ON CERTAIN TRANSFORMATIONS OF SETS OF POSITIVE MEASURE

M. Pal

(Received September 30, 1970)

In a recent paper K. C. Ray [2] has proved some theorems on sets of positive measures in R_N (N-dimensional Euclidean space of points or vectors) under certain transformations. In doing so he has considered transformations of the form:

$$x_i' = \sum_{j=1}^{N} a_{ij} x_j + a_i, N+1;$$
 $i = 1,2, ..., N,$

where the coefficients a_{ii} satisfy

$$1 \le a_{ij} < 1 + \frac{\delta}{(M+1)N}, \quad i = j$$

$$0 \le a_{ij} < \frac{\delta}{(M+1)N}, \quad i \ne j$$

$$i, j = 1, 2, \dots, N$$

for suitable positive numbers δ and M. Here the coefficients a_{ij} have been chosen only from suitable right neighbourhoods of 1 (if i=j) and 0 (if $i\neq j$).

In this paper we extend some theorems of [2]. In fact, we show that the conclusions of those theorems remain true even if we choose a_{ij} from suitable unrestricted neighbourhoods of 1 (if i=j) and 0 ($i\neq j$). The methods of proofs adopted here differ considerably from those of Ray. Moreover, we have given functional representations of our results.

Now we state a well-known result [3], viz, if C is a Lebesgue measurable set in R_N and T any non-singular linear transformation in R_N then T(C) (the set of points of R_N which are the transformed points of C under T) is also Lebesgue measurable and its measure m(T(C)) = |D|m(C), where |D| is the absolute value of the determinant of the transformation.

Notations. (i) Lebesgue measure of any measurable set X will be denoted by |X|. (ii) $S[c, \rho]$ will stand for the closed sphere in R_N with centre c and radius ρ . (iii) A/B will mean the set of those points of the set A which do not belong to the set B.

Theorem 1. Let A and B be two closed bounded sets having positive measures and p be any positive integer. Then we can find numbers M(>0), $\delta(>0)$ and p vectors

$$u_k = (\alpha_{1, N+1, \alpha_{2, N+1}}^k, \alpha_{2, N+1}^k, \ldots, \alpha_{N, N+1}^k)$$

such that if T_k (k=1, 2, ..., p) be any linear transformations given by

$$x_i' = \sum_{j=1}^{N} a_{ij}^k x_j + \alpha_{i, N+1}^k, \quad i = 1, 2, ..., N,$$

where

(1)
$$1 - \frac{\delta}{(M+1)N} < a_{ij}^k < 1 + \frac{\delta}{(M+1)N}, \quad i=j$$

(2) $-\frac{\delta}{(M+1)N} < a_{ij}^k < \frac{\delta}{(M+1)N}, \quad i\neq j$
 $i, j=1, 2, \ldots, N$

then the points ξ such that $\xi \in A$ and $T_k^{-1} \xi \in B$ (k = 1, 2, ..., p) form a closed set of positive measure.

Proof. Since A and B are of positive measures, there exist two spheres $S_1 = S[a, r]$ and $S_2 = S[b, s]$, where $s = \left(\frac{p}{p+1}\right)^{\frac{1}{N}} r$, such that $|S_1/A| < \varepsilon |S_1|$, $|S_2/B| < \varepsilon |S_2|$ and $0 < \varepsilon < \frac{1}{2p^2 + 2p + 1}$.

Let a-b=c. Since A and B are bounded, there exists a sphere S[0, M] which contains both A and B.

Let T_1^k be given by

$$T_1^k : \vec{x}_i = x_i + b_{i, N+1}^k$$
 $(i = 1, 2, ..., N; k = 1, 2, ..., p),$

where $(b_{1,N+1,b_{2,N+1}}^k, b_{2,N+1}^k, \ldots, b_{N,N+1}^k) \in S\left[c, \frac{r-s}{2}\right]$ and T_2^k be given by $T_2^k : x_i' = \sum_{j=1}^N a_{ij}^k \bar{x}_j$

$$j=1$$

satisfying (1) and (2), δ being replaced by δ_1 , where $0 < \delta_1 < \frac{r-s}{2+r}$.

Also, let $C_k = T_k(S_2 \cap B)$ and $C = S_1 \cap A$, where $T_k = T_2^k T_1^k$. Let $X = C \cap C_1 \cap C_2 \cap \cdots \cap C_p$. We shall show that |X| > 0.

If x' be the corresponding point of x under T_2^k then from the conditions imposed on the coefficients a_{ij}^k it follows that $|x-x'| < \delta_1$.

So,
$$C_k \subset S_1$$
 $(k = 1, 2, ..., p)$.

Again, if

$$\Phi(x_{11}, x_{12}, \ldots, x_{1N}; x_{21}, x_{22}, \ldots, x_{2N}; \ldots; x_{N1}, x_{N2}, \ldots, x_{NN})$$

$$= \begin{vmatrix} 1 + x_{11} & x_{12} \cdots x_{1N} \\ x_{21} & 1 + x_{22} \cdots x_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} \cdots 1 + x_{NN} \end{vmatrix}$$

then $\Phi(x_{11}, x_{12}, \ldots, x_{1N}; x_{21}, x_{22}, \ldots, x_{2N}; \ldots; x_{N1}, x_{N2}, \ldots, x_{NN})$ is a continuous function of N^2 variables and

$$\Phi(0, 0, \ldots, 0; \ldots; 0, 0, \ldots, 0) = 1.$$

So, there exists $\delta_2 > 0$ such that

 $\Phi(x_{11}, x_{12}, \ldots, x_{1N}; x_{21}, x_{22}, \ldots, x_{2N}; \ldots; x_{N1}, x_{N2}, \ldots, x_{NN}) > 1 - \frac{1}{2p^2}$ for $|x_{ij}| < \delta_2$. Let $\delta = \min{\{\delta, \delta_2\}}$. If D_k be the determinant of T_k , then

$$D_k > 1 - \frac{1}{2p^2}, \qquad k = 1, 2, \ldots, p.$$

Now, $|X| \ge |S_1| - [|C_1'| + |C_2'| + \cdots + |C_p'| + |C'|]$, dashes denote complements with respect to S_1 .

 $|C_{k'}| = |S_{1}| - D_{k}|S_{2}| + D_{k}|S_{2}/B|$

But
$$|C'| = |S_1/A|$$
 and

$$< |S_{1}| - \left(1 - \frac{1}{2p^{2}}\right)[|S_{2}| - |S_{2}|B|].$$
So, $|X| > |S_{1}| - \left[p|S_{1}| - p|S_{2}| + \frac{1}{2p}|S_{2}| + \left(p - \frac{1}{2p}\right)|S_{2}|B| + |S_{1}|A|\right] =$

$$= |S_{1}| - \left[|S_{2}| + \frac{1}{2p}|S_{2}| + \left(p - \frac{1}{2p}\right)|S_{2}|B| + |S_{1}|A|\right]$$

$$> |S_{1}| - \left[|S_{2}| + \frac{1}{2p}|S_{2}| + \left(p - \frac{1}{2p}\right)|S_{2}|B| + |S_{1}|A|\right]$$

$$>0$$
, since $0<\varepsilon<\frac{1}{2p^2+2p+1}$.

Thus, if $\xi \in X$, then $\xi \in S_1 \cap A$ and $\xi \in T_k(S_2 \cap B)$. i. e., $\xi \in A$ and $T_k^{-1} \xi \in B$, $k = 1, 2, \ldots, p$. This completes the proof.

Theorem 2. Let A and B be two closed bounded sets of positive measures. There exist a positive number M and linear transformation

$$T_{\delta k}: x_i' = \sum_{j=1}^N a_{ij}^k x_j + a_{i,N+1}^k, \qquad i = 1, 2, \ldots, N; k = 1, 2 \ldots$$

where the coefficients a_{ij}^k satisfy the relations (1), (2) replacing δ by δ_k such that if $\{\lambda_k\}$, $\lambda_k>0$ be any null sequence, there exists a subsequence $\{\lambda_{nk}\}$ of $\{\lambda_k\}$ and a point $\xi\in A$ such that $T_{\lambda_{nk}}^{-1}$ $\xi\in B$, $k=1,2,\ldots$

This theorem can be easily proved by applying Theorem 1.

Theorem 3. Let $A, A_1, A_2, \ldots, A_{m-1} (m>1)$ be closed bounded sets of positive measures. Then we can find a positive number M, a number $\delta(>0)$ and vectors $(a_{1,N+1}^k, \ldots, a_{N,N+1}^k)$ such that if T_{δ}^k be any linear transformation given by

$$T_{\delta}^{k}: x_{i}' = \sum_{j=1}^{N} a_{ij} x_{j} + a_{i, N+1, i}^{k} i = 1, 2, ..., N; k = 1, 2, ..., m-1$$

and satisfying (1) and (2), then the set of points ξ such that $\xi \in A$ and T_{δ}^{k-1} $\xi \in A_k (k = 1, 2, ..., m-1)$ is a closed set of positive measure.

Proof. Since A is a set of positive measure, there exists a sphere $\Gamma = S[a, r]$ such that

$$|\Gamma \cap A| > \left(1 - \frac{1}{4(m-1)}\right) \nu$$
 where $|\Gamma| = \nu$.

Similarly, there exist spheres $\Gamma_k = S[a_k, s]$ such that

$$|\Gamma_k \cap A_k| > \left(1 - \frac{1}{4(m-1)}\right) \nu_k,$$

where

$$|\Gamma_k| = v_k (k=1, 2, \ldots, m-1)$$

and

$$s = \left(1 - \frac{1}{2m}\right)^{\frac{1}{N}} r.$$

Since the sets are bounded, there exists a sphere S[O, M] which contains all the sets A and $A_i (i=1, ..., m-1)$. We choose δ_1 such that $0 < \delta_1 < \frac{r-s}{r+1}$.

Let $c_k = a - a_k$, $k = 1, \ldots, m-1$. Let the transformations T_1^k and T_2 be given by

$$T_1^k : \bar{x}_i = x_i + c_k, \quad k = 1, 2, \dots, m-1$$

 $T_2 : x_i' = \sum_{j=1}^N a_{ij} \bar{x}_j,$

where in (1) and (2) δ is to be replaced by δ_1 .

Let $X = \Gamma \cap A$ and $X_k = T_{\delta_1}^k (\Gamma_k \cap A_k)$, $k = 1, \ldots, m-1$ where $T_2 T_1^k = T_{\delta_1}^k$. We show that |Y| > 0, where $Y = X \cap X_1 \cap X_2 \cap \cdots \cap X_{m-1}$.

If x' be the corresponding point of x under T_2 then from the conditions imposed on the elements a_{ij} , it follows that $|x-x'| < \delta_1$. So, $X_k \subset \Gamma$, $k=1, 2, \ldots, m-1$. Again, if

$$\Phi(x_{11}, x_{12}, \dots, x_{1N}; x_{21}, x_{22}, \dots, x_{2N}; \dots; x_{N1}, x_{N2}, \dots, x_{NN})$$

$$= \begin{vmatrix} 1 + x_{11} & x_{12} & \cdots & x_{1N} \\ x_{21} & 1 + x_{22} & \cdots & x_{2N} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ x_{N1} & x_{N2} & \cdots & 1 + x_{NN} \end{vmatrix}$$

then as in theorem 1, there exists $\delta_2 > 0$ such that

$$\Phi(x_{11}, x_{12}, \dots, x_{1N}; x_{21}, x_{22}, \dots, x_{2N}; \dots; x_{N1}, x_{N2}, \dots, x_{NN})$$

$$>1 - \frac{1}{(4m-5)(2m-1)}$$

for

$$|x_{ij}| < \delta_2$$
.

Thus, if we choose $\delta = \min \{\delta_1, \delta_2\}$ then

$$D_{\delta} > 1 - \frac{1}{(4 m - 5) (2 m - 1)}$$

where D_{δ} is the determinant of T_{δ}^{k} .

Now
$$|Y| > v - [|X'| + |X'_1| + \cdots + |X'_{m-1}|],$$

where the dashes denote complements with respect to Γ .

But
$$|X'| < v - \left(1 - \frac{1}{4(m-1)}\right)v = \frac{1}{4(m-1)}v$$

and

$$|X_{k'}| < \nu - D_{\delta} \left(1 - \frac{1}{4(m-1)}\right) \nu_{k},$$

$$k = 1, 2, \ldots, m-1.$$

$$= v - D_{\delta} \left(1 - \frac{1}{4(m-1)} \right) \left(1 - \frac{1}{2m} \right) v = v \left[1 - D_{\delta} \frac{(4m-5)(2m-1)}{4(m-1)2m} \right].$$

Therefore, $|X'_1| + |X'_2 + \cdots + |X'_{m-1}|$

$$< v \left[(m-1) - D_8 \frac{(4m-5)(2m-1)}{8m} \right] < v \left[(m-1) - \frac{(4m-5)(2m-1)}{8m} + \frac{1}{8m} \right].$$

Hence,
$$|Y| > \nu \left[1 - \frac{1}{4(m-1)} - (m-1) + \frac{(4m-5)(2m-1)}{8m} - \frac{1}{8m} \right]$$

= $\nu \left[\frac{m^2 - 2}{4m(m-1)} \right] > 0.$

Thus, if $\xi \in Y$ then $\xi \in \Gamma \cap A$ and $\xi \in T_\delta^k(\Gamma_k \cap A_k)$, k = 1, 2, ..., m-1. So, $\xi \in A$ and T_δ^{k-1} $\xi \in A_k$, k = 1, 2, ..., m-1.

This completes the proof.

We now give functional representations of the above theorems.

For this, we treat transformations as functions and a neighbourhood is defined for each function making the aggregate of such functions into a topological space and the transformations (functions) are treated as points of this space.

We proceed as follows [1]:

Let T denote the linear non-singular transformation, viz.

$$x_i' = \sum_{j=1}^{N} a_{ij} x_j + a_{i, N+1}, \quad i = 1, 2, \dots, N; \ a_{ij}$$
 real.

Now if we write

$$f = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1N} & a_{1N+1} \\ a_{21} & a_{22} & \cdots & a_{2N} & a_{2N+1} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & \cdots & a_{NN} & a_{NN+1} \end{pmatrix}$$

M. Pal

then by the function f we shall understand the correspondence between a set $C(\subset R_N)$ and T(C). Since T is non-singular, f transforms R_N onto R_N in a biuniform and bicontinuous manner. We denote by f(C) and $f(\xi)$ the transform of the set $C \subset R_N$ and the point $\xi \in R_N$ respectively by the function f (i. e. transformation T).

Let now ε be any positive number and

$$g = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1N} & a_{1N+1} \\ x_{21} & x_{22} & \cdots & x_{2N} & a_{2N+1} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{NN} & a_{NN+1} \end{pmatrix},$$

where x_{ii} 's are any real numbers such that

$$a_{ij} - \varepsilon < x_{ij} < a_{ij} + \varepsilon$$
, $i = 1, 2, ..., N : j = 1, 2, ..., N$.

Then we say that the set of functions g constitutes a neighbourhood of f. Having given $\varepsilon > 0$ we say that the neighbourhood of f is determined by ε .

In the light of the above considerations, Theorem 1 proved above may be restated as follows:

Let A and B be two bounded closed sets of positive measures in R_N and p be any positive integer. Then there exist a $\delta(>0)$ and p vectors $c^{(k)} = (c_1^{(k)}, c_2^{(k)}, \ldots, c_N^{(k)}), k = 1, 2, \ldots, p$ such that if $f_k(k = 1, 2, \ldots, p)$ be any function belonging to the neighbourhood of

$$\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & c_1^{(k)} \\ 0 & 1 & 0 & \cdots & 0 & c_2^{(k)} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & c_N^{(k)} \end{pmatrix}$$

determined by δ , then the set

$$A \cap f_1(B) \cap f_2(B) \cap \cdots \cap f_p(B)$$
 is of positive measure.

Similarly, in the same light functional representations of Theorem 2 and Theorem 3 will follow.

Lastly, I axpress my gratitude to Dr. K. C. Ray for his kind help and suggestions in the preparation of the paper.

REFERENCES

[1] Lahiri, B. K., On sets under certain transformations II. Bull. Cal. Math. Soc. Vol. 53, No. 3, 1961, p. 87—94.

[2] Ray, K. C., On measurable sets under certain transformations, Publ. Inst. Math., tome 7 (21) 1967, p. 55—62.

[3] Z a a n e n, A. C., An introduction to the theory of integration, North Holland Publishing Co. Amsterdam, 1961, p. 162.

Department of Mathematics, University of Kalyani, West Bengal.