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1. Introduction.

In the mathematical development there is a permanent tendency of finding
out an (axiomatized) framework within which one could develop all mathematics.
The traditional idea is to do it within the (axiomatized) system of set theory. As
it is well known there are many axiomatic approaches to this theory. However,
in current use by mathematicians there are, in the main, two essentially different
approaches, known as the ZFC and the NBG theories. Under the NBG theory
we understand that one given in [6]. Both these theories are infinitely axiomati-
zable. However, the NBG theory does provide a foundation for mathematics which
is free of the obvious paradoxes. In it, it is essentially true that any meaningful
collection of mathematical objects exists and forms a class. Classes are subdivided
into two types: those which are members and those which are not members of any
class. The first are sets and the second ones are proper classes. This theory has given
a good foundation for considerations of different mathematical objects and rela-
tions among them. Early in this century to these considerations had not been payed
sufficient attention. Studies of isolated mathematical objects were predominant.
However, since recently much more attention has been just payed to them. From
such considerations, because of usefulness, in mathematics has arisen a new no-
tion. That notion is a “category”’, which has developed into the separate theory.
The basic characteristic of this theory is the consideration of a class of mathema-
tical objects and relations among them without taking into considerations the
nature of those objects. The development of category theory has posed problems
of the set theoretic foundations of mathematics. For instance, the NBG founda-
tion for category theory has not allowed the free formation of functor categories.
In order to solve the noticed problems one had to drop the traditional idea of
the foundation of mathematics and propose new ones. The formation of new foun-
dations has always been done when in concrete cases one notices some disadvantages
of existing foundations. Disadvantages pointed out by category theory caused
dropping the NBG foundation for this theory. As new foundations different systems
were proposed, obtained by a strengthening of the ZFC axioms. This was done,
in the main, by requiring the existence of a large set (or many such sets [3]), called
a Tuniverse”, such that each set is a member of it (or of a large set). Mac Lane
[5] proposing his foundation started with the assumption that there is only one
large set, elements of which are sets and classes are subsets of it. He proposed
foundation: the ZFC axioms plus the axiom that there exists a universe. His universe
is a transitive infinite set having certain closure properties. Feferman [2], using
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the so-called reflection principle, showed that category theory can be formulated
set-theoretically without the axioms of universes. He proposed a system ZFC/s
with a symbol s to which is applied a form of the reflection principle as one of its
basic axion shemata. In such a system he considered the formulation of category
theory.

Foundations mentioned in this paper, as well as others of the same type,
not mentioned here, were sufficient for the formation of current category theory.
However, a further and very quick development of this theory poses new problems
for foundations. For instance, the mentioned foundations do not allow the forma-
tion of category of (all) categories. Because of that they also have to be dropped.
Lawvere [4] tried to avoid the set theoretic foundation of mathematics and sug-
gested it to be the category of all categories. He also proposed a system of axioms
for such a foundation. Although one could put the question if such a foundation
was sufficient and, also, if Lawvere’s axioms were the right axioms for the purpose,
one could freely say that his approach was very interesting.

In the present paper we tried to avoid noticed disadvantages of existing foun-
dations and to propose an adequate foundation that will be our future framework.
For this purpose we take the set theoretic approach to the problem, only that instead
of one primitive notion we introduce the existence of a hierarchy of these notions.
These notions we call “’classes”. If we denote a level in that hierarchy by i and all
levels by / and introduce a letter ¢ for the word “class” then we can write the hie-
rarchy of classes as a family €={c;|ic7}. In such a way we distinguish among
classes in the hierarchy by means of indices ic./. Then an entity ¢; from € denotes
a class on the ith level in the hierarchy. The above family together with a family
of bonding relations p, ;. ;, between consecutive levels in € we call a spectar” and
denote it by €, ={c;; p;i,1))icy- As bonding relations we have membership
relations &,;, ;). In that case the spectar is reduced to €-. Hence we have that
a class on the level i is a member of a class on the level i4-1. Moreover, we safeguard
on each level i€ the existence of an initial or limit class %/; and thus a family
U={%U;|icT} of these classes. Every class on a level i is a subclass of the limit
class “%/;. These limit classes we call “universes”. Investigating the properties of
universes 7/, i€/, we have obtained that they constitute an inductive spectar
U, ={Us <44 +1nyiey 1n which bonding relations are strict dominations

< ;t+n- The inductive limit of the spectar 7/ is the proper universe Z/. It is
also a proper class. Thus, according to the accepted approach the proper class

exists as a limit class of all initial classes %/;, ic7.

In order to handle a spectar of classes we have proposed an axiom system
2. This system consists of a family of systems X, which are of NBG~ type, where
NBG~ is the NBG system minus the axiom of choice AC and the axiom of regula-
rity AR, and of a family of bonding rules R;;,y:%; — 2, . Thus, the system Z,
is a spectar (“/; R;.pyicg. Let us see now what are models for such a
system. To give a model for X, we must have models for every %, icZ, and
interpretations of bonding rules. A model for the system X, is an interpretation
in which are valid all axioms of Z,. Such a model we call an i-class. Interpretations
for bonding rules are membership relations. If we consider a triple (3;, R,
%;,,) then it is to be interpreted as follows: for every model ¢, for X; there is a
model ¢;,, for &, ; and a membership relation €,,,, such that #; €;;,yt. .-
Hence, a model for the system X is a spectar of classes Cc=(t;; €,4.p)ic7.

In such a way we have a system by which we can handle spectars, respectively classes
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of different levels. It still remain the question of handling universes. The universe
on a level, for instance i, satisfies all axioms of X, except the power-class axiom.

Namely we have 2 (“%,)=<,,,. Thus, the operation /? transfers the i-universe

U, to the (i + 1)-universe Y/, , ,. Hence, the universe </, , strictly dominates U, and
thus there is the spectar of universes which as bonding rules has strict dommatlons

realized by means of ?. This spectar we have designated by OZé Between every
two consecutive members in GZZ does not exist any class. If we denote by GLH,
the statement that between %/; and # (%,) does not exist any class and by LHIH
that 2 (%;)=%L,,, then we have that both hypotheses hold in ., and that

(LH! ., & AC;,,) < GLH,, where AC,_, is the axiom of choice on the level i+ 1.
This result is well known in the theory of transfinite cardinals-alephs. It is obvious
that according to the properties our spectar corresponds to the sequence of initial
ordinals. If initial ordinal numbers occur in their cardinal capacities then it
corresponds to the sequence of alephs (¥;; <, ,1))icg- The proper universe 9

corresponds to an inaccessible cardinal. Thus, if %/, is equipolent to « then we can
consider that the cardinality of the universe “/; is the aleph §; and of the proper
universe %/ an inaccessible cardinal.

The universe %/ is otherwise a model for the limit system of Zp. This system
is the NBG system, even the NBG + GCH, where the GCH is only a statement

concerned with the crossing from a universe level to higher one in %/. Thus, the
NBG system is a limit system of the spectar X. It is obviously unique up to an
equivalence.

Since we have presupposed the existence of classes of different levels we have
to find a confirmation for such a presupposition. We find it in the Universum U.
We shall consider U as a real foundation. Every collection of elements in it is con-
tained in a larger collection. If we start from the basic undivisible elements known
as protons, neutrons and electrons, then we come to the collections known as atoms.
Atoms are elements of higher level collections known as molecules. These ones
are further elements of real objects. Real objects generate Planets. Those are ele-
ments of the Solar system. This is further element of the Galaxy. Clearly, this pro-
cess can be continued indefinitely. Thus, for every collection of natural elements
in U there is a larger collection containing it. Hence, we have that the Universum U
as a frame which contains all collections of natural elements is inductive.

As a conclusion we have that in a real foundation indeed there exist collec-
tions of objects of different levels. Thus, if we want to consider the organisation
of U, we have to consider it on particular levels and among levels. To a more de-
tailed consideration of U we shall dedicate an another paper.

2. Class axioms. Universes.

In the introduction we have confirmed the presupposition of an inductive
process for introducing classes according to which each class is a member of a
larger class. If we introduce a binary relation € to designate the belongness of a class
to larger one, then we have a spectar €c = {¢;; €, icgy. Now we shall design

an axiom system to handle spectars. We propose it to be an axiom spectar Z, con-
sisting of axiom system X, and bonding rules R, i.e. Zp=(X; R,(,+1)>:€g
In what follows we shall descrlbe this system. We start its description with undefined
notions. As undefined we choose the following notions:

1) Starting objects, and

2) T, — unary predicates, and <, ,, — binary relations, for every icJ.
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We designate variables by small letters of Latin alphabet. If ¢ is a variable
then 7;(z) means ¢ is an i-class”. We now introduce relative unary predicates
T; —k, k=0,1,2 to designate (i—2)-, (i—1)-, and i-class in relation to an
i-class. The statement 7} 2 (#) means ¢ is an (i—2)-class”, T} —I(t) that ¢ is an
(i—1)-class” and 77 (¢) that "¢ is i-class” all in relation to an i-class. The first class
we call an j-atom, the second an i-set and the third one a proper i-class. We shall
define the notions of proper i-class and i-set and deduce of i-atom. We define an
i-set as an i-class which is an element of an i-class. Those i-classes which are not
elements of i-classes are proper i-classes.

Definition.
Ti™ () = pee (T3 (1) & @5) (T, (s) & te,,s)),
Ti(t) =perlTi(1) & (V5) (T,(5) > te, ).

In such a way we distinguish on a level between classes which are elements
and those which are not. If an i-class is an element of an i-class then it is an (i—1)-
~class, respectively an i-set. The proper i-class is not an element of any i-class. Hence,
in any spectar {#,; €, )Vicg does not exist the identity relation €, for any ie7.
However, if an (i—1)-class is the set in relation to an (i—1)-class and this one
in relation to an i-class then it is an i-atom. Hence, we have T/ ! Tf:f (t)) E= T,’-'"z(t).
Thus, there is a composition of relations joining consecutive levels in a spectar, i.e.
eitt.cli-l-gi-?

Now we shall start with a description of undefined notions. That we shall
do by means of axioms and axiom schemata. The first axiom is concerned with
starting objects. In the process of introducing classes we start from a level.
We take it to be 0. Clearly, a class on that level contains certain elements. These
elements we call starting objects and denote their level by —1. They are atoms
in relation to a class on the level 1, namely they are 1-atoms. The first axiom in our
list of axioms will characterize these objects.

Al: Characterization of Starting Objects
(SO) Ti ' (a) = (T1T,(@) & (V1) (t€a)).
A starting object is not an i-class and has no elements. Thus, our siarting

objects are undivisible elements i.e. they are those objects which contain no ele-
ments but which are elements. We shall denote by %/, the class of all such objects.
Otherwise, the level 0 is only a set level and not a proper class level. This one starts
from 1.

By means of next axioms we shall describe the properties of the second type
of undefined notions. Let us consider a level i and state the first axiom for this
purpose.

A2: Axiom of Extensionality
T;(1) & T,(t') = ((V8) (s€gop;t © $€q_pyit)) = t=t").
Hence, if two i-classes have the same elements they are identical, and conversely.

Thus, an i-class is determined by its elements.

Using the binary relations €,_,);, we can define what it means for one i-class
to be a subclass of another i-class. As a digression in formation of the list of axioms,
what is our main purpose, we give the definition of the i-subclass.
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Definition.
T; (1) & T;(1') = ((Ct =p(VS8) (5SSt = SCu_pit)),
T;(1) & T,(t') = (1Ct' =pge 01 & 15£1)).

Let us continue with the list of axioms. Now we give the essential axiom,
namely a general rule for the existence of classes on the considered level i. Accor-
ding to it, given a property F;, there is a class whose elements are precisely those
(i—1)-classes having property F;. Its formulation is as follows.

A3: If F, as wif in which ¢ is not a free variable, on the level i, then the follo-
wing statement is an axiom

(Ht) (Ti(t) & (Vt’) (tle(i—-l)it e Fi))'

The formulated axiom is really an axiom schema, namely a rule for pro-
ducing axioms. Together with Al it gives the existence of a unique i-class 7. From
A3 follows the existence of different kinds of i-classes. For us of particular interest
will be the universal i-class. The universal i-class is such an i-class ¢ that any (i—1)-
-class is its element. Thus, it is the class of all (i—1)-classes. Hence, every i-class
is its subclass, that means that it is an initial or limit class on the level /. According
to A2 it is unique. Such a class we call an /-universe. The above axiom also gives
the existence of an i-class which has no (i—1)-class as its element. It is the empty
i-class, and it exists for every i. Thus, the empty class is a class for every i. Because
of that we can denote it by @ only, without designating the level. According to
A2 it is also unique. We omit the consideration of other kinds of classes and proceed
to complete the list of axioms.

By means of previous two axioms we ensured on a level / the existence of
different classes and their uniqueness. Now we shall introduce some axioms to
ensure certain useful properties of these classes. Before all we shall ensure the pos-
sibility for relating elements in them. That we do by postulating the existence of
sets which have at most two elements.

A4: Pairing Axiom
@A) (T () & (V9) (€gp-n? & (s=uvs=0)).

The above unique set ¢ is called unordered pair. By means of it we can define
rules for relating elements in a class and also ensure in it the existence of sets with
some finite number of sets as their elements.

Now we shall safeguard some good properties of classes with respect to certain
operations in them. Certainly we can do some operations on elements in a class.
But we do not know what their levels will be after an operation. We would expect
them to be sets. However, this does not follow from any of the axioms which have
been stated previously, so if we want it to be true we have to postulate it. For this
purpose we introduce two axioms. Before we state them we shall do some consi-
derations concerning operations that we shall regard. Let us neglect for the moment
the explicit referring to the class levels and consider which are these operations.
All operations on a class t we shall devide into two types. To the first type belong
operations of domination, namely those operations on a class the result of which

dominates the class itself. If Func(F) & F:¢-'=' -5, then one says that s domi-

nates 7, or ¢ is dominated by s. If besides m F: ¢ %—»s then one says that the domi-

nation is strict. We shall designate by ¢ =, s the statement that ¢ is dominated by s.
The strict domination will be designated by <(,. The instances of the above type
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of operations are the union U and power-class operation /2. The operation (J is
such an operation on a class ¢ that ¢ =,\J (¢), where | (¢) is the union of all classes
in the class ¢ being of the same level as ¢ itself. However, for the power-class opera-
tion, 72 (¢) strictly dominates ¢, i.e. t<,7P (¢). The second type are operations of
codomination, namely those operations on a class the result of which codominates

the class itself. If Func(G) & G:1-2°s then one says that s codominates 7.
The codomination we shall designate by _>. The statement ¢ >s means that s
codominates ¢. The instances of this type of operations are the image under a func-
tion F and hence the subclass of a class. Now we add to the existing list of axioms
two basic types of axioms.

AS5: Axiom of Domination
@) = TN A®),

where A denotes operations of domination, namely those operations on the class ¢
such that 1 <(,;A(r) or t < ,A(1).

A6: Axiom of Codomination
T (1) = TV (),

where V denotes operations of codomination, namely those operations on the
class t such that t >V (¢).

To the above types of axioms correspond different particular cases. The
power-class and union axiom are of the type A5, and the axiom of replacement of
the type A6. The above axioms assert that all reasonable operations applied to
sets in a class give again sets. Then we say the class is closed with respect to opera-
tions on its elements. From the axioms A4—A6 one can further deduce another
closure properties of a class. For instance a class is also closed with respect to direct
products and exponentiations.

By means of proposed axioms A1—A6 we have described the properties
of starting objects and have ensured on a level i the existence of unique classes and
their closure properties. The system of axioms A2—A6 we shall designate by X,
where i designates the class-level. Thus, on our list of axioms we have so far the
axioms Al1+42,.

As we have said in the Introduction the system X, is the NBG™ type system
on the level 7, namely the NBG system without AC and AR. If we exclude the axioms
A5 and A6 from X; then we obtain the system of axioms of the type theory given
by Tarski and Church [1].

Let us consider now a class ¢ on the level i denoted by #. By means of the
system X; we have ensured that the class #; has certain closure properties with respect
to the operations on its elements. However we can also do the same operations,
entering the 2y, on the class #; itself. The question arises how to ensure the closeness
of #; with respect to the operations on itself. If there exists a class s such that r,cs
and if s satisfies the same system of axioms as the class #; itself, then s will have
the same closure properties as #; and thus # will be closed with respect to the ope-
rations on itself. Clearly, the class s must be of the level i+ 1. Thus, in order to
ensure the closeness of a class #; with respect to the operations on itself we must
ensure the existence of a class of the (i+ 1)-level which will have the same pro-
perties as the class #; and of which # will be an element. That we do by means of
a new axiom. By means of it we shall ensure that, if X; is the axiom system then
the X4 is also the axiom system.
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A7: Existence of Higher Level Classes
(Vi) (Vs) (ied & T;(8) = @) (T (1) & sc,1).

Hence it follows that T4, (¢). Thus, the system X; has a lifting to the level
i+1, i.e. 24 is also the axiom system. As a conclusion we have that X; is the
axiom system for every icJ/. According to that we have a family X ={Z,|ic7}
of the axiom systems 2, i.e. an axiom system with different levels. As every model
for 2; is contained in a model for X;;; then we can consider that in the family X
is defined a family R of bonding rules R, y:%;—X,.,. These rules are to be
interpreted as follows: For every model ¢; for 2; there is a model #;4; for Z;4; and
the membership relation <., such that ¢, ,.,y¢;,,. The family T together with
the family R we call an axiom spectar. This spectar is obviously inductive. Its models
are different spectars of classes. We denote it by Zg.

With the axiom A7 we have completed our list of axioms. Thus, our axiom
system is SO+ 2%,. By means of SO we have described the starting objects and
by means of X, have ensured, on every level i<, the existence of different classes,
their uniqueness and closeness with respect to certain operations on elements. As
we have seen without the axioms SO, A5 and A 6 our axiom system is to be reduced
to the system of type theory, namely our theory is then the type theory given by
Tarski and Church.

Now we shall give a sketch of a spectar 8 ={#;: ;. y)icy. Let us con-
sider the level i and the class #. This class contains (i—1)-classes as its elements
and is contained as an element in the class #;+;. Moreover, each other i-class ¢,
having a property F; as the class # is also an element of #;4+;. Hence, a part
of €c can be sketched as follows.

]
!
| Jﬁ[iﬂ

Thus, the spectar €< is only a representative for a more complex situation in
a class hierarchy.

As we have seen models for the axiom spectar X, are spectars
of classes. However, there is still one special spectar which is not a model
for the X,. This spectar is very important. Because of that we shall
describe it. According to the axiom A2 we have that on every level i</ there
exists a universe %/; and thus a family %/ ={%/, |icJ}. As we have seen the
universe </, is an initial class on the level 7, every i-class is its subclass. Hence %/
is a family of initial classes. In the sequel we shall investigate the properties
of these classes, determine bonding rules between them and thus constitute
a spectar. Let </, and /., be two consecutive elements in /. We show
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first that there exists no class between them. The assumption that there exists
an i-class will contradict the universality of %/,. Namely if OZ(, is between %/,
and 9/, then it will, in a manner, dominate “U;. Hence, there will exist
(i—1)-classes which are not in %/, contradicting the universality of /. If between
QU; and U, ., there exists an (i+1)-class QUi then U, . will dominate it. Hence,
the universe 7/, will contain i-classes which are out of %/}, . This further implies
that elements of these i-classes are out of %/, contradicting the universality of /.

Thus, it follows that between any two consecutive elements of %/ there exist no
class. Starting from this truth we conclude that for all operations of domination

except the strict one, i.e. 2 we have A(%L,) =, for every icJ. For the case of
the strict domination /? the only possibility is 2 (%/,)=<;.,. Thus, the opera-
tion 7 associates to each %/,€%/ the universe U;.., and a relation <;(i+p Such
that % <; ¢+ U, ,. For every icJ we have that the universe U, statisfies all

axioms of the X, except the power-class axiom. However, every subclass of GZZ,.

satisfies all axioms of the X,. Hence, every model for 2, is a subclass of the
universe Q{,-, respectively an element of the universe OZ[,-H. The family of uni-

verses 7/ together with the family of strict dominations form a spectar
U, ={U; <ig+prieg- We call this spectar initial or limit spectar. The first

element in %/ < is the universe %/, containing all starting objects. If the uni-

verse GZlo is empty, namely if there is no starting object, then the spectar %/ -
is the sequence of natural numbers.

Compare now our spectar of universes %/ - with the sequence of transfinite
cardinals. In the theory of transfinite cardinals are well known the aleph hypothesis

AH, which in our case we shall designate by LH/,, indicating its relation to the
levels i and i+1, and the generalized continuum hypothesis GCH, that we shall
designate by GLH,, indicating its relation to the level ;. The definition of these
notions relating to our spectar of universes will be

Definition.
LHii+1=Def(Vi) (G‘) (%i)=%i+1)’
GLH, =t (Y U) (Univ (%) = = G (U< U< 2 (U))).

Obviously in our spectar of universes %/ .. these hypotheses hold, what follows
from our preceding discussion. Now we prove some propositions concerning these
hypotheses. They are well known for the case of transfinite cardinals.

Proposition. GLH, = LH.,.

i

Proof. According to hypothesis, /? (%) is a unique immediate successor
of %;. If there exists another successor U,., of GU,, then Ui =2 (U). 1

Proposition. GLH;, > AC,,,.

Proof. According to hypothesis we have that %/, and @ (%) form a
pair of consecutive universes such that g: %/, 1~ @(,). Let ?(%,) not

contain the empty class and consider a surjection f:?(%,)— %, Because
of uniqueness of universes we have that g is a section of f namely that
fog=laai.l
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Proposition. (4C,., & LH{.,) < GLH,.

Proof. Let %/, be the (i+1)-universe. Because of AC,, ,, it is well ordered
and contains the initial element. The initial element in it is the inductive limit taken
over well-ordered carrier of all elements from “/,,,. It is easy to see on the base
of properties of universes that the inductive limit over all elements from %/, , is
the i-universe %/,. From LHii+1 i.e. from 62[,-“ = (%L,) we have GLH,..I

Thus, we have the following properties of the spectar %/ ~- Between any two
consecutive elements in %/, for instance 4L;and 9L, ,, do not exist any class; 7,
is the initial element in %/,, ,; then, for every icJ the universe %/, is stable under
all operations which enter T, except the operation /2. We have for it @ (%,) =“U,. ,.
Further, we have that for every iCJ the universe %, , is well-ordered. As %/,,,
is well-ordered then it can be represented as a well-ordered inductive spectar
{175 <i)a<n,, Where <, is a well-ordering on U, and 2,,, is an ordinal which
corresponds to the universe ;. ,. The inductive limit of this spectar is the universe
“L;. Thus 9L, =1nd (t2; <"">°‘<Ai+r‘ In that way the spectar is completely inves-
tigated. -

As we have seen the universe %i, for every i/, is not a model for X, because
of the power-class axiom. If we take the inductive limit of the spectar %/ < 1.€. its
initial element, then we obtain a universe %/ which is also stable under the opera-
tion /2 in the sense that U, <; % = P(U;)<;,,%UL. As a limit of %/, it is unique.
For every ic it i-dominates the universe &Zl,.. Otherwise, each class ¢ of any
level ic7 is an element of %/, i.e. (V1) (Vi) (¢, &,%/). Hence it follows that %/
is the proper universe. The system of which %/ is a model we shall call the limit
system and denote it by £_,. This system is unique. If we analyse it we shall see that
it is the NBG system [6], even the NBG + GCH. The GCH here is only a sta-
tement concerned with the crossing from a level universe to the higher one
in /. Thus, the NBG system is to be obtained as a limit of an inductive spectar
of NBG™ systems.

If under the proper class we understand a class which cannot be an element
of any other class then with respect to the hierarchy - we have the following:

Proposition. %/ is the proper class.y

As we have said %/ is also the proper universe. We shall call it, in future, simply
the universe. If axioms A1, A5 and A6 are excluded then we shall call it the preuni-
verse. The universe %/ is sufficient for our future intentions. It will be our future
framework. In %/ one can speak of all objects on a level and then of all objects on
all levels. That is a quite natural matter. In several forthcoming papers we shall
show the adequacy of such an assumption. For that purpose we shall consider
some fundamental structures in %/, namely structures on a relevant domain in /.
This domain will be an i-class #; of some (i—1)th mathematical objects. Structures
on a class in %/ we shall call horizontal structures in /. For instance an i-category
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of (i—1)th mathematical objects is a horizontal structure in %/ that we shall call
a fundamental semigroupoid. There are also in %/ structures among mathematical
objects on consecutive levels. Such structures we shall call vertical structures
in %/. Topological spaces are instances of such structures.

At the end of this paper we say that a formalisation of these investigations
will be our final step.
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