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1. Introduction

Let X be a topological T,-space and exp (X) the set of all non-empty closed
subsets of X, taken with the finite topology. Then, X is exponentially complete
if X is homeomorphic to exp (X). This note is a continuation of our two previous
notes [3], [4], both being devoted to the study of exponentially complete spaces.
Our purpose here is to determine all exp (X) for compact, metric zero-dimensional
spaces X, what completes a result of A. Pelczynski from [5]. In particular, we show
that there exist exactly nine different topological types of exponentially complete
spaces in the class of all compact, metric zero-dimensional spaces.

2. A classification of points of zero-dimensional spaces

The class of all compact, metric zero-dimensional spaces will be denoted
by ¢Z. For X&Z, X; denotes the set of all isolated points of X and X the set of
those points of X having a (closed and open) neighborhood homeomorphic to the
Cantor discontinuum C. In case when X has no isolated point, put X,=2 and
when X has no point with a neighborhood homeomorphic to C, put X, =g.
In order to point out the role of X, and X, in the classification of points of X, call
an open and closed subset 4 of X topologically minimal if A is homeomorphic to
each of its non-empty, open and closed subset. In the sequel, we will be considering
the spaces from ¢Z only and we will not write the condition X &¢7Z. Since the term
,,closed and open” would have appeared so often, it is replaced by the coined and
quite customary ,,clopen”.

2.1. A subset A of X is topologically minimal & A is an isolated point of X
or A is clopen and A~ C.

Proof. = : By the definition of a topologically minimal subset, 4 is clopen
and if card (4)=1, 4 is an isolated point of X. If card (4)>1, then A can have
no isolated point. According to the topological caracterisation of C it follows that
A~ C.

< 1 Obvious.
22. X, and X, are open.

23. X\X, is either empty or X\ X, =X, and X,~C.
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Proof. Suppose X\ X,# @ Then xE X\ X, has a neighborhood without
isolated points and so x& X,. If x& X, then x has a neighborhood having no iso-

lated point and xX,. So icEX\A—’o and we have X\A_’0=X]. Since the
set X, has no isolated point, X,~ C.

2.4. The following conditions

@ X\X,=2 () X,=X and (c) X,= o
are equivalent.
Proof. The implications (a) = (b) and (b) = (c) are obvious. The
implication non (a) = non (c) is 2.3.
Let X=X\ (X,UX;), then X is decomposed into the union of X, X,
and X,. The set X, is closed and X C X\ X, =X, - X, need not be a subset
of X,, and X, splits into two mitually disjoint subsets

Xo @y =X \X; and X¢) ) =XpNX,.

Put (0) (1)=2, then X is split into four sets X, X,, X,, X4, (). Suppose that
X, ..., X, and X, Xy )5 -+ - » X)) . .. n_p have been defined. Then, put

Xor1= X0 ... o ® =Xy ) ... (1) X

02

Xow...acnm=Xo o ... a-nN X,
Now for each X, the inductive definition of sequences

X, X, X,, ..., X,

ne v

and

Xo» Xows > Xow...ms -+
is complete.

2.5. For each X and each n,
X= XOUXlu e UXnUX(o)(l) cee (n—1)>

where the sets Xy, X, ..., X,, Xo)()... w_py @re disjoint Xy ... (u_yy i closed
and X, X, --UX, open.

Proof. The statement 2.5 is true for n= 1. Suppose 2.5 is true for n. Then,
according to the above inductive definition, we have

X1 =X ... - X T X)) @) ... (r1)

Xow ... a-0m=Xo ... -0 X, C Xy () ... a1y
The sets X,., and X (). . (s_1)(m are disjoint and
X0 ... a-0=Xps 1 UX@ ) ... (1) ()
By the induction hypothesis, all sets
Xo’ Xl’ v s Xy Xn+1’ X(o)(l)m (n—1) (n)»
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are disjoint and
X=XUXU- - UX,UX, ,UX0®... =1 @-

The set X ()... e 18 evidently closed when X, ()...(,_y 18 closed and
then X,_UX,J- - -UX,,, is open. This proves 2.5.

Let
Xw= m{X(O)(I)--.(k):kZO’ 1, .. .}.

Then X, is a closed subset of X and
X=(U{X,:n=0,1, ...} )UX,.

Since X,C Xy )... n1)>» X0 X,= @ and each point of X belongs to exactly
one X, for n=0,1, ..., o. If x&X,, then x will be called n-point of X and n
accumulation order of x.

For example, if X is a disjoint union of a point x and C, then X, ={x}, X;=C
and all sets X,, X, ... ; X, are empty. So x is a 0-point of X and all points in C
are 1-points of X. X has no n-point for n>1. If X=T (C), where T (C) is the Cantor
discontinuum plus the centers of all removed intervals, then X has 0-points and
2-points and has no »-point for n=1,3,4, ...

2.6. X’,,=X,,U(U{Xk:k=n+2, n+3,...; o}).

Proof. From the definition of the sets X, and X)()...n.p and from
2.5, it follows that

(1 X, DXy ). =Xt 2 UXpi3U+ - - UX,.
and

A#,n(w/Yn+1= a .
Since X,UX,U -+ UX,_, is open,
(2) Yn__(;X\(XOUA,lU e UXn_l)UXn+1 =XnUXn+2U st UXO)‘

and since X,DX,, combining (1) and (2) we get the relation in 2.6.
27. If X,= 3, then X,= & for t=n+2,...; o.
Proof. If X,=@, then

Xow..o0=Xoy ... a—)(1Xp= &
and

X=Xy .. K1 = 2 -
2.8. Let X+ Y be the topological sum of two spaces X and Y, then
X+Y),=X,+Y,.
Proof. For n=0, we have
X+Y)=X,+7Y,,

since X and Y are clopen subsets of X + Y. Suppose that forn=k,(X+Y), =X, + Y;.
Then, we have to show that

(X+ Y)n+1:Xn+1+ Yn+1'

T*
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Indeed,

XEX+Y),,, & {xé{:(X+ Y),=X,+7%,

xE(X+Y), =X, +Y,, t=0,...,n—1
x& X, and xEX,, for x&X xCX,.,
< {or B < {or .
x¢Y, and x&Y,, for xCY XEY,
2.9. For each n, there exists an X such that X, #=9.

Proof. We will construct a sequence of spaces C,,C,. , Cpy .. such
that (C,),# @ . Let C, be the singleton space, C, Cantor d1scont1nuum obtained
by the usual process of deleting the open middle thlrd of remaining intervals, C,
the space T(C) which consists of C, plus the centers of all deleted 1ntervals
Evidently, (C,)),# @, (C)),# @ and (CZ)Z# @. Let i;:C,—C, be the inclusion

mapping and put D~ =@, CF= C\D 1; and if g, q,, ..., q,, ... is the
sequence of all isolated points of C,, let

k k
D0={qn Qs -5 i} Co=C\Dg.
It is evident that

i, (C) = (Cy), = ﬂ {c:},

and that (C,), is closed in C,. Before we give the inductive definition of the sequence

C,, Gy ..., Cy, ... we will construct C,. Denote by S the sequence (i—) plus its

limit point 0, that is .S is the set {1, 5, ce, l , ..+, 0} with its relative topology

n
of the real line. Let C,X S be the topological product of two spaces C,and S. Let
i,:C,— C, xS be given by i, (x) = (x, 0). Let

. 1 ®
=i (Clk) x {7} » Cy=(C,x{0hHU (kL—Jl Q’f) >
k
=tL:JI{Q;}, Ct=C,\(D*UDE), Dk=i,(Dk).
Then, Q% and C¥ are closed and open, and
i (C) = (s = N {CYS,

(what will be proved in the induction step from # to n-1) and where i), =1,0[.

Now suppose the sequence C,, C,, C,, ..., C,, has been defined as well as
the sequence of mappings

im—1 .
¢ s> > Cp_ = Cyy L=l 0l 0l

Suppose also that D¥_, and ct, t=0,1, ..., m—2 have been defined and that
they are open and closed in C, and that

¢)) e (C) = (€)= {cf}, for 1=2,3, ..., m,
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and
Cevi=9, (Clyp=9, P=1,2,

Now C,,,, is constructed as follows. Let C,, x S has the product topology
and let i,:C,—C,xS be given by i, (x)=(x, 0). The mapping i, is an
imbedding in a trivial manner. Let

1 o
i (€5 )% b =@ Do) ),

pha= (U 0y o (U dos 3o 0)). b -c,ms

Since C¥
and Cfn

and D* |

will be clopen in C,,,,.

ilm (Cl) = im (ilm—l (Cl)) = im ((Cm)m)’

are clopen in C,_, and C,, respectively, Q* Dk |

1 m—12?
Accordiag to (1),

+1

and for x&C,,

by (30 % % ey () <40} =y (s () =i (1),

what shows that i,,(C,) is in the boundary of the open set {J{Q* . }.
k=1

Let (x, 0)=C,, x{0}\J,,, (C)) =C,, x {0}\(C,),, x {0}. Then, x&(C,),, and there
exists a k such that x¢-CL. Since Ch iy, (Cf,,ﬁl), X, (Cﬁq). If a

suquence from U {Q";_l} converges to (x, 0), then x&i, (Cf,,_l) for each k.
k=1

Therefore, no sequence from \J Q%  converges to (x, 0)=C,, x {0}\,,, (C,), and
k=1

a(kL_Jl{an_l})=ilm(q)-
Since i, I(Cm 1) X {k} is clopen and homeomorphic to Ck_;, for x&C, the

point i, (x)x {Ilc} belongs to (C,,,,),,_, and the point i, , (x)x{0}=1i,, (x)

to (C,s Dm_q- According to 2.6,

Conr Drn-1= Cons Dot Cops Dt I Cops D2 U -+

Now i (%) €(Coly C (Codez = (Cd_y U (Cp),y and since €, x {0}
\(C) X{O} IS Open ln Cm+15 we WIH haVe (C )m—ZX{O}g(Cm+l)m—2 (every
point has a clopen neighborhood contained in C,, x {0} (C,),, x {0}). So we
also have

llm 1 (x) X 0 - lm (x)t(cmi-l)m—«z ( +1)m—2U(Cm+ 1)mU(Cm+1)m+1 LI
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Therefore,

(2) ilm (x)E(Cm+1)m—lm(Cm+1)m—2 = (Cm+1)m+1 U(Cm+1)m+2 e

The sets Q¥ | are open, so Q* N (C,.).— @, and we see from (2) that
lim (CYN(Cri )= @ - Since C,\(C,),, contains no m-point, we also have

(Cm X 0\\(Cm)m X 0)m(cm+1)m =g,

and we have proved that (C,,, ), is empty and so are (Cons Dms2s €y Dimszs - -
Therefore, (C,,,,),= @ and

ilm (Cl) = im ((Cm)m) = (Cm+ 1)m+ 1

According to the induction hypothesis,

Codn= (O (Cu\Din2)
and
(Co)m % 0= (Cpy x ONDipi—2 % 0) = C,, x O\ U D% _, % 0.
k=1 k=1

So we have
k

o o o k
kol Crnt1 = kOI (CmH\Dfn_l) - Cmﬂ\kL—Jl (Hl Qi”_l) - (yl Do 0)

=C, % 0\(@105,,_2 x 0>=(cm)m x0=i,, (C).
k=

Since the induction hypothesis is proved for m-+ 1, the existence of the sequence
of spaces Cy, C,, ..., C,, ... such that (C,),# @ is established.

n

2.10. There exists an X such that (X),+ @ .

Proof. By 2.9, there exists a sequence G, Cpy oo, C,y oL with (C),# 2.
Let X be the topological sum of these spaces and X one-point compactification
of 2. Then, as it is easy to see, (X),# & .

3. n-points of exp (X). The set (exp (X)), of all n-points of exp (X) will be
denoted by exp (X),. Now we prove a sequence of relations and the first of them
was proved in [5].

3. (D exp(X),={X,>

(I exp(X), =) X, (Y

(IIT) exp (X),=<{X,UX,; X,)

av) exp(X);=(X,UX;; X;)

(V) exp(X), ={X,UX,UX,;; X,>

(VD exp(X);=<( X,UX,UX;UX;; X,UX;, X;UX;)
(VII) exp(X)s= .

D The symbol »A( ={F:FCexp(X) and FNA#@} and {Ag; Ay, on., A=
=<A0>O>A1<m"‘m>‘4n<-
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Proof. (I): Let FCexp (X),. Then, {F} is open in exp (X) and there is a

basic open set of the form (U, U,, ..., U, such that

FE<U1a Uza tee Un>={F>'
Let x,©FNU,, then {x,, x,, ..., x,}=F. Let {x, , ..., x, } be the set of all
distinct points of F and Upoovs U,,k their disjoint and open neighborhoods
chosen so that FE(U,, ..., U, >={F}. Then U, =x,, and the points
X5 ovvs X, are isolated. This proves that F( X, or FE(X,).

If FE(X,), then F is finite and each of its points is isolated. Let
F={x,, ..., x,}. Then

{Fy= (x5 oves X0
is open and F is an isolated point of exp (X).
1) Let FEexp (X),. Then, by 2.6 FEexp (X,) = {X,>. So FN(X\X,)#2
or, by 2.6 again, FN\X,# @, what can be written as F& )X, (.
If FE)X,(, then )X, { is an open neighborhood of F which does not
intersect (X,>. So F¢{X,>=exp (X),, what implies F&exp (X),.
(Ill): To prove (III), we use 2.6, (I) and (II).

Fexp(X), =YX <
Fcexp(X), = {and

Fexp(X)y=<X,)-

So we have FCX,UX, and then FNX,# . Hence, FE(X,IUX,, X,).
FCX,UX,= X\ X,
and . So we have FNX, = &
B FNX,# @
or F&YX,{=exp(X),. Since FNX,# @, FEexp(X), and so Feexp(X),.
FeEexp (X), = Xy, Xy
(IV): Fcexp(X), > {and . Note that X,UX,=
FEexp (X),, Feé-exp(X),
= X,=X\X,. and if Feexp (X), then FCX, and this condition puts no
restriction on F. So F\X,= o, what implies FC X, X, since Fd exp(X),.
Having F ¢ exp (X),, then FNX,# o. Hence, F& (X,UJX;, X;).
FCX,UX,CX\ X,
FE(X,UX,, X;» = {and . Being FNX,= @, by (III),
FNX;# 3.
F¢- exp (X),. Since FN\X,# &, FE exp (X), and since FC XU X;, F exp (X),*
Hence, F & exp(X),-

(V): FQECXP(X)3 <Xo’ X3>
F&exp(X), = {and
Fdexp(X), t=0,1, 2.

If FC(X,UX,, X,> then
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So FNX,= o and FCX,UX,UX, since F¢& exp (X),. From F exp (X),
and F ¢ exp (X),, it follows that FN X, o and we get FE(X,UX,UX,, X,).
FCX,UX,UX,CX\ X,
and . Being FQX’; =g,
FNX, o
by (IV), Fdexp(X),. Since FN\X,# @, Fdexp(X),, t=0,2 and since
FNX,= @, Fexp(X),. Hence, FC exp(X),.

(VI_)3 Fexp (X)4:<A_,0’ Xf4>
Fcexp(X); = {and
Fexp(X),, t=0,1,2,3.

So FNX,= o and since F-exp(X),, we have FCX,UX,UX,UX,. Then,
Fegexp (X), implies FO\(X,UX,UX)# @, Fexp (X), implies F\ (X, X;) &
and Fd exp (X), implies FN(X,UX;)# @ and since X,UX,UX=(X,UX)U
U(X;UXy), the latter two conditions imply the former. Hence, we have

FE(X,UX,UX,UX,, X,UX,, X,UX,>.
FE{X,UX,UX,UX,, X,UX,, X,UX,)

FCX,UX,UX,UX,CX\X,
and
FNX,UXy)# o, FOXGUX)# 2.

Being FNX,= @, by (V), FEexp(X), and since FNX,= o, Fdexp (X),-
FOX,UX5)# o implies that Fd exp (X), and Fe-exp(X),. FN(X,UX,)# o
implies F ¢ exp (X),, Hence, FC exp (X),.

(VII): Suppose there exists an F¢cexp(X);. Then Fd exp(X), and
Fdexp(X),, =0, 1, 2, 3, 4. By (VI), F£ (X,, X,, X,> what means that either
FNX,= @ or FNX,= . In the first case, FCX,\UX,;, what is impossible
since F¢-exp (X),. In the second case FCX,\UX, X, since Feexp (X),. But
Fexp(X), so that FN\X,= . Then FCX,UX,. The last inclusion contra-
dicts F¢-exp (X), and Fdexp (X),. Hence there exists no Fcexp(X) being
in exp (X),. Therefore, exp (X),= .

3.2. For each X, exp(X),= o, for n=8,9,... If X;# @ and X,# o,
then exp (X),# @, otherwise exp (X),= &.

Proof. If X;= o, then X, = o forn=5,6,... and X=X,UX,UX,UX,.
Let Fcexp(X), if FNX,# @ then Fcexp(X),, if FCX,UX,UX, then F
belongs to one of the sets exp (X),, exp(X),, exp(X),. So exp (X);= o and
then exp (X),= .

If X,=@, then X,= 2 for n=6,7, ... and X=X,UX,UX,UX;UX;.
‘We see again that every F & exp(X) belongs to one of the sets exp(X),, for
t=0,1, 2, 3, 5. We have again exp X),=o.

If X;% o and X,# o, then (X;, X,># @ and (X, X,> C exp (X),, since
no Feexp(X),, t=0, 1, 2, 3, 4, 5, belongs to (X,, X,>.

33. For t=1,2,3,4,5,7, exp(X), is either empty or homeomorphic to C.

Fel(X,UX,UX, X, >

=
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Proof. Let exp(X),7 @. Then, by 3.1, exp (X),=>X,{ and X,+# .
By 2.3, X,~C. Let FEYX,{ and let (U,, ..., U,> be an open neighborhood
of F in exp(X). Since X,\F# &, let x,CX,NFand let x,CU,NF, i=1,...,n.
Then the set {x,, x,, ..., x,}&(U;, ..., U,) and x,&U;, for some j,. Since
,\ch, there will exist infinitly many points of /‘71 in U,,. For each point
xcU,, {x,x,...,x,3&U,...,U,>. Hence F is not an isolated point
in exp(X), and then exp (X),~C.

By 3.1, exp (X),— (X, X;) for 1=2, 3, 4. Let exp (X),+ @ and FEexp (X),.
Then, X,# o and X,CX,. Let x,CFNX,, then x, is not an isolated point
of X and there exists a sequence (x,) of points from X, such that X, — X,.
Then F,=FU{x,} —F in exp(X) and F,Cexp(X), for every n If infinitly
many of the sets F, are different from F, then we have proved that F is not
an isolated point in exp(X),. In case that F,=F for almost all n, let us form
another sequence (H,), where H,=F\{x,}. The sets H, arc closed since the
points x, are isolated and since x,CX,, x,#x, for every n. It is easily seen
that H,Eexp (X), and that H,— F in exp(X). So in any case, exp (X), has no
isolated point and exp (X),~C.

exp (X)s=(X,, X,, X;» and if exp(X),# o, then X, g and X,# o.
Let Fcexp(X), and let x,&FNX,. Since X, X,, there exists a sequence (x,)
of isolated points of X such that x,-—> x,. Now we conclude again that at least
one of these two sequences (F\ {x,}), (F\U{x,}) converging to F, has infinitly
many members being different from F and all their members belong to &ms.

Hence, exp (X),~C.

Suppose F < exp(X),. Then F has a point x, belonging to X,\ X,. Let (x,)
be the sequence of isolated points of X converging to x,. Then again, at least
one of the sequences (FU{x,}), (F\ {x,}) converging to F, has infinitly many
members different from F. Using 3.1, it is easy to see that if Fd-exp(X),,
t=0,1,2,3,4,5 then neither F\ {x,} nor Fi{x,} belong to exp(X),, t=0,
1,2,3,4,5, for any n. Therefore, exp(X), has no isolated point and so
exp (X),~C. '

4. exp(X) for X =(Z. We know from 3.3 that exp(X), is empty from
t=38 on, and if exp (X), is not empty, then for =1, 2,3, 4, 5, 7 exp (X),~C.
The definitions that follow are subjected to this fact.

Call a space X full, whenever X, o implies X,~C, for n=1,2, ... Accor-

dingly, every space X having isolated points only (and then a finite number of them)
is full, C is full as well as topological union of such two spaces.

According to 2.7, we can associate with every space X the sequence of numbers
being the accumulation orders of its points. In that way we obtain sequences of
the form

©), (#,1), 0, 1), 0,2,2), (0,1,2), ...
0,12, ...,n—=2,2,n), (0,1,2, ..., n—1,n), ...
0,12, ...,n...,)
The empty set stands to denote that X, =@, X,# @ and X,,, =2, k=1,2, ...

The sequence so associated with the space X will be denoted by s (X) and called
the accumulation spectrum of the space X. Call s (X) finite if it is a finite sequence.
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Let X and Y be two full spaces such that s (X) and s (Y) are finite. Then, say
that X and Y are equivalent if s (X)=s(Y) and card (X;) =card (Y,).

4.1. Let X and Y be equivalent. If X is decomposed into the union of two disjoint,
closed and open subsets X' and X", then Y can be decomposed into the union of two
disjoint, closed and open subsets Y' and Y'' in such a manner that X' is equivalent to
Y and X" to Y.

Proof. First of all, let us note that if X and Y are homeomorphic, then
they are equivalent and if 4 :X— Y is a homeomorphism, then ¥’ = 4 (X’) and
Y"=h(X"). So in case of homeomorphic spaces X and Y, 4.1 holds.

On the other hand, by 2.8, Xt=(X"),+(X""), and if #>1, then (X”), and (X"),
are clopen subsets of X,. Being X full, X,~ C so that the spaces (X’), and (X"),
are either empty or homeomorphic to C. So we conclude that a clopen subset
of a full space is full itself.

If 5 (X) = (0), then s (Y)=(0) and X = X;~ Y =1Y,, so that 4.1 holds.

If s(X)=(2,1), then X~ Y~ C and 4.1 holds again.

If s(X)=(0,1), then X=X,+X; and Y=Y, +7Y,, X,~Y,, X,~Y,~C.
Hence, X~ Y and 4.1 holds.

Suppose now s (X)= (..., @,n), with n>2. Evidently X, is infinite, in fact
card (X)) =§,. By 2.8, X, = (X"),+(X"), and at least for one of the spaces X’, X"’
the set of its n-points will be non-empty. Let it be X’. Then, s X)= (..., &, n)
and s(X") is either (..., @,m)or (..., m—1,m), m<n and we take (&, 0)
to be (0). So we have the following two cases

@ sX)=(...,o,npand s(X")=(..., &, m)
b)) s(X)=(..,g,nand s X")=(..., m—1,m).

Consider the case (a). If m =0, then X"’ is a finite subset of X, and let Y’ be any
subset of Y, such that card (X;)=card (Y¥;). Put Y'=Y—Y". Then X"~ Y"
and Y’ contains all n-points of Y. So s (Y')=(..., &, n) and X' is equivalent to Y.

If m>0, let y be a point of ¥,,. Take Y’ to be a clopen neighborhood
of y such that ¥,\Y"# @ and Y'NY,_,=@. Then, s(Y'")=(..., @, m)
and since for m=n, Y¥\Y"# o and for m<n, Y,CY,_,, it follows that
(Y\Y"),# @. Putting Y'=Y\Y" we have s(Y')=(..., @, n). Hence, X' is
equivalent to Y’ and X"’ to Y.

Consider the case (b). If m=1, then s(X")=(0,1) and X" =X;+X7,
Let U be a subset of ¥, such that card (U)=card (X;) and ¥ a clopen subset
of Y,, then Y’ =U+V is equivalent to X"’. Put Y’ =Y\ Y”, then s(¥')=
=(..., @,n) so that Y’ is equivalent to X’. If m>1, let U be a clopen
neighborhood of a point in ¥, _, such that UCY,U---UY,,_, and V a clopen
neighborhood of a point in ¥,, such that ¥ (Y, ,= @. Let Y =U+V, then
Y'NY,= o (m must be less than n, since ¥, ;= » and Y,_,# @). Now we
have s(Y"')=(..., m—1, m) and putting Y’ =Y\ Y’, s(Y')=(..., &, n). There-
fore, X’ is equivalent to Y’ and X"’ to Y.
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Now we have left to consider the case when s(X)=(...,n—1, »n), for n>2.
From the relation X, = (X"),-+(X"),, we can suppose that s(X")= (..., &, n)
or s(X)=(..., n—1, n) and there will be four possibilities

© sX)=(..,a,n sX)=(..,n—2,n—1)
@sX)=(..,2,n sXN=(..,a,n—1)
@ sX)=((..,n—1,n sXN=(..,2,m

@ sXH)=(..,n—1L,n sE)=(C..,m—1,m.

Consider the case (c). Let U be a clopen neighborhood of ¥, , (Y, ,=Y,_,)
which does not intersect Y,. Let ¥ be a clopen neighborhood of a point
in Y,_, such that VCY,U---UY, ,. Then, Y =U+V is such that s(¥Y")=
=(...,n—2,n—1) and putting ¥' =Y\ Y", s(Y)=(..., @&, n).

Consider the case (d). Let U be a clopen neighborhood of Y, , which
does not intersect ¥, ,=Y, ,lUY,. Put Y'=U, Y"'=Y\Y’, then s(¥')=
=(.., @F,m, sYN)=(.., &, n—1).

Consider the case (e). If m=0, let Y'"” be a set of points of ¥, such that
card (Y")=card (X”'). Put Y=Y\ Y" and s(Y"')=(...,n—1,n. If m>0,
let y be a point of ¥,, and Y a clopen neighborhood of y such that ¥, \ Y= @
and Y'NY,_ ,=<. Then, s(Y")=(..., o, m) and s(¥')=(...,n—1, n).

Consider the case (f). If m=1, then X" =X, +X]. Let U be a subset
of ¥, such that card U =card X; and V a clopen subset of Y,. Put Y"'=U+V,
Y'=Y\Y". Then s(¥Y")=(0,1) and s(¥Y)=(...,n—1Ln). If m>1, Let U
be a clopen neighborhood of a point in ¥, such that ¥, \U+# @ and UNY,,_,= @.
Let ¥ be a clopen neighborhood of a point in ¥, , such that Y, \V#@&
and VCY,U-.-UY, ,. Put Y=U+V and Y" =Y\ Y’ Then, it is easy to
see that s(Y')=(...,n—1,n) and s(¥Y"')=(..., m—1, m).

We have seen that in all possible cases Y can be decomposed as it is
stated in 4.1.

Our next statement strengthens 4.1 and shows that two equivalent spaces
are homeomorphic.

4.2. If X and Y are equivalent, then they are homeomorphic.

Proof. Both X and Y can be considered as subspaces of the Cantor discon-
tinuum C and that is why we suppose that they are subsets of the interval [0, 1].
Decompose X into two clopen subsets X! and X? so that diam (X¥)<2/3 (diam
(X)<1). By 4.1, there is a decomposition of Y into two clopen subsets Y! and Y?
so that Y?is equivalent to X?. Using again 4.1, we can decompose Y (i = 1, 2) into
two clopen subsets Yt and Y'? in such a way that diam (Y%*)<2/3 (diam (Y) = 1).
Let X! and X?? be the corresponding pair representing the decomposition of X? so
that X is equivalent to Y. Evidently, diam (X'*)<2/3. If some of the sets Y’ is
a one-point set, let Y11= Y/ Y?2= . Then, X’ is also a one-point set and we
put Xit= X Xi2= . In this way we get two coverings for each of the spaces X
and Y. Let

ZZ1={X11? XIZ, XZI, XZZ}’ C&le{YU, Y12’ Y21’ YZZ}.

Suppose the coverings

Zln={Xij"'r}’ @an{yij...r}
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have been constructed, where ij ... r is a sequence of 2n numbers each being 1 or 2.
Suppose that
diam (X7---1)<(2/3)", diam (Y¥---r)<(2/3)",

and X%---r and Y¥---r are disjoint, equivalent clopen subsets of X and Y
respectively. If X¥---r is one point, put Xij...rI:Xij...r, Yi...ori_Yyii...r gnd if
not, let X#¥---*t and X¥---72 be two clopen subsets of X%---r such that their
diameters are less than 2/3 diam (X”:--7). LetY¥---*1 and Y%---r2 be the clopen
subsets into which Y#---r is decomposed and let they be equivalent to Xi/..-rt
and X¥---r2 respectively. If Y#---rs (s=1,2) is one point let Yu-.-rsl— yii...rs
and X¥...rst= x#...rs1 and if not, let Y¥---*s is decomposed into two clopen
subsets Y¥---rst (t =1, 2) such that diam (Y¥:--7)<2/3 diam (Y¥---r%), Let Xi---rs
is decomposed into two clopen subsets X¥/---7st (f=1,2) such that X#¥.--rst js
equivalent to Y#---rst_ et

Z[H-H :{Xij.,.rst}’ G&Q’Hl Z{Yij..‘rst}’

then we get two coverings J/"+!, "+l of the spaces X, Y having for their
members disjoint clopen subsets and being X¥.--rst equivalent to Y#---r¢* and

diam (Xij...rst)<(2/3)"+1, dlam (Yij...rst)<(2/3)"+1.
Let f,:7/"*1— " and g,: "+ — }/" be given by
fn(Xij...rst)inj...r, g"(Yt'j...rst)=Yij‘..r’

and thinking of the members of }/” and 2, (n=1,2,...) as points of the
discrete spaces }/” and 7", we obtain the following two inverse systems

s fays {20, et

Being these two systems the same (up to the different letters used to denote the
spaces and mappings), their inverse limits are homeomorphic. As it is very well
known each of these inverse limits is homeomorphic to its corresponding space
(see [1], p. 98). Therefore, X and Y are homeomorphic spaces.

4.3. All spaces Cy, Cy, ..., C,, ... are full, as well as the spaces C,_,+C,,
n=1,2, ...).

Proof. In proving 2.9, we have seen that (C,),~C and (C,),_,= @ for
n>1. It is easy to see that C, C,, C, are full. To show that C, is full for n>3, we
have to prove that (Cj,&vC. Suppose that the last relation holds for all n<k. Using
this induction hypothesis we will show that (.C_]:T),NC fort=1,..., k—1. Since

Cers=@ex0pU( O o),
1
where Qi 1=1i,_, (C,’I’_I)X{;}. If x&(Cyyy), then x¢(Cpy)py; and x&

E(C,’f_l)x{% for some m, or x & (C,x{0})\(Cp) x{0}. In both cases x

is a t-point having a clopen neighborhood contained in these sets which are
parts of homeomorphic images of C,_, and C,. By the induction hypothesis, x is
not an isolated point in the set of #z-points of these subsets and so x is not an
isolated point of (Cy,,),- Hence, (C.,,),~C.

Applying 2.8, now it is easy to see that C, ,+C, are full.



Exponentially complete spaces 111 109

4.4. Let X be a full space. If s(X)=(..., @,n) then X~C,. If s(X)=
=(..,n—1,n), then X~C,_,+C,.

Proof. The accumulation spectrum of C, is (..., &, n) and of Cc, .+C,,
(...,n—1, n). Now 4.4 follows from 4.2 and 4.3.
Let us note that C;+C;~C;, if i<j—2. This follows from (C),+(Cy,=
=(Cy), for t=j—1,j, and s0 C,;+C; is full and s(C;+C)=(..., @, j).
We know from 3.3 that exp (X) is a full space. Using 3.1 and 3.2 and accor-
ding to 4.4, we will have
45 (@ s(X)=(0), exp(X)=(X)
() s(X)=(), exp(X)~C,
© s(X)=(0,1), exp(X)~(X,)+C,
(d) s(X)=(0, 2,2), exp(X)~C,
© s(X)=(0,1,2), exp(X)=~C,+C,
) sX)=0,1, , 3), exp(X)~C,
® s@)=0, 1,2 3), expX)~C,
(h) s(X)=(0, 1,2 2, 4), exp(X)~C,
B sX)=(0,1,2,3,9,5), exp(X)~C;
(j) for every other X, exp (X)~C,.
Excluding two cases (a) and (c) in 4.5, there exist seven different topological
types of hyperspaces of the spaces from (7. In case a space is exponentially complete,
then it must be one of the spaces indicated in 4.5. If X is such that s (X)= (0) or

5 (X)=1(0, 1) then X is exponentially complete only in case when X, is a one-point
set. Now we have.

4.6. There exist exactly nine exponentially complete spaces in Z and they are

G, Cy, Gy, Cy, Cy, Cs, Cpy, C+Cy, C+C,.
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