of the Cramér representation holds. From (5) follows

$$H(X; t) \subseteq \sum_{n=1}^{N} \oplus H(Z_n; t), \quad t \in [a, b].$$

If $H(X; t) \supseteq \sum_{n=1}^{N} \oplus H(Z_n; t)$ there exists $Y \neq 0 \in \sum_{n=1}^{N} \oplus H(Z_n; t)$ such that $(X(s), Y) = 0$ for all $s \in [a, t]$. As

$$Y = \int_{a}^{t} f(u) \, dZ(u), \quad 0 = f \in L_2(F)$$

we have

$$(X(s), Y) = \int_{a}^{s} g(s, u) \, dF(u) f^*(u) = 0 \quad \text{for all } s \in [a, t],$$

which is the contradiction with the condition that $g(t, u)$ is complete.

Example 1. Let $A_n, \ n = 1, N$ be disjoint sets such that $\bigcup_{n=1}^{N} A_n = [0,1]$ and let every A_n be dense in $[0,1]$. We consider the family $g(t, u) = \| g_n(t, u) \|_{n=1, N}$, $t \in [0,1]$, where

$$g_n(t, u) = \begin{cases} 1, & u \in [0, t], \quad u \in A_n. \\ 0, & \text{elsewhere} \end{cases}$$

Let $F(t) = \| F_n(t) \|_{n=1, N} = \| t \ 0 \| \quad 0 \ t \ |\|_{n=1, N}, \quad t \in [0,1].$

It is easy to show that the family $g(t, u)$, $u \in [0, t]$ is complete in $L_2(F)$; if for all $s \in A_n \cap [0, t]$}

$$\int_{a}^{s} g(t, u) \, dF(u) f^*(u) = \int_{a}^{s} f_n(u) \, du = 0,$$
then \(f_n(u) = 0, \ u \in [0, t] \) a.e. or \(f(u) = \| f_n(u) \|^{n-1, N} = 0, \ u \in [0, t] \) a.e. with respect to \(F \).

So

\[
B(s, t) = \int_0^1 g(s, u) dF(u) g^*(t, u) = \begin{cases}
\min \{ s, t \}, & \text{if both } s \text{ and } t \text{ are in the same set } A_n, \ n = 1, N \\
0, & \text{elsewhere}
\end{cases}
\]

is the correlation function of the process \(X(t), \ t \in [0,1] \) with the spectral type \(F \). For example,

\[
X(t) = \int_0^t g(t, u) dZ(u), \ t \in [0,1],
\]

where \(Z_n(t), \ n = 1, N \) in \(Z(t) = \| Z_n(t) \|^{n=1, N} \) are independent Brownian motion processes.

Remark. The Theorem 1 holds under weaker conditions than those that the functions \(F_n(t), \ n = 1, N \) in \(F \) are ordered according to \(\succ \). Namely, let \(G(t) = \| G_{jk}(t) \|^{j=1, L, \ k=1, L} \) be the matrix function which having the only non-zero elements distribution functions \(G_{nn}(t), \ n = 1, L \) (\(L \) may be infinite). For the process \(X(t), \ t \in [a, b] \) with the correlation function

\[
B(s, t) = \int_a^L h(s, u) dG(u) h^*(t, u); \ s, t \in [a, b]
\]

where the family of functions \(h(t, u), u \in [a, t] \) (parameter \(t \in [a, b] \)) is complete in \(L_2(G) \), the spectral type can be found as follows. Starting with \(G(t) \), the procedure for determining \(F \) in Cramér representation of \(X(t) \) is equivalent to the so called regularizing transposition from [2], Ch. VII (Note that \(N < L \)).

It is shown in [1] that the process \(X(t) \) with given spectral type \(F^X \) can be found so to be continuous (in quadratic mean). Let \(X(t) \) be regular everywhere (i.e. \(F^X(t) \) in \(F^X \) is absolutely continuous). According to [3] this is not essential restriction. Now we define

\[(6)\]

\[
Y(t) = \int_a^t \varphi(t, u) X(u) \, du, \ t \in [a, b]
\]

Theorem 2. If the family of functions \(\varphi(t, u), u \in [a, t] \) in (6), is complete in \(L_2 \), then the processes \(Y(t) \) and \(X(t) \) have the same spectral type.

Proof. We need only to show \(H(Y; t) = H(X; t) \) for all \(t \in [a, b] \). Since, according to (6), \(H(Y; t) \subset H(X; t) \) suppose that \(H(Y; t) \not= H(X; t) \), then there exists \(Z: 0 \not= Z \in H(X; t) \) such that \((Y(s), Z) = 0 \) for all \(s \in [a, t] \).

Being

\[
Z = \int_a^t f(v) dZ^X(v), \ f \in L_2(F^X),
\]
we have
\[
\begin{align*}
(Y(s), Z) &= \mathbb{E} \int_{a}^{s} \varphi(s, u) \, X(u) \, du \cdot \int_{a}^{t} f(v) \, dZ^X(v) = \\
&= \mathbb{E} \int_{a}^{s} \varphi(s, u) \left[\int_{a}^{u} g^X(u, x) \, dZ^X(x) \right] du \cdot \int_{a}^{t} f(v) \, dZ^X(v) = \\
&= \int_{a}^{s} \varphi(s, u) \left[\int_{a}^{u} g^X(u, v) \, dF^X(v) \, f^*(v) \right] du = 0
\end{align*}
\]
for all \(s \in [a, t] \). Since \(\varphi(t, u) \) is complete in \(L_2 \) it follows that
\[
\int_{a}^{u} g^X(u, v) \, dF^X(v) \, f^*(v) = 0
\]
almost everywhere on \([a, t]\). Being \(X(t) \) regular everywhere it follows that the last equality holds for all \(u \in [a, t] \). From the completeness of \(g^X(u, v) \) in \(L_2(F^X) \) we conclude that \(f(v) = 0 \) with respect to \(F^X \). This contradiction concludes the proof.

Corollary. Let
\[
B^Y(s, t) = \int_{a}^{s} \int_{a}^{t} \varphi(s, u) \, \overline{\varphi(t, v)} \, B^X(u, v) \, du \, dv, \quad s, t \in [a, b]
\]
where the process \(X(t) \) is as in Theorem 2. If \(\varphi(t, u) \) is complete in \(L_2 \) then \(F^Y = F^X \).

Example 2. The process
\[
Y(t) = \int_{a}^{t} X(u) \, du, \quad t \in [a, b]
\]
has the spectral type \(F^X \) of the process \(X(t) \).

REFERENCES