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Abstract — In a general case, differential equations of the motion of a mechanical system
in a configuration space represent a non-linear system of differential equations notwithstan-
ding what the external forces are; the solutions of these equations are not known in general.
In the present paper some general first integrals are dealt with for a non-linear system of
differential equations where a mechanical system is being acted upon by one class of potential,
gyroscopic and dissipative gyroscopic forces. The absolute integral of a tensor that is applied
directly to the absolute differential of a tensor, or in this particular case, to the absolute
derivative of the generalized velocities vector, was used in order to obtain this result.

1. Introduction

The motion of a holonomic, scleronomic system with # degrees of freedom
can be described, as is well known, by n Lagrangian equations

(1) — ———=0; (i=1,2, ..., n)

where the usual notations are used.
Both left-and right-hand sides of these equations, in a general case, are
non-linear. On the left-hand side we have the squares of the generalized velocities
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are the covariant coordinates of a metric tensor of the configuration space V.
The coefficients of connexion I'j; are the Christoffel symbols. Both a; and %, in
a general case, are non-linear functions of the coordinates ¢'.

For such a general system, it is well known that from the equation (1) it is
possible to obtain one first integral of energy, provided the force is a conservative
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one, i.e. if Q= —?, where IT=1l(q!, ¢ ..., ¢”) is the potential energy.
ql

The formulation of all the first integrals of the system (1) was not possible in a
final form, not even when all the coordinates of the generalized force were equal
to nil, i. e. for Q; = 0. In this paper, however, we have succeeded in finding all the
first integrals even for a broader class of generalized forces.

Let us assume that the force has the generalized potendal V=114 + 11

where II,=11,(¢", ¢% ..., ¢") and II=1I(q%, ¢% ..., g") are functions of co-
ordinates ¢!, ¢2, ..., g" the gradient coordinates %ll and Z—[—I— of which form
q] q]

covariantly constant tensors. In addition, let the system be acted upon by
dissipative forces of the form —b;4/ where

3 by=Bka 4% s x5 09

are dissipative coefficients forming covariantly constant tensors.
With these limitations, the generalized force will have the following form

d oV oV y .. ..
'=7¥h_~_bi‘ T =Gy J_bi' T —fis
9, i 0d o 4 =Gy — b4 — f,
where
oIl, oll; - i
*) Gij‘;qji‘;};* -G, ¢ ..., 97

are the gyroscopic anti-symmetric coefficients, while
oIl

(5) f;: ; =f;. (q15 q2’ ey qn)
oq

are covariant constants of the potential force.
Hence, we are going to consider the integration of a system of non-linear
equations of motion of the following form:
d*q’ cdgk dq y
=Ty —)=(G~-~b,~-)qf i@, ..., 9.
dt? dr dt v ’

(©) al

In view of the fact that for this integration we shall use a tensorial integral
operator, we propose to rearrange the equations (6) in another way.
The left hand side of (6) can be expressed by means of the absolute derivative

>
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since the absolute derivative of a metric tensor is equal to zero, whereas, on the
other hand, p;= a;; ¢’ is the generalized impulse of the scleronomic dynamic system.
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The contravariant coordinates ¢’ of the velocity that appear on the right-hand
side of (6) can be expressed by means of the absolute derivative. In [6] a proof is

given that in the configuration space V,2¢, g%, ..., g" the relationship
.. D¢t dot . . d
(8) g DE_ Ay L
dt dt dt
. S . S N or
is valid, in which o'=a¥p;, and p;=> m, ¥, 5 v
v=1 qj

Hence, by substituting (8) and (7) into (6), we obtain the following system
of differential equations of motion

Dp; D¢/

9 " =(Gy—by) o +fi
It is possible thus to apply this system of equations, and the equations (1) directly
both to the systems with a finite number of degrees of freedom, and to the motion
of a rigid body.

Prior to evaluating the first integrals of the equations (9), we propose to outline
a theoretical approach to the integration of an absolute differential of a tensor
or a vector.

2. The Integral of the Absolute Differential of a Vector

Two years ago in the paper [5] the concept of an absolute integral of a tensor
was first introduced. It was proved that this integral can be applied very successfully
in Mechanics. The equations (9) can be integrated very easily by means of this
integral. Therefore, let us enumerate those properties of the absolute integral that
we need here.

If we have a covariant vector v; the absolute differential Dv; of which is
known with respect to the absolute integral of a tensor, then we have

(10) vai:vi_U%i

where 4+ is the covariantly constant (or antiparallel) vector. The vector .4, is not
constant, but is ina general case, a function of the coordinates of the vector v; (z,)
at the point q0 gi (t,), i. €. at the instant ¢ = t,, and of the coordinates g of any
point at the instant z. The vector .4, is in fact the vector v, (#,) at the point 7= 1,
the latter vector having been displaced parallel to itself along the trajectory to a
point. A parallel displacement of the vector v, (f,) to any other point is possible
by means of a bipunctual tensor which is to be found in papers [2] and [4] where
they are called-shifter. For the sake of our considerations within the configuration
space, the tensor aX is determined by means of the covariant bipunctual fundamental
tensor a;x, the latter being defined in the same way as the metric tensor (3); but
is calculated in two poinis, i.e.

N or, (0;'\,
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Thus, the coordinates of the bipunctual tensor occur as functions of the coor-
dinates ¢, ..., g¢ of the initial point, and of the coordinates ¢', ¢ ..., ¢"

of a point at the instant z. A composition of the tensor (11) and the contrava-
riant metric tensor a¥ will yield

(12) ak—aai—al (40, Gor --.» d6; 4% G% ..., q")

where we use, similarly to the double tensor fields [2], capital letters in the index
in order to denote the coordinates of a vector or a tensor at a fixed point. In a parallel
displacement of a vector, for instance v;, from the point ¢= 1, to the point #, we
have [2]

(13) A=V (L) af (G K=1,2, ..., n

where aX =a;; a*. Hence, the integral (10) becomes

(14) fDViIVi—VK(fo)af(-

The accuracy of the relationships (10) or (14) is readily proved by the absolute
differentiation

DvaizDvi

since D .#4;=0, for the antiparallel vector, or Dv.(f{)=0 for the constant,
and Dak=0, as proved in [I].

We propose to show other properties of the absolute integral, which we may
need later on, in integrating the non-linear differential equations of motion (9).

We shall add here that the covariant coordinates of the vector v, can be
expressed in the well known manner by means of the corresponding contravariant
coordinates v/, i.e. v;=ga;v. In view of the fact that the absolute differential
of the metric tensor is equal to zero, D a;= 0, the integral (10) can also be written
in the following form

(15) [ a;Dvi=a;vi— A4,

This property of the absolute differential is valid not only for the metric

tensor a;, but also for all covariantly constant tensor, because if a tensor
U= Uj(q', g% ..., q7) is a covariantly constant tensor then it is always possible

to write D(U}vi)=U} Dvi.

3. First Integrals of the differential Equations of Motion of Systems

Since the absolute differential of a scalar is equal to the common differential,
i. e. Dt = dt we can apply the absolute integral (10) to the equation (9),

[{Dpi+(b;=Gy) D¢/ ~1, Dt} 0.

But, as the absolute integral of a summation is equal to the summation of absolute
integrals [5], we shall have

j:Dpi+f(bij_Glj)DPj—ff;-DfZO.
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Remembering that (3), (4) and (5) are covariantly constant tensors, on the
grounds of (10) and (15) we obtain
(16) pi"‘(bij"'Gij) o/ —1fi= A
The coordinates of an autoparallel vector .4, are determined from the initial
conditions
Pi(ty) =ag, (qg, g ..ns qg)qg, bKL=bKL(q(‘), g3, ..., q5)

GKLzGKL (‘Ié, qg; LGNS q(r)l)a Péa fK:fK(q(g’ q(%’ ‘e qg)'

and transposed thereupon to the point under consideration at the instant ¢. This
is performed as in the relationship (13) by means of the bipunctual tensor (12);
thus we have

Ar=lagr 5 + (g —Ggr) ool af
or

Ai=ai g§+ak (bgp — Ggp) ee,
since ag, a¥=ay, [2].

Thus we obtain » first absolute integrals of the nonlinear differential equa-

tions of motion (6) in the form of

(17 a; ¢+ by —Gy) o' —tfi=ai G5 + (b — Ggr) p§ aF

or by means of (8)
Dy’ ; AL LK
(18) aif?"‘(bij—Gij) o —tfi=ai g5+ by — Ggr) o5 aF.

If a verification of the accuracy of the above procedures is required, then
it can be simply made by a repeated absolute differentiation which brings us to the
initial equations (9).

From (18) there follow simpler integrals for other special types of forces.
Thus if the generalized force potential ¥ is equal to the potential IT, ¥ =II, and

ov_ fi ', ... i aHf=aH{', then the gyroscopic forces do not act,
0g; o¢/  o¢
since G;;=0, then from (18) we have
D .
(19) D! = bye! = f;= a8 +berof af

The dissipative forces — b;; ¢/ will be equal to zero provided b;,= 0. There-
fore, if neither dissipative nor gyroscoplc forces are acting, then from (17) therefore
follows

(20) ayq/ =tfi+a 45

If there is also a condition that the potential covariantly constant forces be
equal to zero, then we obtain first integrals of the equations (1) for motion under
the influence of inertia in the following form:

2o AL
aijqj"‘aquo‘

The class of generalized forces for which the relationships (17) or (18) are
valid, or if there exist the equations (19) and (20), occurs very frequently in problems
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of Mechanics. Therefore, the general integrals that were obtained above can be
directly used, without setting up the equations (1), for simpler examples of the
motion of a mechanic holonomic scleronomic system with n degrees of freedom.
This is also valid, of course, as a consequence, for systems with one degree of freedom
only. Since the equations (1) or (6) can be applied to consider the motion of a rigid
body, the integrals obtained in our foregoing discussions are valid for the motion
of a rigid body.
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