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The purpose of this paper is to give some remarks as well as some im-
provements on the choice topology introduced by Dacié [1].

Let D={D,|a<& A} be a decomposition of a topological space X, i.e. D
is a collection of non-empty disjoint subsets of X whose union is X. Any mapping
9 :D—X such that ¢ (D)< D, for every & 4 is called a choice function. If Z
is the set of all choice functions for a given decomposition %), then the choice topo-
logy 7, on 9 is defined to be the coarsest topology on %) for which all choice
functions are continuous.

Recall [1] that a decomposition % is called I-non-void iff for each D,
there exists some x¢= D, and a neighborhood V of x such that D\ V+#£ o for
all B#a.

It was shown in [1; Theorem 1.2] that t is discrete iff the decomposition )
is I-non-void. However, there is a gap in the proof that if v, is discrete then < is
I-non-void. In fact, this statement is false in general. An example of a decompo-
sition ) which is not I-non-void but <, is discrete can be easily constructed. For
example, let X={1, 2, 3, 4} with {1, 4} and {2, 3} as the only proper open sets
of X. It is easy to check directly that the decomposition D={{1, 2}, {3}, {4}] of X
is not I-non-void but (9, 7;) is a discrete space. Note that the space X here is not
Hausdorff. Such examples for Hausdorff spaces can also be constructed without
difficulty. (See example following Proposition 4)

Proposition 1. Let X be a Hausdorff space and D={D,|aC A}
a decomposition of X and a &= A. If D, has more than one point, then {Dy}Ey.

Proof. Let p, g& Dy, p#q. Since X is Hausdorff, there exist disjoint
open sets U and V of X containing p and g respectively. Let ¢;:)—X be any
choice function such that ¢; (D,)& D, U whenever D, U# & . Define a choice
function ¢, : D~>X by putting ¢, (D,,) =g and ¢, (D,) =9, (D,) if az«,. Obser-
ving that ¢ D,,(\ V' we have {D,}=¢ ' (U)N ¢, ' (V). Hence (Do} 1,.

Proposition 2. If X is a Hausdorff space and 9 is a decomposition of X
satisfying any one of the following conditions:

(a) D contains no singleton sets

(b) D is a locally finite family
then ~, is discrete.
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Proof. Let 9={D,|acA}. If (@) is satisfied, then each D,&< has
more than one point. Hence by Proposition 1, {D,}E =, for all ac A4, ie 1,
is discrete.

If (b) is satisfied, let D, < be arbitrary; we shall show that {D,}&t,.
By virtue of Proposition 1, we may assume D,,={x} for some xcX. Since 9
is locally finite, there is an open neighborhood W of x such that WND,= 2
for all but at most a fiaite number of o’s i1 A. Let A, be the finite subset
of A such that WN\D,# @ iff acA4,. If Aj={x,}, let ¢: 9 — X be any choice
function such that ¢ (Dg)=x; then ¢ *(W)={D,} o that {D,}cr,. If
Ay={og, 005 ..., o, forsome o, ..., o,CA, let CWND,, fori=1,2,..., n
Since X is Hausdorff, there is an open set W,C W such that x&W, and
W,N{4,, ---, 4,3 = 2. Let 9:<)— X be any choice function such that ¢ (D)= x
and ¢(Dy)=gq, for i=1,2, ..., n. Then o=t (W) ={D,}. Hence {D,}&~,.

Corollary (@ If X is a discrete space then <, is discrete.

®) If X is Hausdorff and < is a finite decomposition, then <,
is discrete.

Proposition 3. Let <) be a decomposition of a space X. For each
Dy, & such that Dy, has only one point, we have {D,}E 7, iff {Da}=0"1(U)
for some choice function ¢:%) ->X and some open set U of X.

Proof. The sufficiency follows from the definition of .

Suppose {D,}&1,, then by definition of t,, there are choice functions
@5 -5 ©,:D—>X and open sets Uy, ..., U, of X such that {D,}=
=o' (UDN -+ -Ng; ' (U,). Now D, ={p} for some pcX by hypothesis, so
p=9;(D,)EU, for all i=1,2, ..., n. Let U=U,"---NU,, then U is opea
in X. Now, for each D,C%), aa,, there exists i, 1<iy<n such that
@i, (D) EU;,. Hence D\ U,, # . Since UCU;,, we have D,\ Uz @ . Define a
choice function @:9 — X by putting ¢ (D,)=p and ¢ (D) ED U for azo,.
We have {D,}=0¢"!(U)&1,.

Proposition 4. A4 decomposition H={D,|acA} is Y-non-void iff for
every D,& there exist a choice function ¢,:)— X and an open set V, of X
such that o=1(V,)={D,}.

Proof If 9 is I-non-void, thea for every D,&<D, there exist x&D,
and open neighborhood ¥, of x such that D\ V,# @ for all Bz« Define
0s:D—>X by @, (D) EDg\V for all Bs£a and o, (D,) =x. Then o1 (V,) ={D.}.

Conversely, suppose that the condition is satisfied and D, 0. Then there
exists choice function ¢,:)— X and open set V, of X with ¢ 1 (V,)={D,}
Let x=¢,(D,)EV,, then V, is a neighborhood of x and D\ V,# o for all
B#a, BEA. Hence 3 is I-non-void.

Example. Let X-{O, o ...}U{I, T 1i,...]
2 3 n 2 3 n
with the relative topology of the real line. Then X is Hausdorff. Let

B e

be a decomposition of X. It is clear that the set Z of all choice functions
from %) to X has exactly two clements, namely ¢, ¢, where o, ({0, 1})=0 and
®, ({0, 1)=1, (¢,, ¢, map the other elements in the obvious unique way). Since
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{1—}, [1 1—] areopen in X foralln=2, 3, ...; we have {{1}], Hl —1—}}61’2 for
n n n n

all n=2,3, ... . {{0, 1}}& 1, follows from Proposition 1. Hence 1, is discrete.
On the other hand, ¢! (V)={{0, 1}} cannot hold for all choice of ¢ in Z and
all choice of ¥ open in X. Hence by proposition 4, < is not I-non-void.

Remarks (1) In the above example, X is compact but (<), t,) is not
compact. Hence in general, the compactness of X does not imply the compactness
of (D, t,).

(2) Let X be a Haucdorff space and < a decomposition of X. Let

D, ={DED|D contains more than one point}

D,={DED|D is a singleton set such that {D}—=¢-!(U) for some choice
function ¢:% - X and some open set U of X}

Dy = DN(DUD)-

Then it is easy to cee from Proposition 1 and the definition of choice topology
of 9 that 9,9, is an open discrete subspace of (P, 1) and D, DD,
as subspaces of (%, t,) are homeomorphic with the subspaces (U9, and
U(D,UD,) of X respectively.

It was shown in [1; Theorcm 3.1} that if X is regular (respectively normal)
then T, is regular (respectively normal). However, each of the proofs provided
there contains a gap. We are able to provide an elementary proof for the cace
of regularity and an example to show that the ca'e of normality does not hold
in general.

Proposition 5. If X is regular, then (9, ©,) is regular.

Proof. Let § be an open subzet of P ={D,|aCA} and D, &G. We
shall show that there is %! open in %) such that D, & C U CG. Since § is
open, there are choice functions ¢,, ..., @, and open sus U, ..., U, of X
such that

DmOE(PI_I (Ul)ﬂ s m(P;l (Un)Cg

Now o¢;(Dy)<U,; for each i=1, 2, ..., n. By regularity of X, there are open
cets V,, ..., ¥V, of X such that

0, (D) EV,CV,CU,; forall i=1,2, ..., n
Then
Dy, Cor' (V)m- - - Nt (V)

Cot(V)N - - Nt (V)

Coy DN Ne, T (V)
Cor' DN Nen (V)
The last inclusion sign follows since ¢; are continuous. But
o (V)N N V) Cert U)N--- Ne ' (0 TG
Hence it suffices to let =g (V)M - - - Mot (V).
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The following example shows that the normality of X does not imply the
normality of (9, t) in genecral.

Example. Let o be a fixed non-limit ordinal and o>, the first
uncountable ordinal. The set W (a) of all ordinals less than « with the order
topology is a compact Hausdorff space. Let X =W () x W («). Then X is compact
Hausdorff and hence normal. Let T={(x, y): x<w, y<QN\ {(0, Q)}C X, where o
is the first infinite ordinal. Then T as a subspace of X is not normal ([2] p. 132).
Let D={X\T}U{{p}:p&T}. By Proposition I, {X\ T} is open in (P, z,),
) Az[{p}:pET] Is a closed subspace of (9, t,) and 4 is homeomorphic
with the subspace T" of X. Thus A is not normal. Therefore (9, t,) cannot be
normal, becauce the normality of (%), t,) would imply the normality of the
closed subspace A.

If X is T, (respectively Hausdorff) then (9, ©,) is T, (respectively Hausdorff)
[1; Theorem 3.1]. It is not difficult to see that if X is T}, then (9, 7,) is also T;,.
We shall show that if X is completely regular then (%, t,) is completely regular.
We begin by,

Let E be any topological space. Recall [3] that a space S is called
E-completely regular iff § is homeomorphic to a subspace of some topological
powers of E, (i.e.,, to a sub:pace of some product of spaces each being E).
In [3; 3.9] it was shown that a T,-space S is E-completely regular iff for every
net {x;|8< A} of points of S, the condition “xs—»x iff f(xs) —f(x) for every
continuous function f:§ — E” holds.

Proposition 6. Let X be a T,-space, then (P, t,) is X-completely regular.

Proof. Since X is 7, implies that (9, =) is also T,, by the quoted
result [3; 3.9], it suffices to show for every net {D;|3< A} of points of %, the
condition “Ds— D iff f(Ds;) —f(D) for every continuous function f: %) — X
holds.

Ds — D implies f(Ds)— f(D) is obvious. Suppose f(Ds) — f(D) for every
continuous function f: %) — X; we shall show Ds;~> D. Let § be a neighborhood
of D in 9. Then since ¢ is open, there are choice functions ¢, ..., o, and
open sets U,, ..., U, of X such that

Deor (UM -+ - N U)CG
For all i=1, 2, ..., n, ¢;(D)&U,. But ¢, is continuous, so
¢; (Ds) > ¢, (D)EU,.
There exist 3,& A such that o, (Ds) CU, for 8§ >3;. Let 8,39, ..., 3,; 8,C A4 then
¢ (Ds)cU; for all =8, and all i=1,2, ..., n. Hence for all >3,
Dscor"UDN - - - N1 (U)CG e Ds— D.

Corollary. If X is T,, completely regular then (9, t,) is completely
regular.

Proof. If X is completely regular, then every X-completely regular space
is completely regular.

Remark. Regularity, E-complete regularity are productive and hereditary
properties. Therefore Propositions 5 and 6 also follow from the fact that the
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set Z of all choice functions from <) into X separates the points of %), so the
evaluation map e from (9, 7,) into the product X# defined by e (D) ()= (D)
for each D&% and ¢&Z is a homeomorphism [4, Theorem 8.12]. Moreover,
T,-ness can be omitted in Proposition 6.

Next, we shall investigate the relations among v, and some other topologies
of a decomposition D ={D,|ac A4} of a topological space (X, 7). For each Ucr,
let U*={DED|DNU#wo}, Ut={DCD|DCU}. Then {U*|Uc} and
{U*|U&r} are subbaes for som> topologies =* and =t for 9 respectively.

An element U in 7 is said to be 9-saturated if U= \J{D,|«1I} for some
ICA. If Uis 9-saturated then U*=U". Let §* be the topology of % with
{U*|Uct and U is -saturated} as subbase. Then S*Ct*Mt™. Let p be
the projection map from X into <) and <, be the quotient topology of
<, we shall show that S*=<1 . If U&t and U is %-saturated then
Pt (U* =p~t(p(U))=U. This shows that p is a continuous mapping from (X, )
into (2, §*). For each G in 1, p~'(G)C~+ and p~1(G) is P-saturated, so
P (G)*=p (p' (G)) = GES* Hence t,CS* But 7, is the largest topology of 9
such that p is continuous, thus 7, =S*

Next, for any U&r, let ¢, ¢, be choice functions from 9 into X such
that o, (D) ED,NU if D,NU# 2, 9,(D)ED, if D,CU and ¢,(D)ED\U
if D\ U @. Then U*=¢r!(U) and U™ =;1(U). Hence t*C 1, and " C1,.

We have shown that:

Proposition 7. (8 7,=8*

(b) 7,C*C,
© t,Cr"Cry.

In concluding, we shall give examples to show that the inclusions in (b), (c)
may be proper and that no general containmznt holds between <* and <.

Examples. (1) In this example, v #t*=7". Let X=[0, o) with the
usual topology and D={[n—1,n)ln=1,2,3, ...}. Then 7, is not discrete and
7% 11 are discrete.

(2) In this example, v*C " and t*<". Let (X, 1) be the real line with
usual topology and 9= {{n}, (n, n+1)|n is an integer]. Then <t is discrete
but t* is not discrete.

(3) In this example, =¥ C+* and t*#£<t. Let X={1, 2, 3}, v={o, {3}, X}
and 9={{1}, {2, 3}}. Then <% is indiscrete and <* is not indiscrete since
{2, 3yc~
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