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Abstract. We present a brief history of the reconstruction conjecture. Although
counterexamples to the infinite version are known, we provide a restricting
hypothesis and prove that certain infinite forests are reconstructable. On the
other hand, we show that extensions of the theorem are unlikely by providing
counterexamples for the most plausible weakening of the hypothesis. To state
the theorem, we define an infinite graph as almost r-regular if all but a finite
number of points have degree r. Our result is that every almost r-regular
forest is reconstructible,

1. History. Ulam’s conjecture [9], as restated by one of us {4] asserts that
the colleciion of point deleted subgraphs (PDS’s) determine the graph. That is,
given the PDS’s, the graph can be “reconstrucied«. In spite of considerable
attention, the conjecture remains unsolved. Results have been obiained, however,
for the conjecture restricted to trees, Fiist, Kelly [7] showed that all trees
are reconstructable. Then Harary and Palmer [6] proved the stronger result
that every tree can be reconstructed from its endpoint PDS’s. Finally, Bondy
[1] proved that only the peripheral PDS’s are needed to reconstruct trees.
And Manvel [8] observed that in general, the ser of different PDS’s deter-
mine a tree.

Harary {4] proposed the Reconstruction Conjecture for infinite graphs.
This was shot down by Fisher [3], who found a pair of non-reconstructable
infinite graphs, but his counterexample was not acyclic, nor locally finite, nor
connected. Consequently, there was still hope for an infinite reconstruction
theorem with a more restrictive hypothesis! Since acyclic finite graphs are
reconstructable, possibly the conjecture held for infinite forests. But then we
[2] found a countable collection of nonreconstructable countable forests.
Consequently. we were led to further restrict the hypothesis to almost locally
finite forests, that is, countable forests in which only finitely many points
have infinite degree, and to formulate and prove a corresponding theorem.

2. A class of reconstructable infinite forests. We generally adhere to the
terminology in the book [5], but infinite graphs will occur frequently. In
addition, we say an infinite graph is almost r-regular if all but a finite number
of points have degree r. The finitely many points of degree #r are called
nonregular. As a special case, every finite graph shall be considered to be
almost r-regular for all non-negative integers r. Let T, denote the unique
tree that is regular of degree r. Obviously T, and T, are finite trees; the
remaining 7, are infinite trees. For r> 1, let S, be one of the r identical
components formed by deleting a point from T,.
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It can be easily determined from the point deleted subgraphs whether G
is an almost r-regular forest. Namely, G is an almost r-regular forest if and
only if every G; is.

Theorem. If G is an almost r-regular forest, then G is reconstructabls.

Proof. If r=0 or 1, all but finitely many of the components of G, are
identically T,. Consequently, G is easily reconstructed from one of the
identical subgraphs obtained by deleting a point of some T,. Thus, we may
assume that r3 2.

Case 1. G has an infinite number of components.

Since there are only finitely many nonregular points, all but a finite
number of components muts be copies of T,. Let », be the number of
components different from T, in G;. Choose n to be the largest value of #,
which occurs for infinitely many i. This value of n must have resulted cither
from the removal of a point of 7, to produce r copies of S,, or from the
removal of a point of degree Iarger than r from some component other
than T,. Since the latter possibility occurs only finitely often, while the first
possxblhty always yields the same graph, we take any G; with n,=n such
that there are infinitely many point deleted subgraphs lsomorphlc to G,. Then
the joining of r of the copies of S, in G, to a new point to produce a tree T,
reconstructs G.

Case 2. The number k of components is finite.

Then all but finitely many G; have k +r—1 components, and we discard
these finitely many exceptions. Now if no infinite compenent in any remai-
ning G, contains two nonregular points, then all the infinite components of G
are T,, and the approach in Case 1 reconstructs G. Consequently, we may
assume that some G; has an infinite component containing two nonregular
points, and discard all remaining G; which do not have this property.

We now construct a possible candidate for the reconstructed graph G.
Let Vi1 Vi -5 Vim be the nonregular points of G;. Fix the point V,;
and let d;; be the minimum distance in G, between this point and the other
nonregular points. Then let m; be the maximum finite value of d, ; as J varies.
Because G; has an infinite component with at least two nonregu]ar points, we
are assured that m; is finite. Without loss of generality, assume ¥V, , and ¥, ,
are the two points attaining m;. With just finitely many exceptions, which We
discard, one of V,, or V,, say V,,> has the property that every V; —V,;
path contains V;, and the degree of ¥, r—1. Finally, we discard the
finitely many G,; which do not contaln at least r—1 copies of §,. For the

remaining G; we form the graph G: by inserting one new point of degree r,
and making it adjacent to Vv, , and the r—1 nonregular points of (r—1)S,.
This resulting graph is our candidate for G.

We may have reconstructed a wrong graph in finitely many cases. However,
whenever G, had been formed by the removal of a point of degree r which
was sufficiently far out on one of the regular branches of some component,
then our construction replaced the omitted point with just the right adjacencies
to reproduce . Here “sufficiently far outs refers to any point such that
the m; produced is strictly greater than the value of m for the original G.
Curlously, we cannot at this point determine m in order to decide which m;,
represent the removal of a pomt that is “sufficiently far out*. However, we
can observe that whatever m is, only finitely many G, have m,<m. Thus we
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are mistaken in the construction of only finitely many G;. Therefore we dis-
card the finitely many exceptional G;’s and retain the infinitely many iden-

tical G;’s. Any one of these G;’s is the original graph G, completing the
proof of the theorem.

3. A4 collection of counterexamples. There is no point in trying to extend
the previous theorem to almost r-regular graphs of infinite degree r, because
we [2] have already provided the counterexample of the N,-regular tree.
Consequently, we can only extend the theorem by weakening the property of
being . almost r-regular, One possibility is to consider forests in which each
component tree is almost r-regular, but then the whole forest fails to have
this property because it has infinitely many components each containing
finitely many nonregular points. The following construction provides a pair of
nonreconstructable forests with this property for each choice of r> 2.

Let @,={T:T is an almost r-regular tree}. Note that %, includes the set
of all finite trees as a subset. We show that ¥, is countable. The nonregular
points of T induce a finite tree T* consisting of these points and all paths
joining them. Now T can be formed from T'* by adding copies of S, with
a new line from some point of T* to the nonregular point of S,. This
increases the degree of one point of T* by one, so the process is continued
until the points from 7* have the same degree they had originally in T.
Then the tree so formed is in fact identical to 7. Since only a finite number
of S/s are added, and since the T*'s are finite, the resulting number of
possible trees, namely | %, |, is necessarily countable. The collection of trees
R,=%,—{T,} is useful in constructing conterexamples. We form two graphs
G, and H, as follows. Let G, be the union of a countable number of copies
of each tree in R, and let H, be the union of G, with a single copy of T,.
Both G, and H, are countable graphs.

Now any PDS of G, occurs countably often since each point is in a
countable similarity class. Noting that 7T, is point-symmetric, we observe
that H, also has each PDS occurring countably often. Consequently, it suffices
to ignore multiplicities, and simply show that G, and H, have the same set
of PDS’s.

Now the deletion of a point from G, leaves the union of G, with a finite
number of copies of trees from ¥,. Those from ‘R, are absorbed into G,, so
the PDS has the form G, nT, where n is a nonnegative integer. Furthermore,
each nonnegative integer occurs for some point of G,.

Similarly, deleting a point from the G, portion of H, yields a PDS of
the form G,UnT,, only now n>1. But fortunately, the deletion of a point
from the T, portion of H, produces G,=G, J0T,. Thus, H, has the same
PDS’s as G,. Moreover, G, and H, are not isomorphic since H, has a
component isomorphic to T, and @, does not.

The preceding family of counterexamples was defined in a rather
existential manner, and consequently is larger than necessary. The following
variation, which results from an alternate set to %,, will be minimal in the
sense that no proper subset of the new set %, can serve to provide another
nonreconstructable pair of forests.

Let J,, be the tree obtained by joining one point from each of n copies
of T, to a new point which then has degree n. For example, J,, with n<4.
is depicted in Figure. 1.
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We now define
G, ={T:T is an almost r-regular subtree of J, , for scme n}.

Evidently, %, is countable since it is an infinite subset of ,. Proceed to
define R/, G,/ and H,’ as in the previous counterexample. The argument
given there applies here unchanged, establishing that the proper subset @’ of
the ¢, also serves to construct a counterexample.

Figure 1. A Useful Family of Trees

We now show the minimzlizy of §,” for this purpose. Suppose %, 1s
any set of irees used to define a pzir of nonreconstruct:ble forests in this
way. In order to produce G,”UnT, as a point deleted subgraph, we must
have J, , < @,”. Moreover, any tree in %,’ formed by deleting finitely many
points from some J, ,, and consequently must be in @, since each successive
component obtained by deleting one point at a time must be in %,” in order
that G,"—v,=G,” UnT,. Thus, we have shown ©,/C%,, so that %, is a
minimal set which can be used to determine a counterexample in this way.

This collection of counterexamples leads us to believe that no extension
to our theorem is likely. However, there is still an interesting open problem
for infinite trees. Qur counterexample [2] contains the regular tree of countable
degree which is not reconsiructable. Invoking local finiteness to forbid this one
counterexample, we arrive at a statement which we believe to be true.

Conjecture: Every locally finite tree is reconstructable.
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