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1. Introduction.

In the paper [1] we have proposed an axiomatized system X as a foundation
for mathematics. Models for this system, as we have seen, are specters of classes
consisting of classes of different levels and membership relations among them.
In that manner any class on a level i</, where ./ denotes the hierarchy of all levels,
is an element of a class on the level i+1& 7. Its elements are classes of the level
i—1&7, called i-sets. There, we have also shown that there exists an initial specter

whose elements are i-universes %/; and bonding relations are strict dominations.
Each i-class #; is a subclass of the universe“/;, respectively an element of the uni-
verse 9i+1. The inductive limit of the initial specter is the universe %/. The uni-
verse 9/ is a proper universe and also a proper class. It is a wide frame which con-

tains all objects of mathematics, all objects of all levels. The system of which %/
is a model is the limit system X_, of 2.

In several subsequent papers we shall attempt to show that the system X
provides an adequate framework for (all) mathematics. To attain this purpose
we adopt two ways, the one devoted to the study of some mathematical structures

in 9/ and the other to the formalization of such investigations in a system falling
under the scheme of X. Then we shall determine, within such a system, the posi-
tion of existing logical systems.

The realization of our programme we originate by the study of some struc-

tures in /. The first type structures that we mean to consider are structures among
the same level objects, namely structures on a class ¢ of a level i of 7. Such a type

of structures we call herizontal structures in /. We consider here certain types
of these structures, those which are in a sense, the most natural in /. These structures

we take as basic ones and call them fundamental structures in /. We present here
an elementary theory of these structures. However, before it we explain what funda-
mental structures are. Let us consider a class t; of some mathematical (i—1)-objects,
where by i—1 is denoted their class-theoretical level. To study this class we intro-
duce on it a new class p;, the class of connections or rules for relating elements
in it. If we introduce a structure on the class of rules p;, then this structure will
give some informations of the class #; itself. A certain structure on the class p; we
call a fundamental structure of the class #;, and denote it by p; (#;). In future we
shall often say simply a fundamental structure p; (#) without stressing the class of
objects of which it is such a structure. In order that these structures be more po-
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werful tools for our future needs we enrich them by some additional structures.
The second part of this paper is devoted to such structures.

Now, since we have explained the notion of a fundamental structure on a

class in %/ we shall pay more attention to the class of rules in it. Rules in a class
may be of different natures depending on objects and informations we want to
have about them. In abstract considerations of classes, when we want only to estab-
lish that there are connections among their objects satisfying certain laws, the
nature of these rules is not significant. However, in concrete situations when we
want to have more available informations of objects in a class and also a possibility
to do something with them, for instance to construct new objects from the ori-
. ginal ones, the nature of rules is an essential matter. Because of that we have to
specify rules in a certain sense. Clearly, it has a sense to consider those rules only
which naturally correspond to a considered class of objects. A rule which preserves
basic properties characterizing the structure of objects in a class will naturally

belong to it. Such a rule is then admissible for that class. We restrict all rules in %/

to these ones. Hence, a rule in %/ means an admissible rule for a particular class
of objects. Furthermore, since we consider here the horizontal type structures,
then we must also do some restrictions to rules in that sense. We shall restrict rules
to those ones which have the same levels as considered objects. A rule in the uni-
verse will be of the level 7 if it connects i-objects, namely if its domain and codomain

have the same ith level. Such rules we call horizontal rules in %/. Let us consider
two i-classes #; and s; and a rule o : #;—s;. If this rule is such that with each ele-
ment #;—; €t it associates a single element « (¢;—1) E s;, then its codomain has ith
level as its domain itself. Such a rule we call a single-valued rule. It is obviously
a horizontal rule in %/. Provided that s; is not the i-universe %/, then « is a hori-
zontal rule even if « (z;—1) C ;. This follows immediately from the axioms of domi-
nation and codomination, since the codomain of this rule is a subclass of /2 (s;).
Such rules we call many-valued horizontal rules in %/. A many-valued rule to s;
may be viewed as a single-valued rule to /2 (s;). We shall not consider many-valued
rules in this paper, because it is too hard to make them to be admissible for classes

of objects in %/. Hence, by the rules in %/ we mean single-valued horizontal rules

being admissible for a class of objects in %/. We shall call them simply “rules”.
If they occur, many-valued horizontal rules will be particularly stressed. In the

case of the preuniverse %/* it is not true that if the domain of a rule is on ith level
that so is the codomain. In that case we must postulate it, namely require that all
rules have this property. To horizontal rules we shall add an index to denote their
levels. So, the rule o; will mean a rule of ith level. Besides horizontal rules there

are also in %/ rules whose domains and codomains are on different levels. Such rules
we call vertical rules in /. Their studies are without the scope of this paper. They

will occur in considerations of vertical structures in /. Then we shall study them
in more details. To mention only that they may also be single-valued and many-
-valued rules.

In this paper we present an elementary theory of fundamental structures,
define some special types of these structures and study their elementary properties.
A part of results presented here we consider the well-known or essentially known,
see [3], [4] and others. Here, we think, in the first place, of the Section 2. However,
we consider that because of our future references it is better to collect together
the results we need further, to attain a terminological compatibility of notions and
to accommodate them to our new foundation. Hence, we consider this paper as
an auxiliary one for our future intentions.
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2. The elementary theory of fundamental structures.

In this section we shall present the elementary theory of fundamental structures
(abbreviated as ETFS) in a volume that will be sufficient in future. In order to spe-
cify the mentioned theory, we have to specify its nonlogical symbols and its monlo-
gical axioms. However, before doing this we shall do some considerations concer-
ning the language of ETFS. This language we shall denote by L. We require that L
contains two sorts of variables. To distinguish among them we may add to them some
names. So, variables of the first sort we may call dots and of the second, arrows.
In the sequel we shall specify some letters that we shall use as symbols for variables
of both sorts. For the first sort we reserve the beginning of the Latin alphabet and
also letters s and ¢; for the second, the end of that alphabet, from p up to the end,
excluded s and #, sometimes Latin capitals and also a part of Grecian alphabet.

Variables of both sorts we take to range over the universe %/, at this, the first sort
over objects in %/ and the second over rules among these objects. Thus, we assume
interpretations of the language L to be in the universe L. In order to emphasize the
class-theoretical levels of interpretations in %/ we add to every language, which is
to be interpreted in %/ an idenx i<, where 7 denotes the hierarchy of all levels
in %{. Hence, L; means that a language L has an interpretation on the ith level

in %/ namely that the first sort variables of it are ranging over (i—1)-objects and
the second over rules among them. However, we may also regard that the language
L has variable symbols of the (i—1)-level and that, thus, we denote it by L;. In

order to specify languages of different levels we presuppose that there is a class S
elements of which are symbols od different sorts and levels. We assume that starting
symbols of different sorts in it are of the level —1. The class of all such symbols

we denote by CSO' Then we have different sort symbols of the levels O, 1,..., and

accordingly classes <31, s, .... These classes we take as the classes of variable
symbols for languages L;, i<, and assume that all interpretations of L; are hori-

zontal, i.e. along the same levels. If they are in </ then elements of iy are ranging

over the universe “%/;+;. Hence, a variable symbol #; will mean an i-object and pi
a rule between two such objects.

The study of languages of different levels and relationships among them
we leave for our final step, while we shall be formalizing our investigations and
here proceed to specify the theory ETFS on a fixed level. We choose the level to
be i+1. At first, we specify the nonlogical symbols of ETFS. They are the sym-
bols of its language L, which is now provided with the index i+1. We take that
the language L;4+; has the following nonlogical symbols, two l-ary function sym-
bols ), and <, and a 2-ary function symbol €. Of course, we understand that Li
is a language with the equality symbol =. By the atomic formulas of L;;| we mean
expressions of the forms 9, (pi))=ai, D, (pi)=0bi, C(ps, ¢i)=r; and p;=gqi. The
formula € (pi, q;)=r; we shall write € (pi, ¢i, ;). These formulas are to be read
as follows: 9, (pi) = ai, a; is the domain of pi; D, (pi) = bi, b; is the codomain of
pi; C(pi, qi; i), ri is the composition of p; followed by ¢; and p;= ¢, p: equals g;.

Denote by ;4 the class of all formulas of L;+;. We assume that this class
consists of the atomic formulas and those such that:

a) If 6,£0,,,, then —0,=0,,,,

b) if O (={07; a<<cy} is a class of formulas from ®,, then Vv O,
A O} are formulas of ©,,,

) if 0;,, ;,E0®,,,, then 0,>1,£0,,,, and

d) if 0,£0,,, and p,cp,, then Vp, 0, and 3p,6,c0,,,.

4%
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For the time being we shall say nothing more about this class. Later, after
introducing topological structures in %/ we shall consider this question once more
to show what is the structure on ©;;;. Then we shall consider the class of formulas
of an arbitrary language L, introduce on it a particular kind of considered structures
and distinguish some classes of its elements.

We are now able to give a precise description of the notion of a fundamental
structure on (i41)-level in /. It is a structure for Lit;, namely a system {piiq (fi+1);
Dy> Dy» €) consisting of the following things: a class p;iq (ti+1) of i-objects and
rules among them, called the domain of the structure, and for the function symbols
2Dy, Dy and € of Ly, two 1-ary functions Dy, Dy of piry (fi11) to itself with values
in the subclass #;11 of pitq (fi+1), and a 2-ary function € of piiq (fi+1) to itself which
assigns, to some pairs of elements of p;y; (t;+1) single elements of it. Note that
in the definition of € is relaxed the condition for every, namely € is not defined
for all pairs but for some pairs of psy; (f;4;). From now on we shall identify
the notations for a fundamental structure and its domain.

If we define on a fundamental structure ps4; (f41) a one-one transformation
op which assigns, to each rule p; of piiq (f1+1), a tule pi® in such a way that op
(Do,1 () =D1,0 (PF) and op (C(ps, qis ri))=C(gi", ¥ ri®), then of piiq (ti41)
we obtain the opposite or the dual fundamental structure p;®; (#;4,). This structure
differs from ps1q (fi41) in reversed directions of rules and the order of the compo-
sition. Obviously, the transformation op satisfies the condition opoop=1. We can
also do the above stressed transformations throughout the formulas of L;+; and
obtain the dual language L?; of Liy;. A structure for L{?; is then the dual funda-
mental structure of a structure for L;iy.

Now we shall specify the nonlogical axioms of ETFS and accordingly parti-
cular kinds of fundamental structures. At first, we formulate axioms that will
be the basic ones. These axioms can be found in [3] and also in a form in [2]. They
are divided in the following two groups:

I. Technical axioms
L. Dy (D (PN =Dy (), 1,m=0,1,
2. 3r,C(P5 45 1) © D(P) =Dy (4)»
3. C(Pi i3 1) = Dy (P) =Dy (r) ANDy (r) = D, (g,
4 C(pi, 45 1) N C(Pis qis 1i) = ry=ri.

II. Principal axioms

Aj. Axiom of identity

C (Do (P, P53 P;) N C (0, Dy (D) P

A;. Axiom of associativity

C Py, 455 u) N CAqis 15 w) A C (P, wis XINC Wy 15 3) = x=y,.

A structure piyq (#;+1) for Lsyq in which all the above axioms are valid we
call a fundamental semigroupoid. In that case ETFS means the elementary theory
of fundamental semigroupoids, and ®;y; the class of its formulas. A formula
of 04, is valid if it is a logical consequence of the above axioms.



Some fundamental structures on classes 53

Let us see now what the above axioms state. We first regard the axioms of
the group I. The axiom 1. specifies the functions %), and 9, to be retractions of
Pi+1(f;+)) to ., namely functions which leave the elements of 7,,, fixed. The
remaining axioms of I. state that ¢ (p;, ¢;) is defined for any two elements p;, ¢; &
& Py (t;31) such that D, (pi) =D, (¢¢) and that, if it is defined, it is defined in a
unique way. The axioms of the group IL state that, 9, (p,) and 9, (p;) are the left
and the right identity of p;, respectively, and that € is associative.

Now we shall introduce some abbreviations for certain formulas of L, to
make them shorter. So, the formula @, %> b, will mean Do(ps) = by and D, (ps) = bs
for a p;, and the formula p; - ¢;=r; will mean & (p;, q;; r;). We need in future the
formula € (pi, gi; i) A Do (1) =Dy (r1) A D, (pi) = Dy (96) A D, (g5) = D, (r:). For it
we introduce the abbreviation (.. (pi, ¢i;r;). We mention now the following
abbreviations: € (pi, gi || us, vi) for € (pi, qi; ri) A C (ug, vi; r) A ri=r; and also
Coom (Pis @i || ui, vi) for Coo (pi, qis ri) A Coopy (Ui, Vi ri) A F=r;. Sometimes, we
shall represent a formula p;-q,=r;, and accordingly € (p, qi; r;), graphically by
a diagram

Then the formula €, (p;, ¢;;r) will mean that this diagram is commutative.
Likewise, the formula €. (p;,q; !l ui, v;) will mean the commutativity of the
diagram

We mention some further abbreviated formulas, those which we need in
future. These formulas can be found in [3] and also in any book on category theory.

Mono (p;) means Y r,¥Y ri(C(r;, p;|| ri, P}) = r;=ri).

Epi (p;) means YV u,¥ u;(C (p;, u (| piyui) > w=uj).

Retr (p,) means 3¢,C (p; 9;; Dy (P))-

Coretr (p;) means 3¢;€ (q;, p;; D, (P)))-

Iso (p;) means Retr(p;) A Coretr (p,).

a,~b; means 3Ip, (D, (p)=a; A D, (p)=b; A Iso(py)).

In a similar way we can express many other notions concerning fundamental

semigroupoids. However, we shall not do it here but later when such notions will
arise.

We can specify some another fundamental structures by further specifications

of nonlogical axioms. If we add to the group II. of the basic class of axioms the
following axiom
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A;. Existence of inverses

V0. 34,(C(pi, a3 Do (2)) A C(ais 15 Dy (2))),

then a structure for L;.; in which all these axioms are valid is a fundamental grou-
poid. Obviously, a fundamental groupoid p,,, (#;;,) is a fundamental semigroupoid
in which the formula V p,Iso (p)) is valid.

So far we have involved two kinds of fundamental structures, a fundamental
semigroupoid and a fundamental groupoid. We can further obtain special cases
of these structures by requiring that ), =<, and that both are constant functions.
In that case a fundamental semigroupoid is reduced to a fundamental semigroup
and a fundamental groupoid to a fundamental group. If the common value of the
constant functions we denote by e;, then the fundamental structures we may denote
by p,s, (e;). The object e; is the left and the right identity of every element of
pi+1(e). Now, C(p;, g;) is defined for any two elements of p,., (e,).

Let p,,, (t,+;) be either a fundamental semigroupoid or a fundamental grou-
poid and g; an object in it. Denote by p;,, (a,) the class of all elements of p,,, (;,,)
of which g; is the left and the right identity. Then we have an obvious

Proposition 1. If p,, (1) is a fundamental semigroupoid, then p,,, (a;)
is a fundamental subsemigroup of it. In the case that p..,(t,)) is a fundamental
groupoid, p,.,(a;)) is a fundamental subgroup of ity

In the remainder of this paper we shall consider fundamental semigroupoids
only because their considerations are less elementary and restrictive than of other
fundamental structures. Thus, from now on, by ETFS we mean an elementary
theory of fundamental semigroupoids.

Now we shall briefly consider classes of fundamental semigroupoids. In order
that these classes be capable for studies we have to define rules for relating objects
in them. Certainly, the rules will be those ones which naturaly belong to these
classes, i.e. the rules preserving some intrinsic or basic properties of fundamental
semigroupoids. A rule between two fundamental semigroupoids which preserves
validity of atomic formulas we call a homomorphism. There are two sorts of these
rules. The ones, preserving directions of rules, called covariant homomorphisms,
and the others, reversing directions, called contravariant homomorphisms. We
define here covariant homomorphisms only, since contravariant homomorphisms
are then easily obtained as covariant ones to the opposite fundamental semigrou-
poids of the fundamental semigroupoids staying for their targets.

Definition 1. By a covariant homomorphism between fundamental semi-
groupoids p;. (f;4,) and g, (s;,) we understand a rule Fyy :py; (f147) = G4y (512y)
which assigns, to each element p,&p,. (t,+,), an element Fy, (p,) &g, (8;+;) In
such a way that always:

if Dy, () =a;, then Do, (Fiﬂ (Pi)) =F, (a), and
lf é (pia qi; ri)’ then él (Fi+1 (pi)! F;‘+1 (qi); Fi+1 (ri))’

where the primes denote the interpretations of function symbols of L, in
vy (1)

A class of (i+1)-fundamental semigroupoids provided with a class of homo-
morphisms among its objects also allow the structure of a fundamental semigrou-
poid. Hence, it follows that, we can also formulate ETFS on the level i-2. This
theory we denote by ETFS,,,. If we take that two-sort variables of the language
L;y, of ETFS,,, are ranging over (i-+1)-fundamental semigroupoids and homo-
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morphisms among them, then models for such a theory are (i42)-fundamental
semigroupoids which have (i-+1)-fundamental semigroupoids as their objects.
Now, as well as for ETFS,,,, we can write down some abbreviated formulas whose
means are special to this particular case of ETF S,+2 Let F;;, be an arrow od L,,
of ETFS,,, such that A, (Fy)=p (t+) and A (F,) =g, (5;+,), where A, and
Ay are function symbols denoting respectively, domams and codomains of ar-
rows, then we have the following formulas:

InJCCt (F+1) means Vp VPI(F;ﬂ (P) +1 (pt) —D; pl)

Surj (F,,,) means Vgq,3p,(Fr (p)=24,).
Bij (F;,;) means Inject (F,.) & Surj(Fy)).

The structure of a fundamental semigroupoid can be involved on aimost
each class of objects in /. It is sufficient to define proper rules for that purpose.

Thus, we can say that this structure is the most natural structure in %/. To show this
we indicate some more examples. For instance, we can involve this structure on
the class of rules in a fundamental semigroupoid, then on the class of rules among
these rules and so on. We are interested here to define rules under which a class
of rules in an (i--2)-fundamental semigroupoid, objects of which are (i+1)-funda-
mental semigroupoids, allows the structure of a fundamental semigroupoid. Let
Hom,,, (p;s; (ti4)); G411 (5;+1)) be a class of homorphisms between fundamental
semigroupoids p,., (¢t;+;) and g, (s;+,)- The rules among eclements in this class
we call natural rules. Their definition is as follows.

Definition 2. By a natural rule between homomorphisms Fj,,, G,+1€
Homy,, (p+; (t+1), i+, (5;21)) we understand a rule w,,, : F;.; — G, which assigns,
to each object 1,&p;, | (¢;,,) arule v, (¢t): F;y (t;) > G, () of g;., (s,,,) in such
a way that for every rule p;ia;— b,&p,. (t;.,) the formula Ciom(n;+, (@),

,+1 (p) H F,+1 (p) 77,+1 (b)) hOldS 11'1 qt+] (S1+1)

If we now want to introduce the structure of a fundamental semigroupoid
on the class of natural rules we have to define rules among them. We shall indicate
such rules. By a rule between natural rules v, , : F;, , = G;,; and miyq : Fioy — Gigr,
where Fy.y, Fii1, Gy.y and Giyq are all from Hom,,, (£, (;41); qu(s,H)) we
understand a rule pair p;,,=(pir1, piv1), Where piiq:F;,,— Fiy1 and piir:

Gy > Gi+1, which assigns, to each object t,Ep;, , (¢;4,), a pair of rules (p,+1 ),

ei+1(t)) of g;., (5;+,) such that the formula €com(n,+l (), eiv1 () ] pizt () Mir (2 ))
holds in ¢, (5;4)- ObV1ously, this assignment is such that for every p,&p,.  (¢;+,)
certam formulas hold in ¢,,,(s;,,). For instance, the formulas Com (p,+1 (ay),

1+1 (p) Il F,+1 (P) Pl+1 (b )) and Ceom (Pt+1 (a)7 l+1 (pz) I Gz+1 (P ) PH—I (b ))
hold. If we assume here that the natural rule w;, is the identity natural rule 1}+1 :

:Fiy1 — Fiy1, then we have the definition of a rule between the natural rule v, 1
and the homonorphism F;, . This rule assigns, to each object LED;, (t;+,) a pair
of rules of g;,,(s;;,) such that the formula Ceom (% (£) 741 (t), ei+1 (1)) holds.
Certainly, we can proceed in an obvious way to define rules among just defined
rules, then among these ones and so on. However, we omit to do it.

By means of the above defined rules we can form certain new rules. These
rules will be certain triples composed by the mentioned rules. At first we have
a homomorphism F;,,&Hom;,,(p;., (t;+1)s 9;+,(s;+,))- This rule we can view
as a triple (F;.,,1,,,, F;»,) which assigns to each object of p;,, (¢;,.,) a subclass
of g;.,(s;,,) consisting of a single object and the identity natural rule. Hence,
it is a single-valued rule. We have further the triple (F,,,, m;,,, G;+,), Where F,,
and G, are two homomorphisms of Hom,,, (p,;; (¢;1 ), 9;+,(5;+,)) and nz4; is a
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natural rule between them. This triple is obviously a homomorphism of Divy (tie))
to ¢4+, (s;+,) which assigns to each object of p,,,(s,.,) a subclass of Gisy (Sity)
consisting of two objects and a rule between them. Hence, it is a many-valued
homomorphism. Furthermore we have triples (¥, ,, pi+1, H,,,) and (Fie 1> Gots
&ir1), where ., and iy are triples consisting of homomorphisms and natural
rules between them, and o} ; means a rule pair. Obviously, these triples are many-
-valued homomorphisms of p,. (#;,,) to ¢;,,(s,,,). In a similar way we can form
various kinds of many-valued homomorphisms (rules) of Piv1(tiey) 1O Gy (8,40
For further needs we form here two classes of these rules. Firstly we form the class

%H] 2[%?‘%1 I a<cq(s)}7

1 1 k 0 :
such that 7/ =(%?‘+1, P?TI , GEﬁ?) and ;. is a rule of Hom,,, (p;., (t;1 ),
gi+,(5;2,)). Here, o' meansarule (o + 1)-tiple and G arule of Hom,,,(p;,,(t;.,)»

Gi+1(5;1,))- Provided that all G¥* are constant rules we have the following pic-
tures of elements of §,,, for a<3

%?‘Fl ;+1 %?H ?+1
!

G,

i+l

"

*)

i+l

Fiw Fi+1 nm (’i+l FM‘ 'Qm (’i+1

We distinguish this case denoting §,,, by Frii-
The next class of many-valued rules which we shall form here is the class
i+1 ={'S:j?+1 ! B<c (s)];
B+1 8

B 9 .
such that 7] =(§§,~ 1 pr, *@?H), where p,-z+, denotes a rule 2{i tiple. If we

assume that §7,,=F,,, and *Dre1 =Gy.,, then the pictures of the elements of
this class for <3 are

Diet i1 $iiy
v 4 14
’Fid Cm G r

I4

1+1

0

i+l

>

G.

1+1

FJLI Ci+l (]iA.-l ’I(LI Ci+l

The above classes §,., and §,,, we can also view as many-valued rules

of Pi+1 (ti+1) to i1 (Si+ 1) such that %H 1 (ai) = {8‘?4—1 (a:) I LS cq(s)] and ‘bﬁl (ai) =
= (9% (a)|B<c,u) for a,cEp,,,(t,,,). We have assumed here that Gpeq (8;,,) 18
not (/4 I)-universe, and because of that we have that codomains of Fie1 and O,

have (i+1)-level, namely that they are horizontal rules in /.
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Now we shall involve some notions in a fundamental semigroupoid to show
what the above two rules §;., and £,,, represent. At first we involve the no-
tion of a simplex. By a simplex in a fundamental semigroupoid p,., (¢,,,) we
understand a subclass g,,, (f;,,) of it such that the following two conditions are
fulfilled :

1) For each pair of objects a;, b; of g,., (s;,,) there is a rule ¢,Cq,,, (s;,,)
such that @, b, or b,-%-a,, and

ii) for any two objects in ¢;,, (s;,,), the rule obtained by following a path
between the two objects in the directions of the arrows is independent of the choice
of path.

The condition ii) means commutativity of any diagram in ¢,,, (s;,,). Thus,
a simplex in p,,,(¢,.,) is a connected subclass for which the formulas meaning
commutativity of its diagrams hold. By an n-simplex, where # is a cardinal, we
understand a simplex with n+1 nonisomorphic objects. Since a singleton subclass
of p;.,(t;+,) consisting of a single object and the identity rule is also a simplex
a o-simplex, then the picture of an n-simplex for n<(3 is the same as (*) except
the notations of dots. The number » we call the dimension of the simplex. By a
face of a simplex we mean a subsimplex of it. The boundary of an n-simplex is the
union of all its faces of dimension < n.

Besides the above notions we have also the notion of a simplicial complex
in a fundamental semigroupoid. It is a class 9{“1 of simplexes in it such that, if
q,.ﬂ(s;ﬂ)egﬁiJr1 then any face of it also belongs to %iﬂ, and any two sim-
plexes of K ;+1 Meet in a common face (possibly empty). Hence, %iﬂ is a heredi-
tary class. Its level is i4-1, since we consider that g, (s,.,) is not (i 1)-universe.

If we now look at the many-valued rule ;. ; we see that this rule assigns
to each object of its domain a simplicial complex. Its each n-component Fj.
assigns to each object an n-simplex. Thus, we may say that §,, , carries the structure
of a simplicial complex. Similarly we have that the many-valued rule §,,, carries
the structure of an other complex called a cell complex. Its each n-component rep-
resents an n-cell.

A further study of the rules §,,, and §,,, and related notions we leave for
an other paper. Then we shall show that these rules allow some structures on
themselves and shall emphasize certain elements in them.

Now, after a small digression, we proceed to involve fundamental semigrou-
poids with some additional structures, respectively fundamental semigroupoid,
possessing certain special properties. These fundamental semigroupoids will play
a central role in our further studies of structures in /. We devote the remainder
of this paper to them.

3. Fundamental structures with additional structures.

To make a fundamental semigroupoid capable for our future purposes we
require that it allows certain creations in itself. We consider here those creations
which have geometrical features. It means that the notions which are to be created
in a fundamental semigroupoid will have shapes of some geometrical figures. We
borrow for them corresponding names from geometry. In such a way we have the
notions, a cylinder, a cone and so on. By allowing creations of these notions in
a fundamental semigroupoid we obtain additional structures on it, or special organi-
zations of it. Such a special organization of a fundamental semigroupoid will reflect
itself through certain particular arrangement of objects in it with respect to its
rules. It will give a possibility for constructions of new objects from the original ones
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in a fundamental semigroupoid. Thus, the additional structure that we mean to
impose on a fundamental semigroupoid will have a constructive character for the
class of objects in it. In order to introduce such a structure we have to define the
notions which are to be created. At first, we define the notion of a cylinder in a
fundamental semigroupoid. Let p,.,(¢;,,) be a fundamental semigroupoid and
q;+,(5:+,) and 1, (g;,,) two subclasses of it, then we have

Definition 3. By a cylinder in p;, (t,,,) with the lower basis g,, (s;;,)
and the upper one in r;.,(¢,;,) wWe mean a triple (i1 Grands Bongs Frag @)k
where o, , , is a class of rules of p, . (¢,,,) among objects of ¢, ,(s;,,) and r;,,(a;. ),
one for each object of g;,,(s;,,), with the property that, for every iy ru]e q;:

:s;— s; there is an r,, -rule r;:a,—a; and @, -rules @,:5,—a; and o;:s;— a; such
that the formula Coom (@i T H q;» ;) holds.

In the opposite direction of rules of the class ¢,,, we have the case of a co-
cylinder in p,_, (t;,,) with the notions — the lower and the upper cobasis.

If the class r;, , (a;,,) contains a single object only, then the notion of a cylin-
der is reduced to the notion of a cone, and a cocylinder to a cocone. The single
object in the upper basis, in that case, we call a vertex and in the lower cobasis
a covertex.

In the case that the classes ¢,,, (s;,,) and r;,, (a;,,) are discrete, namely that
they contain identities only, we have notions — a discrete cylinder, a discrete cone
and so on. In that case the commutativities of the diagrams are to be dropped from
the definitions.

In the sequel we shall identify a cone (g,.,(5;+)), 91> {&}) With the class
¢;,, only. At this we shall consider that from the context is obvious what are the
basis and the vertex of it. In that case we shall call the class ¢;,, a cone over the
class q;,,(s;;,) with the vertex a;.

A cylinder in p,,,(t;,,) with the lower basis ¢;,,(s;,,) and the upper one
in r;,, (a;.,) can be viewed as the image of a many-valued homomorphism J;,, =
=L;y1s Nis1s Civ) Of Py y (84 ) to itself, where 1, , is the inclusion homomorphism
of g;.,(s;+,) to p;y (t;y) and C;, | a homomorphlsm with values belonging to
ri,(a,, ). If C;y  is a constant homomorphism then the image of the above ho-
morphism, that we shall denote now by .,,,, is a cone in p,., (). Analogously
we can conceive a cocylinder and a cocone in p,., (%, ) S0, a cocyhnder in
Pir1 (t;1,) is the image of a many-valued homomorphism ., =(Cii1> Mt ps Liv1)-
Throughout the paper we shall use both kinds of definitions.

If in &, =4y, M+ Civy), given above, the natural rule v,,, is a natu-
ral equivalence, then the homomorphism g, , represents a contraction of q;,, (s;.,)
into r;,,(a;,,) in p;, (t;,), and §,,, a contraction of g,,,(85;,,) In P, (t)

Proposition 2. Any two homomorphisms of an arbitrary fundamental semi-
groupoid to a contractive fundamental semigroupoid are naturaly equivalent.

Proof. Let g, (s;;,) be a contractive fundamental semigroupoid and sup-
pose that /,,, is naturally equivalent to C,,,, i.e. [,,,~C,;,,, where C,,, is a
constant homomorphlsm of g;.,(s;+,) to itself. Let F;,,, G;p;:ip;, sy =
—g;+1(5;+,) be arbitrary homomorphisms. Then F,, ,=1I;, oF;,,;~C;, oF,.,,
and similarly, G;.,~C;,,0G,,,. Since C,;,,oF;,,=C;,,0G;,, it follows that
Fii12Giiq)

Corollary. If g,.,(s;.,) is contractive, then any two constant homomor-
phism of q;.,(s;,,) to itself are naturaly equivalent, and the identity homomor-
phism is naturally equivalent to any constant homomorphism of q,.,(s;.,) to itselfy
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If we define a homomorphisms F;, ; of a fundamental semlgroupmd Pivy (i)
to a fundamental semigroupoid ¢,, , (s;,,) to be inessential if it is naturally equiva-
lent to a constant homomorphism C,.,:p;,, (f;+) = g;+,(5;1,), then from the
above proposition we have that every homomorphism of a fundamental semigrou-
poid to a contractive fundamental semigroupoid is inessential.

A homomorphism F,,, with values in p,,,(%.,) we shall say to form or
create cylinders in p,,, (¢;,,) if there is a natural rule v, ,:1;., - F;,,, where I,
is the identity homomorphism of p,,, (¢;;,) to itself. In the similar way we have
creations of cones, cocylinders and cocones in p,., (¢, ).

Now we shall consider a class of cylinders or cones in p,,,(#;.,). Let
Fiv1 (@i (s500)) and Fi1(giva (s,+1)) be two arbitrary cylinders in p, ., (¢;,,) over
the subclasses ¢;.,(s;,,) and ¢giy1 (siz1). By a rule g, i &1 (qpeq (552)) —>
— i1 (gir1 (six1)) for their relating we mean a class of p; H-rules one for each
object of the lower and one for each object of the upper basis of ;. (g; t1 (slﬂ))
with the property that, for every %,.,(s)EF;., (CI,H(S,H)) and an 7. (5HE
EFirt (gis1 (si41)) the formula Copr (541 (8y), Pil| Py i (s7)) holds. Thus, the
rule p,,, is a class of pair rules. We call it a cylinder-rule. If the considered two
cylinders are over the same class in p;,, (¢;,,), for instance ¢,.,(s;,,) then the rule
0;+, is aclass of p,, -rules, one for each object of the upper basis of ., , (¢, (5;51))-
Such a rule we call a cylinder-rule over a class. In the case of cones we have no-
tions — a cone-rule and also a cone-rule over a class. This last rule consists of a
single p,,,-rule connecting vertices of the cones. The classes of cylinders as well
as cones in p, ., (¢;,,) with defined rules allow the structures of fundamental semi-
groupoids.

In a similar way we have the notions concerning cocylinders and cocones.
They are a cocylinder-rule, a cocone-rule and the same over a class. The classes
of cocylinders and cocones in p,.,(f;,,) with such rules also allow the structures
of fundamental semigroupoids.

Because in the remainder of this paper we need, in the main, notions of
cones and cocones, then we shall devote most care just to them. Let C;, , (g;.,) be
the class of all cones and cone-rules over a class ¢,,, (s;,) in p;,, (¢;5,). To shor-
ten notations we denote elements of this class simply as the homomorphisms. Thus,
instead of ., (g4, (5;+,)) we shall write for short ;. . If there exists a cone
&+, in the class C,,,(q,,,) such that for every other cone Fiy1 of Ciy, (g:47)
there is a cone-rule p;: &;,,— i1, then such a cone in C;,,(g;,,) we call ini-
tial or first cone (abbreviated as fc). It is not necessarily unique. The uniqueness
is determined by the following

Proposition 3. The first cone §%;., in C;, ,(q;,,) is unique if every
cone-rule o7 is unique.,

Let ¢,,, be fc over g,.,(s;;,) with the vertex #;. The vertex ¢, we shall call
the sequent of the class of objects of ¢, (s;,,) with respect to the ‘class of rules
9;+,- If the class ¢;,, (s;,,) contains a single object only, then the vertex #; of fc
we call the successor of that object, of course, with respect to a rule o,. The uni-
queness of successors follows from the above proposition.

We can also consider the class E,+2(q,+l) of all cocones and cocone-rules
over the class ¢;., (5;+,) In p;4; (t,H) If, in this class, there exists a cocone cdglﬂ
such that for every other cocone ,Jry» of Cl +2(g;.,) there is a cocone-rule 4

CC%?H — .5+, then such a cocone in C,.,(q,.,) we call terminal or last cocone
(abbreviated as lcc). The covertex of this cocone we call the presequent of the class
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of objects of g,,, (s,.,) with respect to the class of rules connecting the objects
of g;,,(s;+,) with this object. If the class g,., (s;.,) consists of a single object only,
then the covertex is its predecessor. The uniqueness of these notions is to be deter-
mined by the following

. . T o~ . ~— . . .
Proposition 4. Tae last cocone ., in C,.,(q;, ) is unique if every
cocone-rule C? is unique .

Now we shall specify fundamental semigroupoids with additional structures.
Here, by a fundamental semigroupoid with additional structure we mean a sys-
tem Py (fi41); v 15 oirq,) CODSisting of a fundamental semigroupoid p,, | ()
and rules ., and . &;., of p;,,(¢;,,) to itself which assign, to some subclasses
of p;.,(#;+,) respectively, cones and cocones. If ., and . %,., are defined on
Pi+y(t;+,), then we say that p,, (¢;,,) allows cone and cocone formations on its
subclasses. Certainly, these formations are not unique and they are not defined
for every subclass of p;,, (¢;,.,). Depending, if one or both these formations are
defined on a fundamental semigroupoid and if they are defined for certain or any
its subclass we shall have particular cases of that fundamental semigroupoid. To
define these cases we need some preliminary considerations.

Let ¢, be a number associated to the universe %/,,, by which we can num-

ber members in %/ i+1- By a crindexed class or simply a c,class we denote an
(i-+1)-class t having ¢, members, i.e. an (i+1)-class which when considered as a
family has an index class whose cardinality is equal to ¢;. Obviously, ¢, < ¢,. In
the case of a c,(,-class we have that c,,=c,+c¢,, where ¢, corresponds to the
class of rules and ¢ to the class of objects of the class gq,,, (s;,,). If we consider
further a c,-subclass of p,,,(#,,,) we shall think of a class having c¢; rules and
¢y objects of p,, (¢, ). For instance, a subclass of Divi (t;1,) consisting of two
objects and (all) rules between them, or a class consisting of all objects of Pivg (1),
and so on.

We are now able to define announced cases of a fundamental semigroupoid.

Definition 4. By a u® — (d® —) semigroupoid we mean a fundamental
semigroupoid allowing in itself cone (cocone) formations on every its c,-subclass,
for c,<<cg.

Equivalently, a u®-semigroupoid is a system (Piv1 (2 ); Bieqy in which
oSi+1 18 defined for every c,-subclass of p,,, (¢;,,), where c,<<cg. Here, ¥, is
then a rule of p,,  (¢,,,) to itself which assigns, to each c,-subclass, c,<<Cg, & cone.
Hence, a u®-semigroupoid is cg-upper directed. We correlate the notion of a
u®-limit to such a semigroupoid. The same we have for a d Cﬁ-semigroupoid.

Definition 5. By a u®—(d® —) limitinau® — (d°® —) semigroupoid
we mean fc (lcc) over a cg-subclass of it.
Clearly, these limits do not necessarily exist in the above semigroupoids,

and if they exist they are not necessarily unique. However, there are semigroupoids
which possess these limits. They are then complete semigroupoids.

Definition 6. A u® —(d‘®) semigroupoid we shall say to be u® — d® —)
complete if it possesses u® —(d® —) limits of every its cg-subclass.
Finally, we define the most important class of semigroupoids that we shall

often employ in future. They are those fundamental semigroupoids which allow
both fc and Jcc formations on its subclasses. We call them l-semigroupoids.
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Definition 7. By an I°®-semigroupoid we mean a fundamental semi-
groupoid allowing fc and lcc formations on every its c,-subclass where ¢, <cg. If
being an [“®-semigroupoid is valid for every ¢g, then we have an /-semigroupoid.

Obviously, an [®-semigroupoid is both u®-and d ‘-complete. The follo-
wing proposition is a criterion for determining when a fundamental semigroupoid
will be an /-semigroupoid.

Proposition 5. 4 fundamental semigroupoid p,. , (t,.,) which allows fc
{or lcc) formation on any its subclass is an Il-semigroupoid.

Proof. The proof is simple. Let ¢,,,(s;,,) be an arbitrary subclass of
Pivy (8. ). According to hypothesis its lec is in p,,, (¢;,,), we have to show that
its fc is also in p,, | (¢;.,). Let 2, (g;.,(s;:,)) be the class of vertices of all cones
over ¢, (8;+,) in p;y, (¢,,). Certainly, lec of this class is in p;., (¢;,,). Its co-
vertex is the vertex of fc over q,., (s;+,).y

Now we shall proceed to specify some distinguished objects in an / 3-semigrou-
poid p;,, (¢,.,). Firstly, we define the first and the last object in it.

Definition 8. By the first (the last) object in p,.,(7,,,) we mean the
presequent (the sequent) of all objects of p,. (¢,.,) and denote it by o,(1)).

Hence, if the object o,(l,) exists in p;,, (¢;,,), then for every #,Ct,, , there
is a rule p;io,—t,(p;:t;— 1,). The above objects are not defined to be unique
in p;,;(t;,,). Their uniquess is determined by the propositions 3 and 4. Certainly,
an /-semiqroupoid has both these objects.

Now we shall define an object in an lcﬂ-semigroupoid Py () that we
shall need later in our work. This object is a strictly first object in p,, , (¢,, )

1]

Definition 9. An object o of p,., (t;,)) is strictly first if it is a first
object in p;,(#;,) such that, for all 7, Zp,, (¢, there is no rule ¢, o/ for ¢,
nonisomorphic to o/.

Certainly, there can exist only one such object in p,, , (#;, ). Thus, if p,, , (7,.,)
contains the object o/, then it is a unique first object in it. There is an obvious sta-
tement concerning the object o that we give here without a proof.

Proposition 6. For every object t,Cp,, (1;,,) the rule of—t, is
mono.,

If the presequent of two object in p;,, (7,,,) is just the object o/, then these
objects are disjoint. The sequent of such objects is a disjoint sum. A subclass
Giv1(S;ep) of pyy (#.)) will be disjoint if o7cg,, , (s;,,) and if the presequent of
any two its objects is the object o

For a further specification of objects in an / ®-semigroupoid we need a new
notion. This notion is reducibility of rules in it.

Definition 10. A rule p, in an [‘®-semigroupoid p,,,(f,.,) we shall
say to be reducible through an object if there exist in p,,, (¢;,,) an object ¢, and
tules «,, 8, such that @ (o, B;; p,) holds.
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That p, is reducible through the object ¢; we denote it by pile;. By means
of this notion we shall define certain objects in an / B-semlgroupmd Let pit, ¢ )
be an /“®-semigroupoid with the object 0,. We define in it distinguished objects cal-
led atoms.

Definition 11. By an atom in p,+1(tl+l) we mean an object a; such
that the followmg conditions are fulfilled:

i) a,#0;, a

i) for p;:0;, —a, 6p,+1 (¢;,,,) does not exist any object b, Ep,+1 )
nonisomorphic elther 0, or a;, such that p;| b,.

For an [%- -semigroupoid p;, ,(¢;,,) we shall say to be an atomic I°®-semigrou-
poid if for any object b; and rule p;:0; —b; of pi 1 (¢,, ) there is an atom g, such
that p, | a;.

If p;.,(t;.) is an [‘B-semigroupoid with 0;, then we have the following
Proposition 7. A successor of o, is an atom in Divy (84 ).

Proof. Let a; be a successor of o, there is fc o;->a,. Then, for every
other object b, and a rule g, such that g;:0 ,—b;, there is a rule o;:a;— b, such
that €., (P;» %;; ;) holds. Thus, there is no object in p,., (¢, ,) through Wthh

p; would be reducible. Its existence would lead to a contradiction that a; is a suc-
cessor of o,

Dual notions to the above ones are a coatom and a coatomic 1®-semigroupoid.
The definition of these notions is quite obvious. It is to be given by using
an lcﬁ-semigroupoid Pi+y (¢;1,) with the object 1;,. An analogous proposition to
the above one is

Proposition 8. A predecessor of 1; is a coatom in p;, (t;.))

If there is no atom or coatom in an / ®-semigroupoid, it is then an atomless
or a coatomless lcﬁ—semigroupoid, respectively.

Now we shall distinguish certain subclasses in a fundamental semigroupoid,
respectively an /‘®-semigroupoid, with common notation Pi+v1 (£:14), which have
some particular properties. These subclasses we shall call filters and ideals in
Pi+1 (0 )- We define them as follows.

Definition 12. By a cfilter (c ideal) in p,, (f,.,) with the object
0;(1;) we mean a subclass ¢,,,(s;,,) of p,.,(t;,,,) which satisfies the following
conditions:

1) whenever it contains a c,-subclass of p,,, (#;,,), where cy<<¢,, it contains
its cocone (cone), and

2) if both p,<p,,, (t;,)) and 9, (p,) belong to gq,,,(s;.,), then ), (p,) also
belongs to g¢,., (s;.,) (if both p,E p,,, (1;,,) and 9, (p,) belong to g, , (S;+,), then
2, (p;) also belongs to g;,, (5;.)-

We shall consider here filters only because ideals are dual notions. According
to 1) a filter is a d“-directed subclass of p,,, (¢, ). It is also antiresidual, if we
call so the condition 2). If we add the condition o;4¢,,,(s,.,) to the above
conditions, then such a filter we call a proper filter. '
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Any nonempty class g, (s;.,) can always be extended to a class verifying
the condition of antiresiduality. Let Grey (514 ) be a class such that ¢,,,Dgq,,
and the class of object s;,, consists of all objects s, for which there exist objects
81 S with s,—>5,E¢,.,- Then qlﬂ(slﬂ) is determmed by ¢;,,(s;;,) and
qis: (S,+1) obeys the condition 2). If ¢,,,~g¢,,,, then the extension is full. If the
class q;,, (s;.,) is a filter, then 4;+ 1 (8;4,) 18 its basis.

Deflnltlon 13. A class g, (s;;,) is a c,filter basis, or simply a
cy-basis, if q,+l (s;+,) is a c,filter. Then we say that the filter 5,+1 (5;4,) is gene-
rated by the class ¢,,, (s,ﬂ)

Now we shall see what properties the class ¢, , (s;,,) must have to be a filter
basis. To show this we have to introduce previously a new notion. A subclass
q;+, (s;3,) of a fundamental semigroupoid we say to be a lower cobasis-sub-
class if cocylinders of any subclass of p,,, (¢;,,) have their lower cobasises in
Gi+1(5;+,). Certainly, we assume that p, ,(#;,,) allows cocylinder formations.
Hence, there is a homomorphism _;,, of p;,, (#;.,) to itself which assigns, to
each subclass of p,., (¢,,,), a cocylinder with the lower cobasisin g,,, (s,,,). Thus,
c¥iey i of the form (F;,,, v;.,, I,;,), where I,,, is the identity homomor-
phism of p,.,(¢,,) and F;,, a homomorphis of p,., (,,,) to g;.,(s,.,). Hence,
for every object ¢, of p,,,(#;,,) there is an object s; of g;,,(s;;,) and one rule
;18,1 of plﬂ(tlﬂ) such that if ¢,-2'~¢; then there is a sil’les,f and
Dit1m rules @; and @; such that €. (o;, P, ¢;, cp,) holds. By means of the above
notion we state the following.

Proposition 9. A4 class q;.,(s;,,) is a c-basis if ZI.H('E,.H) is a class
which consists of all those objects and rules such that the following conditions are
Sfulfilled:

a) g,y (8;.,) is lower cobasis-subclass of E, ‘i (qu,. +q) and
b) ;.1 (si,,) is d“-directed subclass of q,,, (5;:,)-

Proof. It is sufficient to consider a c,-subclass 71'+1 ('L—l,-ﬂ) of EHI (;H])
with ¢,<c,. According to a), there is a cocylinder over it with the lower cobasis
in g;.,(s;+,). Denote this cobasis by r;,  (a;.,). Then, by b) a cocone over r,, ,(a;,,)
isin q,+1 (8i+)- Let 9, , be such a cocone with the covertex b;. Then, for every7 ‘a, —~
—aje €1y (a,H) we have the existence of an r;:q; - i&ri (@) and rules
cp,.b,—>a, and ¢;:b;— a;, then p,..ai->ai and p;:d;->a; such that the formulas

Coom (@ 15 1) and C., (4, ZH r;, py) hold. Hence, one can further deduce that
the formula ., (Y;, r;; 47), where §,:b,—a, and {;:b,~>a;, also holds. The
class ¢,,, of the rules {; is a cocone over 7,,,(a,,,). Thus, E,H(?lﬂ) is closed
with respect to cocone formations on its c,-subclasses, where ¢, <<c,, i.e. it is
a d‘v-directed class. It is also antiresidual. "

It is obvious that, a basis of a filter is not unique and also that, a filter is a
basis for itself.

Let r;, (4;.,) be a cg-filter in a fundamental semigroupoid p,,, (¢;,,)- A
homomorphism of p,,,(#;,,) to an other fundamental semigroupoid is cy-filter
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basis preserving if it preserves cs-directedness. If it preserves ¢,-cones, where ¢,<g,
then it will preserve d -directedness. It means that it has to preserve cardinali-
ties of c,-classes and cocones over them. A bijective homomorphism has such a
property. If we do not require that cardinalities of filters are preserved, then we
can relax the condition on the homomorphism to be bijective.

As we have already said our next paper will be devoted to an introduction
of topological structures in </. For that purpose we need some further conside-
rations. Let f;.,(p;,,) be the class of all filters in a fundamental semigroupoid
Divy (t;1)). Clearly, f,,,(p;.,) is a subclass of 2 (p,.,(¢,.,), the class of all
subclasses of p;., (¢;,,). Hence, provided p, ,(t;.,) is not (i41)-universe, it is
class-theoretically an (i-+1)-class. In that case we can write it with the index
i+1, ie. as f;,, (p;,,). However, this is not primary here, therefore, we retain
the notation f;,,(p;.,).- In what follows we shall specify, in a sense, filters in
fir2(Piv,). We shall distinguish two kinds of filters. Those which have their
d-limits in p;,, (f;,,) and those which have not them. Filters which have the
limits in p;,, (¢t,.,) we call complete filters. There are two possibilities, that the
limits are in the filters and out of them. If they are in, then such filters we call
inner d-limit-filters. However, if the filters have their d-limits out we call them
outer d-limit-filters. Thus, we differ complete filters according to that where they
have their d-limits. If p,,, (¢,.,) is an [“®-semigroupoid, then every c,filter of
Sis2(P;s), Where c,<lcy, is an inner d-limit-filter.

Let us consider a filter of f, ,(p;,,), whose basis is reduced to a singleton
class consisting of an object and the identity rule. Such a filter we denote by 2, .
provided g, is that single object, and call it a principal filter. Clearly, it is generated
by this object. An inner d-limit-filter is obviously a principal filter.

Not every filter of f,,, (p;.,) has its d-limit in p,,, (t;.,). However, we can
do some filters to have the limits in p,,, (¢,,,) by inserting a class of objects into
Pir1(t;) in such a way that each inserted object with a subclass of rules of
Di+q (4;+,) forms a d-limit of a filter in p;,, (¢,,,)- Such filters are then complete
in p;., (f;, ). In that way we obtain in p;,, (#;,,) a number of filters having their
d-limits in p;,, (t;,,). These completed filters will be basic ones for our further
work. A filter of ', , (p;,,) completed in such a way by an object a; we shall denote
by %, , (a,) and call it, for the time being, a prominent filter for the object a,. The
completeness of other filters of f,,,(p;,,) is then to be determined by their relating
to these completed filters. For that purpose we need a class of rules on f; ., (p;. )
Since f;.,(p;,,) is a subclass of the class of all subclasses of p,., (¢ ), we can
involve in it inclusion rules. However, instead of an inclusion rule 7., it is more
convenient to involve an opposite rule }—,,, such that g;,, (8;+,) s, Git1 (Sitt)
iff g4 (s;+1)_'—"+;> q;+,(5;+1). We assume this as the definition of this rule. Thus,
we have

Definition 13. For any two filters f,,.,, fis1 of f ,,(p,.,) we define
fi+1|_i+1 f;+1 iff f;+l £i+1 fi+1'

We shall always employ, in future, the above defined connections of filters.
Since every filter is generated by a base, then we can stipulate relations of filters
by examining their bases.
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Proposition 10. If g;.,(5;.,) and gir1(siy1) are filters and r,_, (a;, )
and ri 1 (@11) their bases, respectively, then g, (S;+1) s @i+t (Siv1) Hf i1 <
Cq,,, and for every a;criyy (ai1) there is an object a;,Criy (a;.,) and one rule
44,y such that a;"'>d.

Proof. Let g, (Sy4q) by Giv1 (Siy1), then i1 C g,y If @ Cripi(ain),
then a;E gy (si+1). Hence a’eq,+1(s,+1) Thus, there exists an a,cr;,,(a;,,)
and one rule ¢;&=q,;,, such that g, i g Conversely, if s,Eq,+1 (Si;1), then there
exists an a;Cr;.1 (a;y1) and one rule g;<=q;.1 such that a:——»s, If the condi-
tions of the proposition are fulfilled, then there are an a,&r;,, (a;,,) and one rule
4,54, such that a,-">a;. Hence, a;Cgq,,,(s;.,). Since g;Cg;., and ac
©4q,,,(5,+,), then because of antiresiduality we have s;&gq;.,(s;+,). Thus,
Gir1 Sie 1) Fivy Gir1 Siv1)- i

Suppose that we have prominent filters in p;,,(¢;,,), emboded by inser-
ting a class of objects s;,, into p;,,(#;;,). Since we have introduced the rules
into f,,,(p;.,) then we can relate other filters to prominent ones to determine
their d-limit objects. However, we shall not enter into this question here because
it will be subject of our next paper devoted to the study of topological struc-
tures in “/. We shall only formulate here, without any comment, the following

Definition 14. For a filter f,, & f;.,(P;+,) we shall say to converge to
an object s; of 5, if ;41 ;41 Bivq (5,), where P, (s) is a prominent filter for ;.

This convergence, in the general, is not unique. In the above mentioned
paper we shall see under which conditions it will be unique.

The remainder of this paper we devote to the study of the class £, ,(p;, ), if
we provide it with the class |—;,, of the rules |—,,,, then we have the following

Proposition 11. The class f,,,(p;.,) together with the class |—;. , is
an l-semigroupoid.

Proof. According to the Proposition 5. it is enough to show that an
arbitrary nonempty subclass 712 (7;5,) of f;i,(P;y)) has fecorlecin £, (Piyy)-
Let g;., (s;,,) be a class which is a subclass of every filter gi1 (5/4-1) < fir2 (Pis1)-
We show first that ¢, , (s;,,) is a filter. Let r,,, (a;, ) be a ¢,-subclass of g, (5,1 ),
then it is also @ c,-subclass of every gii1 (Si41)E fiy2 (Pis,)- Hence, if every
Gis1 (Si01) is a cp-filter, where cg>>¢,, then a cocone over r;.,(a;,,) belongs to
every ¢ii1(Siy1), and thus also toN\git1 (5i+1). Thus, if we define g¢;., (s;.;) as
ﬂqtl'+1 (S;+1) of all q;+1 (5;+1)€f;+2 (Pi+1)’ then it is obvious that qi+1(si+1)
is a cgfilter for cg=min{cz}. Hence, for every g¢iy1 (sit1)E fiz2 (P;+,) We have
Gi1 (Si41) Fia1 9501 (51 )- The class of all these rules is fc over fi2(p;.,) with
the vertex g, (5,11

In the next proposition we give a characterization of this /-semigroupoid.

Proposition 12. The I-semigroupoid f; ,(p;.,) is an atomic l-semi-
groupoid.

Proof. Let f;,, be a filter in f;,, (p;+,) such that f,,,#0,,,. Let us con-
sider the class of all object g,,,& f,,,(p;+,) through which the rule |~,.,:0,,, —
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—f;+, is reducible. This class we denote by G,,,. Certainly it has lcc in
fi+2(Pis)). The covertex of lcc over it we denote by k;,,. Since the rule |, is
also reducible through k,,,, then k;,, belongs to G;,,. The object k. is an
atom because the condition k,;,,=0,,, would lead to a contradiction, namely
that 0,,, &G, 5

Atoms of the l-semigroupoid f;,,(p;,,) we shall call ultrafilters. The use-
fulness of these filters we shall see in the next paper.
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