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ON AN APPROXIMATION OF FUNCTION AND ITS DERIVATIVES
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Let w,(x) denote the Jacobi polynomials with the weight function
p()=0-x)"12 (1 +x)~12

If w,(x) denote the corresponding normalized Jacobi polynomials then it is well-
-known that

(L.1) v‘v,,(x>=[

Now let

2nl(n+ DI (n) ];/)i(x)_
F'n+1/2)T'(n+1/2)

S, ()= 2 & i (x)

be the n' partial sum of the Fourier series of Jacobi polynomials of a function
f(x). Natanson [1] proved the following:

Theorem 1 ({1]). Let p be a positive integer which is greater than or
equal to 1. Then on the interval [—1, 1] every function f(x) with a continuous
p* derivative can be expanded in a uniformly convergent Fourier series of Jacobi
polynomials w, (x).

As far as we know this is the latest result on this topic. In this note we im-
prove Natanson’s result by establishing the following:

Theorem 2. If f(x) has p continuous derivatives on [-—1, 1] and f® (x)&
Lipy, (0<u<1) then for p+up>1/2,

¢y
(1.2) =8, < P, xel=1, 1]
and for p+u=2r+(1/2); r>1,
(1.3) fOE-5P W | <—2——, x&[-1, 1],
n

p+u—2r—(1/2)

where ¢, and c, are positive constants.

2. In order to prove the Theorem 2 we shall require the following well
known results.
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From [1] we have for yv> —1 and A> —1,
F(n+~(+7\+1)<
Fn+vy+1)

d n*

1

2.1

where d, is a positive constant. Now making use of (2.1) one can easily see that
r
2.2) eDU® g
IF'mn+1/2)yL(n+1/2)

Also from [3] we have for —Il<x<l,

(2.3) w, (x)| <dyn12
Then from (1.1), (2.2) and (2.3) it follows that for —1l<x<1,
(2.4) W, ()| <d,,

where d;, i=2, 3, 4, are all positive constants. Further upon applying Markov’s
inequality [1] to (2.4) we obtain

Y 2r
2-5) WD ()] <dgn’,
where d, is a positive constant.

Some Lemmas. In order to prove Theorem 2 we nced the following
lemmas.

Lemma 1. If —1<x<], then

1
(3.1) f (1— 217 i W, (%) W, ()] dr < e,nth?
k=0

-1
and

1
(3.2) f (1—1)=12 | 3 w0 (x) W, (t)| dt < ¢ m2r-i2),

k=0
-1

where ¢, and ¢, are positive constants.

Proof. We give here the proof for (3.1) only. The proof of (3.2) can
be given on the same lines using (2.5). Making use of (2.4) we obtain

1
n 2 n
3.3) f (1—ty)=12 [ > W (1) Wy (x)] dt= % |W (x)?<csn.
k=0 k=0
-1
Consequently using Cauchy’s inequality and (3.3) we get

dt<

1
fUﬂﬁwimmmu)
Y k=0

! n 2 1/2 . 1/2
<[ [ (1—12)—1/2[ PR »‘vk(x)] dt] [ f(l—tz)_l/zdt] <cgnll?,
. k=0 J
-1 ~1

from which (3.1) follows.



On an Approximation of Function and its Derivatives 131

Lemma 32 If —l<x<!1 and p+p>0, then

1
3.4) f (1- 12)(p+u)/2[(1 —t2)~12
~1

i W (x) Wy, (t)i; ] dt < c, n'f?

k=0 |
and

I'n

>, WD () W (t)g] dt < ¢, 2+,
|

tk=r

1
3.5 f (1- t2)(p+u)/2[(1 — )1
-1

Proof. Since for p+p>0

f (1- 12)(p+u)/2[ 1 _ t2) 1/2

1

< [ (1—2)-12

—1

n

Z x)v‘vk(t)u dt

n

2. Wi (x) Wy (1)

dt

and hence (3.1) yields the required result. By similar argument (3.2) yields (3.5).

Lemma 3 (2]). Let f@(x)ELipa, (0O<a<<l) in {—1, 1] then there is
a polynomial Q,(x) of degree at most n possessing the following properties:

(3.6) @) -0,()] < [(Va—xZ))wu m]

and

3-7) O ()= Q0 ()] < — [(V(l—xZ))q”’*#‘]
natro—r pata—r

uniformly in [—-1, 1] and r=12,...,4q

4. Proof of Theorem. We shall confine ourselves to proving (1.2). The
proof of (1.3) can be given on the same lines.

We write for —1<x<1,

@D f®-5,]<|f()-m,] + =,
1

< f()-m, ™|+

f (1—)=12|m, (1)~ £ ()|

iwka)wk(x)l di-1,+ 1,
|

where 7, (x) is given by lemma 3.
Now from (3.6) it follows that for —1<x<1,

@2 1— ) - < [(V(l )

] < € n—(t+w,
rp+u

g*
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Further using lemma 3 we obtain
1

“4.3) L< i f [(1 —t)e+wi2 ¢ ‘lﬁ] (1-12)—11
nrte netu

-1

n

W, () W, (x)‘ di<
[0 |

1

f (1 1) w2 [(1 — S (1) i (x)! dt+
o |

-1

1
< —
+—n2@i“;L/)(1-t5 ”
-1

Making use of lemma 3.2, we have that

&
nptu

<

> W (O) Wy (x) | dt=ri+r3, (say).
k=0 ;

nrtu Panfy

1
4.4 rr=_% f (1 — r2)@+wi2 [(1 1) ; i W, (1), (%) d dr
1 !

<ep, PR,

Finally, with the help of lemma 3.1, we obtain

1
4.5 rj——2 f(l—ﬂ)—l/z]iwk(z)wk(x))dz<cl3n~2<p+u)+<1/2>.
—1

n2p+uw) P J

Consequently from (4.3), (4.4) and (4.5) we get

(4.6) I, <can P+ for ptu>1/2.
Hence (4.1), (4.2) and (4.6) yield for —l<x<]1,
“.7 f(xX) =S, (x)] < ¢ gn—p—utin),

from which (1.2) follows.

Remark. If E (f) is the best approximation of f(x) by polynomials
from H,, where H, is the class of all polynomials of degree <n, then one can
very easily see from (4.7) that

C
E, <—A - for pru>1/2.
n () np+e—(1/2) prp=1/
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