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1. Introduction

In an earlier paper [5] we considered the problem of uniform linear approxi-
mation of vector-valued functions using a generalised weight function. This encom-
passes as particular cases the approximation problem considered by Zuhovickii
and Steckin [11], which generalizes the classical Chebyshev approximation theory to
functions with values in Hilbert space and a vector-valued analogue of the ordinary
relative error approximation for the real case. It was noted that the characterizations
of best approximation due to Kolmogorov [6], Zuhovickii [10] and Rivlin and
Shapiro [9] for the classical case extend nicely to this case. In the present paper,
we continue the study of the problem in [5]. Firstly, a characterization theorem
(thm 3.1) for the best weighted approximation in terms of the point evaluation
functionals is proved. This generalizes a recent characterization due to Y. Ikebe
[2] for the classical Chebyshev problem. In [4] Ivan Singer has noted that the charac-
terization of Y. Ikebe extends to the case of real or complex normed space in terms
of the extreme points of the closed unit ball of the dual space. His theorem, however
does not seem to directly particularize to the present theorem as the extreme points
of the closed unit ball of the function space of vector-valued functions, which we
consider, do not admit a representation as plus or minus a point evaluation as in
the case of real or complex function spaces. For the case when the approximating
functions form a finite dimensional subspace, this theorem reduces to the charac-
terization ([5], thm. 3.1 (3)), which is analogous to the well-known characterization
of Zuhovickii (cf. Cheney [1], pp. 73). This leads to the theorem (4.1) which partially
generalizes the idea of Chebyshev alternation to this problem. For the unicity of
the best approximation, we introduced two conditions in [5], one necessary and the
other sufficient. The strong unicity and the continuity of best approximation operator
was also established under the assumption of one of these conditions. In this paper,
we continue the study of the unicity of best approximation for the case of the func-
tions in several real variables and establish a theorem (thm. 5.1) on the basis of certain
differentiability properties. This theorem extends the well-known theorems of
Collatz [7] and Rivlin and Shapiro [8] to the present case.
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2. Preliminaries

Let X be a compact Hausdorff space containing at least n+1 points and H
be a real or complex Hilbert space with an inner product << >, a norm || ||, and a
zero element 0. We denote by ¢ (X, H) the linear space of continuous functions
f: X->H, with the usual operations (f+g) (x)=f (x)+g (x), (of) (x)=of (x). Let V
be a proper subspace of & (X, H). We call a map W: XX H—~H a generalized
weight map with respect to the subspace V, if it satisfies:

(wy1) W is continuous on XX H

(wp) W is linear in & i.e. W{(x,ah+Bhy)=aW (x, h))+BW(x, hy) for

all «,3 =C and hy, hhyEH.

(w3) pCV, W(x,p(x)) =0 on X implies p(x) =6 on X,

A non-trivial example of weight map is given in [5]. For f&o (X, H), we
define | f| = sup | W(x, f(x))|] and note that [-| is a semi-norm for & (X, H).
For the dual space ¢* (X, H) of &6(X, H) we take the corresponding semi-norm

|L| = sup |Lg|. Unless otherwise stated we take for ¢ (X, H) and &* (X, H). The
lgl<t
topologies of the respective semi-norms |- |. We call p &V, a best (weighted) approxi
mation to f in ¥V, provided |f—p| = inf |f—q|.
acv

Let r denote the error function f—p and x* the point evaluation correspon-
ding to an element x & X, the error r and the weight W given by:

x* (@) =W(x, r(x), Wx gx))-
Let E,, , be the set of all the extremal points of r
E; ,={xEX]||W(x,r(x))|| = |r|} and
A={x*|,/[xEE, ,}, where x*|,

denotes the restriction of x* to V.

3. Characterization of best approximation

In the following theorem is given a characterization of the best weighted
approximation generalizing the result of Y. Ikebe [2].

Theorem 3.1; Let V be a subspace of & (X, H) and fS¢& (X, H)~V.
Then p &V is a best approximation to f in V if and only if the origin o of V* belongs
to the o (V*, V) — closure of the convex-hull of A.

Proof: Let us denote by @ (4) the o (V*, V)-closure of the convex-hull
of A.

Sufficiency: Assume that o& @ (4). We shall construct a linear func-
tional L& G* (X, H), satisfying:

@ |Ll=1 (@) L&VL ie L(V)=0 and (iii) |L(f)| =]r|.

Then p is a best approximation in ¥ to f. (We note that the results given in [3] p. 182
extend easily to semi-normed spaces, hence conditions (i) — (iii) are both necessary
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and sufficient for p to be best in ¥V to f). In fact, assuming conditions (i) — (iii)
we have for each

g€V, |f—aql = |L| |f=q| > [L(f-=9)| = |[LN| =[r] = |f-p|
Next, since 0 & ® (4), there exists a net L, in ® (4) such that

im L,=0. L,=2 ¢;(x}|,), xi[,E4, ¢,>0, >, ¢;=1,

the sums ranging over finite number of terms. Consider the corresponding net
N, in &* (X, H) defined by:

N,— 2, ¢; x5
Since

[Xi@)] = [{W (x 7(x)), Wi, gD | < [rgls

the net N, is bounded with respect to the semi-norm |.| by |r|. By the ¢ (¢*, ©)
compactness of the closed |r| — ball in ¢*, (We note that Alaoglu theorem [12],
pp. 424, extends easily to semi-normed spaces) the net N, has a subnet N"‘a which

converges in o (¢*, ¢) topology to an element N of ¢* such that |N| < |r|.
Since for each g&V, N(g)=lim Nm‘3 (¢)=1lim L“a (9)=0, N(¥)=0. Also since
No(r) = [r]?

IN(D| = lim]\’mﬂ(l’) = |r|%. Hence |N|=|r|.

Finally set L=N/|r|. Then L satisfies (i) — (iii) proving the sufficiency.

Necessity: Assume that o @ (4). Then there exists a o (V'*, V) continuous
linear functional L, whose real part strongly separates o from ® (4). Hence, there
exists an element p; &V such that

inf  {Re(W (x, r (x)), W(x, P, (x))}>0
xEXf,p
This however, contradicts the fact that p is a best approximation in V to f by the
extension of Kolmogorov’s theorem. (cf. [5] theorem 3.1 (2) (b)), and establishes
the necessity.
Taking H=C, the field of complex numbers with the usual inner product
(o, BO=u B and W (x, )=y, the above theorem yields the result of Y. Ikebe [2].

In the particular case when V is finite dimensional with a basis {®q, ... ®u},
the above theorem also recovers the following corollary ([5], theorem 3.1 (3)):

Corollary 3.2: If Vis finite dimensional, then p is a best approximation
to fin V, if and only if, the origin of the n-space C" lies in the convex-hull of the set
of n-tupples:

ZZ{Z: (<W(x: r(x)): W(x, (Pl (.X))>, <W(x’ r(x))’ W(X, @2 (X))>, M
e AW (X, 1 (%)), W, 0,0 xEX, p}-

This corollary can be deduced from the above theorem as in [2]. The set E, ,
is a compact subset of X, hence the set 4 is a ¢ (V*, V) compact subset of V*. The
convex-hull of A is also o (V*, ¥) compact, hence o (V*, V) closed, since V* is
finite dimensional. The assertion of the corollary now easily follows from the iso-
morphic mapping: x*—(x* (¢;), . . . x* (pn)) of V onto the n-space C".
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4. An alternation type theorem

In [5] we introduced the following condition (7)), which was shown to be
sufficient for the uniqueness of the best approximation; (T) for f€C (X, H) given
and arbitrary p,qc ¥V, the equation (W (x,r(x)), W(x,q(x))> =0 can have
at most n—1 distinct solutions in X, unless (W (x,r(x)), W(x,q(x))) =0
on X. Here r (x)=f(x)—p (x) as before.

Under the assumption of this condition, we obtain the following theorem
which partially generalizes the idea of alternation in the classical Chebyshev theory.

Theorem 4.1: Let H be a real Hilbert space and let f, W and V satisfy
the condition (T'). Then p<V is a best approximation to f in V if and only if there
exist n+1 distinct points x,E X, such that

@) [[We, rxe)|l = |r] = |f-p|

(@) sign A,= —signA,,,, i=1,... n where

<W(xl r(xl))’ W(xl » <P1 (xl))> 30 <W(xi—1 > r(xi—l)): W(xi-—l(Pl (xi—l))>’
W s T (X)) W (Xpags @0 Ke))) - o
<W(xn+1’ r (xn+1))’ W(xn+1 s<P1 (xn+1)) LR |

(W (xqs 1 (x))s Wy, @,(X0))s0 o W (Xymps T2 ))s W (Xi—ps @5 (Xi- )
<W(xi+1s r (xi+1))’ W(xi+1 > Pn (xi+1))> tre
<W(xn+1 > F (xn+l))’ W(xn+1 ’ (Pn(xn+1))> -9

and Q1,...,Qu is a basis for V.

Proof: By corollary 3.2, a necessary and sufficient condition for p to be
a best approximation to fis that there exist m positive scalars «, with X «;=1 and
m points x;C X, , such that

m

Z oc,-(W(x,., r(xi))s W(xi, ij(xi))> =0’j= 1,23 N (*)

i=1
By Caratheodory’s theorem we may assume that m<n+1. We prove that
m=n+1, by showing that the assumption m<n+1 leads to a cotradiction of
condition (T). In fact, by taking x,=x,, i=1,....m; {(%,)1—m+1 as a set of dis-
tinct points in X different from {x;};=; and «, =0, m+1 < i < n, we get

=Zl g (gi’ r(;c,.)), W(';i’ P; (;i))> =0, j=1,...n.
Hence,
det (W (x;, r(x)), W(x, @) |7j-1=0

This contradicts the condition (7). Hence m=n-+1.
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Rewriting (*) as

nt1

2, ailW (i T () W (5 @y ()= = Gy, 7 (), W (5, @ G,

(j=1,...,m
and solving by the Cramer’s rule, we obtain

oty (= 1ty 1,

Ay

Also, we note that A,=0 for all i, since otherwise the condition (") will be contra-
dicted. This gives

AA =TT A0 (i=1,2,...0).
o,?
Conversely, if
AAL<O,  (i=12,...,n)
then
o; o >0, (i=1,...,n).

Hence the system (*) has a positive solution and p is a best approximation to f.
Theorem 4.1 holds only for the case when X=[a, b] a closed segment.

5. Uniqueness of best approximation

In the case when X is a compact subset of R*, Rivlin and Shapiro [8] investi-
gated the uniqueness of best approximation in the classical case, on the basis of
certain differentiability properties. This generalized the uniqueness result of Collatz
[7], which corresponds to the particular case k=2. In the following theorem, we
generalize the theorem of Rivlin and Shapiro [8] to the present case.

Theorem 5.1: Let X be a compact subset of R* and & (X) be the boun-
dary of X. Let dim (V)=n, where 2n<k+1 and {®,,..., ®,} be a basis of V.
Suppose fE ¢ (X, H) and let f, W and V satisfy the following assumptions:
(i) For each x&X~3 (X), the set
S, ={W (x, ©;(x)}j-1

is an orthogonal subset of H.
(i) At each point x of X~3(X), the functions

Pi=W (x, f(x)), W(x, ®;(x))) and Q, = [[W(x, D;(x)|*
(i=1,...,n) possess continuous first partial derivatives

P,.,.=—‘3~(P,.), ,.j=i(Q,.), i=1,...,n and j=1.2,...k
0x; 0x;
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(i) The matrix

P, Py e P
P, P, oeeeeinn P
P, Py ceeeeiren P
¢ T o SO 0
Qp Qi vovvveeees Ot

has rank 2n at each point of X~3 (X).
() f, W and V satisfy the condition (T) on 3 (X).
Under the assumptions (i) — (iv) there exists a unique best approximation to

fin V.
Proof: Let us assume that p, = > «, @, and p,= > B,®, are two best
i=1 i=1

approximations of f in V. Now if there exists a point xCX~3(X), such that
x& Xy, p, as well as xE X, .

Then for this point
W, [ (x) =P D = | W (x, f(x) =P (1) ],

whence
2Re 2, (= B)W (x, £ (), W (x, @, () +
+ 2 (o = (B[ W x, @, |P=0
1. €

2Re _Zl (#;—B) P+ Zl(f“ifz ~ B @;=0,
and by the stipulated differentiability properties, we get
2 Zl (o, B;) Py + Z, (o>~ B 0;=0,  j=12,....k
From this it follows from the assumption (iii) that
=0, i=1,...,n

On the other hand, if there does not exist a point x& X~38(X) such that xE X, ,,
and x C Xy, »,, then there does not exist a point x & Xy, 15,2y Which is contained
in X~3(X). Thus in seeking the best approximation, we may confine the search
to 3 (X) only. On 3 (X), the uniqueness follows from the assumption (iv) and the
theorem 4.1 in [5].
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Remarks: The uniqueness assertion of the theorem 5.1, obviously remains
valid if the assumptions (i), (if) and (iii) of the theorem hold at each point of the
set 3 (X) (or more generally on any non-empty subset Y of X) and the assumption
(iv) holds at each point of the set X~3 (X) (more generally on X~7Y).

An example: Let X=[~1,1], H=L,(0,27r), f(x)=1.

Take W (x, y)=y and V as the one dimensional subspace spanned by the function
@ (x)=(x~—1)cos20+1. Then it is easily verified that for g=a @, |f—q| =
=}/ ® (a2+2). This is minimized for a=0, hence p=0.

Pi=n(x+1), QO,= (B3x*+2x+3),

P,=n and Q,=— (6x+2).

e, o)

has rank 2 at each point of 3 (X). The condition (T) is satisfied on X~8 (X).

&3 A

The matrix
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