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1. The symmetry of propositional functions usualy simplifies the synthesis
of switching circuits. Moreover, symmetric functions have algebraic properties
which make it desirable to treat them as a separate class. The algebraic treatment
of symmetric functions is derived from a general definition of the symmetric function
and a number of theorems, first stated by C. E. Shannon in [17] and [18].

In this paper, the following problem is discussed and solved:

To find all subsets U of the set F, of all propositional functions which are
S-bases for F, in the following sense:

1. U contains only symmetric functions.

2. Starting from elements of U, every element of F, can be obtained by com-
position.

3. No proper subset of U has the property 2. of U.

2. Definition 1. A n-place propositional function f(xi,x3, ..., Xn) IS
said to be symmetric if and only if the following equality is valid:

f(x1,X2, ey xﬂ):f(ylayZ, ceey yn)5

where (y1,¥2, ..., ya) is an arbitrary permutation of (x1,Xz, ..., Xn).

Since any permutation of variables may be obtained by successive interchanges
of two variables, a necessary and sufficient condition that a function be symmetric
is that any interchange of two variables leaves the function unaltered.

Starting from definition 1, the following property of symmetric functions
can be easily proved ([i4], p. 178.): :

Lemma 1. If the perfect disjunctive normal form (PDNF) of a n-place sym-
metric function contains a unit constituent with m, (0 <m <n), unnegated variables,
then that PDNF contains every unit constituent with the same property.

Definition 2. A4 propositional function is said to be basic symmetric func-
tion if and only if every unit constituent of its PDNF can be obtained by some permu-
tation from an arbitrary unit constituent.

A basic symmetric function is uniquely determined by two numbers — the
number of independent variables » and so called @-number i.e. the number of
unnegated variables k& contained in an arbitrary unit constituent of PDNF of that
function.
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Let S denote n-place basic symmetric function with @-number k. Given n,
there exist exactly n+1 basic symmetric functions: Sg, ST, ..., S”.

The following property of symmetric functions can be easily proved ([14],
p. 178.):

Lemma 2. Every symmetric function can be uniquely represented as a dis-
Junction of basic symmetric functions.

This property enables a suitable way of notation for symmetric functions
writing :
. n . Def. .
S,V S,V - - “V Sk = Sky ks ooy km, (n=1).
The constants 0 and 1 are symmetric functions and we will denote them by
Sy and Sg 1.2 ... , respectively.

Let F, denote the set of all propositional functions, F; the set of all n-place
propositional functions and S the set of all symmetric propositional functions.
It can be easily shown that the number of n-place symmetric functions is:

k(F3n8) =271,
For further investigations the following subsets of F, are important:

L To={f|fEF,, f(0,0, ..., 0)=0}, i.e. the set of all functions preser-
ving zero.

2. Ty={f|fETy f(1,1, ..., 1)=1}, i.e. the set of all functions preser-
ving one.

3. 4 :{f’fEFb f(xla X2y o xn):f—(XZ, -;2, ) -;n)}a i. . the set of all
self-dual functions.

4 L={f[fCFy f(x1, X2 ..., Xu)=dg+ajx;+ - - - +anxs (mod 2)}, where

a;={0,1}, (i=1,2,...,n), i. e. the set of all linear functions.

5. M={f|fEF,, V(@ b) (a<b = f(@)<f(®)}, where d=(a,, a, ..., a,),
b=(b,b,, ..., b); a, b,c{0, 1}, (i=1,2, ..., n), and

. Def.
d<b & a;j<h,;, (i=1,2, ..., n), i.e. the set of all monotonic functions.

The following relations, which can be found in [1], are valid:
Lemma 3. TNT,NLNF2CANF3,
Lemma 4. T,NT\NANLOAMNF2={x,, x;, ..., x,}.

3. Definition 3. S-basis of propositional algebra is a basis which contains
only symmetrical functions.

First, we shall give some lemmas.

Lemma 5. The only degenerated n-place symmetric functions (i. e. symmetric
functions which actually do not depend on all n variables), (n>1), are the constants
0 and 1.

Corollary. There are exactly 2"*1— 2 nondegenerated n-place symmetric
Sfunctions.

Lemma 6. The following equalities are valid:
k((SNFYN\(T,UT)) = k((SM T,NFP\T, )=
=k((SNTINFYNT,) = k (SNTeN T, F5) =271,
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Lemma 7. If nis an even number, then every n-place symmetric function
is not self-dual.

Proof. If n=2m, (mcN), then PDNF of the function

FOos ooy Xy X5 o vy X

either contains the basic symmetric function S2™ or not.
In the first case, PDNF of the function f contains all unit constituents with
m negated variables, so we can find two opposite valuations of the variables

Xis Xy ouvy Xpps €80, ..., 0,1, ..., 1) and (1, ..., 1,0, ..., 0), such
that
SO, ...,0, 1, ..., D=f{, ..., 1,0, ..., 0)=1
holds.
In the second case, PDNF of the function f does not contain such unit consti-
tuents, so it is
fO, ...,0 1L, ..., D=f(1, ..., L0, ..., 0)=0.

In both cases, the function fis not self-dual, for a self-dual function has oppo-
site values on the opposite valuations of variables.

Lemma 8. There are exactly n--2 n-place monotonic symmetric functions:
80,12, ..., n=1 Si2...a3 S2...n --.; Su; Su=0. If n is even, none
of them is self-dual; if n is odd, only one among them is self-dual, that is the

, 2m+1
function Su'tTmia .. 2m ame1, (B=2m+ 1).

Proof. The first part of proposition is a consequence of the obvious fact
that PDNF of a symmetric monotonic function containing S}, must contain all
S7, for i<j<n.

According to lemma 7, if n is even, none of monotonic n-place symmetric
functions is self-dual.

If nis odd, i.e. n=2m+1, then S277 .0 . 2m2mst I8 self-dual func-
tion, for it has opposite values on the opposite valuations of variables. The
function S774 . ami1, i£m+1, cannot be self-dual, for the numbers of 0’s
and 1’s in the truth table of that function are different.

Lemma 9. The only nondegenerated n-place linear symmetric functions are:

51 (X5 Xy, ony X)) =2 x; (mod 2)
i=1
and

8§ Xp5 ooy X)) =14 > x; (mod 2).
i=1

14

Proof. The symmetry of the functions s; and s, is obvious. On the other
hand, for every linear function f(x1, X, ..., Xu) = Go+ay X1 +ay Xy + + + + +an Xpn
(mod 2), different from s; and s,, must be a; = 0 for at least one i={1,2,...,n},
so f is degenerated, since, it cannot be symmetric.
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Note the following properties of s; and s;:

The function sy (x;, X3, ..., xs) iS: nonmonotonic, if n>>1; self-dual, if »
is odd; not self-dual, if # is even; preserving zero; preserving one, if n is odd; not
preserving one, if » is even.

The function s; (xq, x5, ..., Xy} is: nonmonotonic; self-dual, if # is odd; not
self-dual, if n is even; not preserving zero; preserving one, if n is even; not preser-
ving one, if n is odd.

4. According to [1], the function f belonging to the set T is said to have
the property Ty e.c. The function having e. g. the properties Ty, T3, L and not
having the properties 4, M is said to be a | T, T, L | -function. Krnié in [1], p. 27,
proved that the number of different types of functions is 15. Every function belongs
to one and only one type. We are going to prove that every of 15 types contains sym-
metric functions. More precisely, if k | Ty, Ty, A |, (n) denote the number of n-place
symmetric | Ty, T, A | -functions e. c., then the following proposition is valid:

Theorem 1.
2#-1 if n is even

L k|lgl,(m)= n—1
2=1-2 % if n is odd.
The functions of this type are: Sg4,.4,, ...k, Where {k,, k,, ..., k}C
CH={1,2, ..., n—1}, and if n is odd, the following condition is satisfied:

there exists at least one j such that j and n+j either both belong or both do
not belong to the set {k, k,, ..., k}.
0, if n is even
2. k|4, = a
2% —1, if n is odd.
If n is odd, the functions of this type are: 5§, 1, .. % Where
tky, kyy ..., K} CH, and for every j& H, one and only one among j and n—j

belongs to the set {k,, k,, ..., k;}. The function s, (x,, x,, ..., X,)=802.4 ... n_1
is excluded.

27-1_2 if n is even
3. k|ms(n):{

2r=1_1, if n is odd.

The functions of this type are: Sk, &, ..., &, Where (k. k,, ..., k}CH;
the functions Sy =0 and s, (x,, xX,, ..., x,) =S8035 ... n_1 are excluded if nis
even, and only S5 =0 if # is odd.

2n=1_2 if n is even
4. k| T, |,(m)= ’
Tl [2n—1—1, if n is odd.
The functions of this type are: 8o 4, «,. ..., x;,», Where {k,, k,, ..., k) CH,
the functions Sg 1,2 ....»=1 and s,(x;, x,, ..., x,)=8024 ... » are excluded

if nis even, and only Sp 1,2 ... .=1 if n is odd.

0, if n is even

1, if n is odd.

If n is odd, the only function of this type is s,(x,, x,, ..., X,)=

5. k]A,Lls(n)=[

n
=850,2,4, ..., n—1-
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1, if n is even

6. kiTI,L%s<n)=[ o
‘ 0, if n is odd.

If n is even, the only function of this typs is s,(x, x5, ..., X,)=
=Sg,2,4, vee, N
1, if n is even

7. k{T,, L|;(n)=
| Tos L, () {O,ifnisodd.

If n is even, the only function of this type is s, (x;, X,, ..., X,) =
=S8135 ....n-1.
2—1_p, if n is even
8. k|T,, T,i,(n)= -
2712 % _py1, if nis odd.
The functions of this type are: Sk, «,, ..., k1, n» Where {k,, k,, ..., k}CH
and, if n is odd, there exists at least one j such that j and n—j either both

belong or both do not belong to the set {k , k,, ..., k;}. In both cases (if n

is even and if n is odd), the functions S} ;. ... ,, Where j=1,2, ..., n, are
excluded.

9. k|T,, L, M|, (n)=1.
The only function of this type is the constant 1=Sp 1, ... »-
10. k| T,, L, M|, (n)=1.

The only function of this type is the constant 0=S7.

n, if n is even

11. kiT,, T,, M|, (n) =
ITo> To> M1, () {n—l,ifnisodd.

The functions of this type are: S} ;i1, ..., n1,,, Where j&{1,2, ..., n},

if n is even andje{l.,2, cees n—z—l’ n;3, ces n}, if n is odd.

0, if »n is even or n=1
12. k[ Ty, Ty A| (M) ={ a1

22 _2 if nis odd>3.

If n is odd >3, the functions of this type are: S%, x,, ..., x,n,» Where
{k,, k,, ..., K} CH, and for every j€ H, one and only one among j and
n—j belongs to the set {k,, k,, ..., k}. The functions Sh,{ ,.3
22
8, (%5 X35 o5 X,)=S135 ... n are excluded.

0, if n is even or n=1

13, kiTo,Tl,A,MJs(n)={
1, if n is odd > 3.

If n is odd, the only function of this type is Snii nys
202
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0, if n is even or n=1

14. k\T,, T,, A, L|,(n) ={
7o, T s {l,ifnisodd>3.

If n is odd, the only function of this type is s (x,, x,, ..., X,) =
=S8035 ..., n

| I, if n=
15.k’T0,T1,A,L,M!S(n)={ ifn=1

0, if n>1.
If n=1, the only function of this type is f(x,)=1x,.

Remark. |z |-functions i. e. the functions which have not any of properties
To, Ty, A, L, M are so called Sheffer functions. Each of them considered separately
represents a basis.

Proof.

1. If n is even, then, according to lemma 6, there are 2! n-place symmetric
functions not preserving any of two constants. Lemma 7 implies that all those
functions are not self-dual. According to a well known statement ([5], p. 44.), then,
they are nonlinear and nonmonotonic too.

If nis odd, i.e. if n=2m+1, (m=0, 1,...), then, according to lemma 6,
there are 271 = 227 p-place symmetric functions not preserving any of two constants.
Let us calculate the number of self-dual functions among them.

A self-dual (2 m + 1)-place symmetric function not preserving any of two
constants is determined if one knows which of the basic symmetric functions among

g2+t gZmel o g2mFl are included in its PDNF, for PDNF of a self-dual
function contains one and only one of §7”"' and S%ﬂﬂ,i, (i=12, ..., m.

There are, however, (Z) + ( r:z) Foee ( m) =" = 22 ways to include some
m

of S,~2m+1, (i=1,2, ..., m), in PDNF, hence, there are the same number of self-
-dual symmetric functions not preserving any of two constants. Now, the number
of n-place symmetric functions not preserving any of two constants, which are not

n—1
self-dual, is equal to 2*-1—2 * . They are nonlinear and nonmonotonic too.
2. If n is even, the statement is a consequence of lemma 7.

n—1

If n is odd, then, there are 2 2 n-place symmetric self-dual functions not
preserving any of two constants, as we proved. Clearly, they are all nonmonotonic.
The only linear function s, (xy, x3, ..., Xs) must be excluded.

3. According to lemma 6, there are 27! n-place symmetric functions preser-
ving zero and not preserving one. Obviously, none of them is self-dual. They are
all nonlinear — with the exception of s; (x{, X5, ..., Xp) if nis even, and nonmono-
tonic — with the exception of the constant 0.

4. The proof is analogous to the previous. Here, we must exclude the functions
1 and s5 (x, X3, ..., xn) if # is even and only the constant 1 if n is odd.

5, 6, 7. The statements are direct consequences of lemma 9 and the properties
of the functions s; and s,.

8. If n is even, the statement is a consequence of lemmas 3, 6,7 and 8.
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If n is odd, then, similarly as in the first part of this proof, it can be proved
that the number of n-place symmetric functions preserving both constants, which

n—1

are not self-dual, is equal 27! -2 ', According to lemma 3, they are all
nonlinear. Yet, we must exclude n — 1 monotonic functions which are not self-dual
(lemma 8).

9, 10. It can be easily verified.

11. According to lemma 8.

12. It is a consequence of lemma 7 if » is even, and of lemmas 6 and 8 and
the properties of the function s if n is odd.

13. It is a consequence of lemma 7 if n is even, and of lemma 8 if » is odd.

14. According to lemma 9 and the properties of the functions s; and s,.

15. According to lemmas 4 and 5.

Let k| Ty, Ty, A|,(<n) denote the number of symmetric |Tp, Ty, 4 | -func-
tions depending on at most » variables e. c., then starting from theorem 1 and using
lemma 5, the following equalities can be proved:

Theorem 2.

n+1
I k| o 's(<n)=2"—2[T].

E .
2. k|Ai,(<n)=2""2 —[K]
' 2
3,4, kiToﬁs(<n)=klms<<n)=2"—[3”2”].

5. k|A,L;S(<n)=[”;1]_

6, 7. kiTo,L{S(<n)=k}Tl,LRS(<n)=[%].

n+1

- 2
8. kJTo,les(<”):2n_2[ i ]‘[%]

9,10. k|T,, L, M| (<n)=k|T,, L, M| (<n)=1.

‘ n?
11 k| Ty Tys Ms(<n)=l:7:|.

n
2% _n, if n is even
12. k|T,, T,, Al,(<n) =

n+1

22 _n—1, if nis odd.

13. k|T,, TI,A,M{S(@):[”;I]

10 Publications de I'Institut Mathématique
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14. k' T,, T,, A, L ,(<n)= [”;1]

15. k' Ty, Ty, A, L, M| (<n)=1.

According to theorem 1, the symmetric functions of a given type can be mors
precisely specified. For example, all symmetric | 4, L |-functions are the functions

$,(X), X3y ooy X,)=S50,2,4, ..., n-1, Where n is an odd number. All sym-
metric | 7, -functions are the functions S, «, ..., x;, Where nE N, ki, kyy ol KJC
CH={1,2, ..., n—1}; the functions S7 35 ... ,_1 if n is even and S% =0

being excluded.

Given n, then using theorem 1 and the catalogue of the types of bases of pro-
positional algebra ([1], pp. 29—30.), all S-bases consisting from #-place functions
(constants may be included) can be constructed. For example, all S-bases consisting
from four n-place functions, #n odd > 3, are the bases of the form:

[O, 19 S;l,3,5,...,n= zxj(mOd 2)’ S;fj+1,...,n1,n}’ Where 16{19 2’ vees n}-
i=1

Similarly, all S-bases of propositional algebra can be constructed. For example,
all S-bases containing four functions are the bases of the form:

2mad 2m+1 .
[0, LoSTamsi= S X (mod 2), S . ,_1,,},
=1
where m>1, r>2, jc{1,2, r}.
Let N} and N ES"), (i=1, 2, 3, 4), denote the numbers of S-bases consisting
from i n-place functions and functions depending on at most n variables respectively,

then, starting from theorems 1 and 2 and according to the catalogue of the types of
bases ([1], pp. 29—30.), the following equalities can be proved:

Corollary 1.

2#1 if n is even

1. _
2n=1_ , If n is odd.
4(42—-1), if n is e en
2. { 3(n—1)
21 (2n-1 — 1)+3(2 2 ~1), if n is odd.
0, if n=1
3. Ni— 271 _p if n is even
ntl
214222 _p_3, if nis odd 3.
4. N

n { if nis even or n=1
Ni=

n, if n 1s odd > 3.
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Corollary 2.

1. NE” = 2L2[n:1].

3n n
221 43.2% —(n+2) 21— (2n—5) 22 +—ji (n—10) (n+2),
if nis e-en
2 N(>")_
e st IR
22n4 3.2 2 —(4n+9)2-1—-Q2n-1)2° +Z(n2—n—4),
if n is odd.
73
(n+22224nmn+2)2 "> —;n(n-i—Z) (n+4), if n is even
3' Ngﬁ”) )1;1 1
(n+1)2(2"‘2+2 2 )~§(3n3+19n2+25n+1),
if n is odd.
1 g ;
—(@n—1) n*—4), if n is even
D
%(n— 1)? (n+2), if n is odd.

For example, if n = 3, the expression N3 gives us two S-bases consisting from
3 functions:

[0; 14x+x,+%==S02; 833
and
{1; 1+x1+x2+X3=S(3),2§ S§,3}‘
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