FIXED POINT THEOREMS FOR MAPPINGS WITH A GENERALIZED CONTRACTIVE ITERATE AT A POINT

Ljubomir B. Ćirić

(Communicated March 24, 1972.)

1. Introduction. Let (M, d) be a metric space and $T: M \to M$ a mapping. A mapping T is called a contraction if there is a positive number q < 1 such that

$$d(Tx, Ty) \leqslant qd(x, y)$$

holds for all $x, y \in M$. A mapping T is said to be with a contractive iterate at a point $x \in M$ if there is a positive integer n(x) such that for all $y \in M$

(2)
$$d(T^{n(x)}x, T^{n(x)}y) \leqslant qd(x, y).$$

V. Sehgal [4] proved the following result:

Theorem 1. Let (M, d) be a complete metric space and $T: M \to M$ a continuous mapping with a contractive iterate at each point $x \in M$. Then T has a unique fixed point $u \in M$ and $T^n x \to u$ for each $x \in M$.

The result of Sehgal is generalized by L. Guseman [3] to mappings which are not necessarily continuous and which have a contractive iterate at each point in a subset of the space. Guseman proved the following results:

Theorem 2. Let (M, d) be a complete metric space and let $T: M \to M$ be a mapping. Suppose there exists $B \subset M$ such that

- (a) $TB \subset B$,
- (b) for some q < 1 and each $y \in B$ there is an integer n(y) > 1 with

$$d(T^{n(y)} x, T^{n(y)} y) \leqslant qd(x, y)$$

for all $x \in B$, and

(c) for some $x_0 \in B$, $cl\{T^n x_0 : n \ge 1\} \subset B$.

Then there is a unique $u \in B$ such that Tu = u and $T^n z \to u$ for each $z \in B$. Furthermore, if $d(T^{n(u)}x, T^{n(u)}u) \le q \cdot d(x, u)$ for all $x \in M$, then u is unique in M and $T^n x \to u$ for each $x \in M$.

Theorem 3. Let (M,d) be a metric space, $T: M \to M$ a mapping, and $u, x_0 \in M$ with $T^n x_0 \to u$. If T is with a contractive iterate at a point u, then T has a unique fixed point u and $T^n y \to u$ for each $y \in M$.

In [1] we considered generalized contractions, defined as follows:

A mapping $T: M \to M$ is said to be a generalized contraction iff for every $x, y \in M$ there are non-negative numbers q(x, y), r(x, y), s(x, y), and t(x, y) with $\sup_{x, y \in M} \{q(x, y) + r(x, y) + s(x, y) + 2t(x, y)\} = k < 1$ and such that

(3)
$$d(Tx, Ty) \leq q(x, y) d(x, y) + r(x, y) d(x, Tx) + s(x, y) d(y, Ty) + t(x, y) (d(x, Ty) + d(y, Tx)).$$

It is clear that T is a generalized contraction if and only if T satisfies the following condition

(4)
$$d(Tx, Ty) \leq q \max \left\{ d(x, y); \quad d(x, Tx); \quad d(y, Ty); \right.$$

$$\left. \frac{1}{2} (d(x, Ty) + d(y, Tx)) \right\}$$

for all $x, y \in M$ and for some positive number q < 1. In [3] we proved a fixed point theorem for mappings which satisfy the condition

$$d(Tx, Ty) \le q \max \{d(x, y); d(x, Tx); d(y, Ty); d(x, Ty); d(y, Tx)\}.$$

In the present paper we investigate mappings which are not necessarily continuous and satisfy the condition: there exists a q < 1 such that for each $x \in B \subset M$ there is a positive integer n(x) such that for all $y \in B$

$$d(T^{n(x)} x, T^{n(x)} y) \leq q \max \left\{ d(x, y); \frac{1}{2} (d(x, T^{n(x)} x) + d(y, T^{n(x)} y)); d(x, T^{n(x)} y); d(y, T^{n(x)} x) \right\}.$$

Also we investigate mappings which satisfy a somewhat stronger condition

$$d(T^{n(x)} x, T^{n(x)} y) \leq q \max \left\{ d(x, y); \frac{1}{3} (d(x, T^{n(x)} x) + d(y, T^{n(x)} y)); \frac{1}{3} (d(x, T^{n(x)} y) + d(y, T^{n(x)} x)) \right\}.$$
(6)

We present results which extend some of the results concerning generalized contractions of [1] to maps which satisfy (5) or (6), and also generalize the results of Guseman [3] and Sehgal [4].

2. In the following M will denote a metric space with a metric d. A mapping $T: M \to M$ is called orbitally continuous iff $u = \lim_i T^{n_i} x_0$ implies $Tu = \lim_i TT^{n_i} x_0$. The space M is called T-orbitally complete, where T maps M into M, iff every Cauchy sequence of the form $\{T^{n_i} x : i \in N\}$ converges in M.

The following is a generalization of the theorem 3:

Theorem 4. Let $T: M \rightarrow M$ be a mapping and $u, x_0 \in M$ with $u = \lim_n T^n x$. If T satisfies (5) at u, i.e., if there are a positive integer n(u) and a positive number q < 1 such that

(7)
$$d(T^{n(u)} x, T^{n(u)} u) \leq q \max \left\{ d(x, u); \frac{1}{2} (d(x, T^{n(u)} x) + d(u, T^{n(u)} u)); d(x, T^{n(u)} u); d(u, T^{n(u)} x)) \right\}$$

holds for all $x \in M$, then T has a unique fixed point u in M and $\lim_n T^n x = u$ for each $x \in M$.

Proof. From $\lim_n T^n x_0 = u$ it follows $\lim_n T^{n(u)} T^n x_0 = \lim_n T^{n+n(u)} x_0 = u$. Since T satisfies (7) we have

$$d(u, T^{n(u)} u) \le d(u, T^n x) + d(T^n x, T^{n+n(u)} x) + d(T^{n(u)} T^n x, T^{n(u)} u) \le d(u, T^n x) + d(T^n x, T^{n+n(u)} x) + q \cdot a(T^n x, u),$$

where

$$a(T^{n} x, u) = \max \left\{ d(T^{n} x, u); \frac{1}{2} (d(T^{n} x, T^{n+n(u)} x) + d(u, T^{n(u)} u)); d(T^{n} x, T^{n(u)} u); d(u, T^{n+n(u)} x) \right\}.$$

Hence

$$d(u, T^{n(u)}u) \leq d(u, T^nx) + d(T^nx, T^{n+n(u)}x) + q \cdot d(T^nx, u)$$

if $a(T^n x, u) = d(T^n x, u)$, or

$$d(u, T^{n(u)}u) \leq \frac{1}{2-q} (2 d(u, T^n x) + (2+q) d(T^n x, T^{n+n(u)} x))$$

if
$$a(T^n x, u) = \frac{1}{2} (d(T^n x, T^{n+n(u)} x) + d(u, T^{n(u)} u), \text{ or}$$

$$d(u, T^{n(u)}u) \leq \frac{1}{1-q}(d(u, T^nx) + d(T^nx, T^{n+n(u)}x) + q \cdot d(T^nx, u))$$

if $a(T^n x, u) = d(T^n x, T^{n(u)} u)$, or

$$d(u, T^{n(u)}u) \leq d(u, T^nx) + d(T^nx, T^{n+n(u)}x) + q \cdot d(u, T^{n+n(u)}x)$$

if $a(T^n x, u) = d(u, T^{n+n(u)} x)$.

Since $\lim_{n} T^{n}x = u$, it follows that $d(u, T^{n(u)}u) = 0$, i. e. $T^{n(u)}u = u$. By (7) u is the unique fixed point for $T^{n(u)}$ in M. Then $Tu = TT^{n(u)}u = T^{n(u)}Tu$ implies Tu = u. It is clear that u is the unique fixed point under T.

Now we shall show that $\lim_n T^n y = u$ for all $y \in M$. Let $b(y) = \max \{d(y, T^k y) : k = 1, 2, ..., n(u)\}$. If n is a positive integer then there are integers r > 0 and 0 < s < n(u) - 1 such that n = rn(u) + s, and we have

$$d(u, T^{n}y) = d(u, T^{rn(u)+s}y) = d(T^{n(u)}u, T^{n(u)}T^{(r-1)n(u)+s}y) < q \cdot \max \left\{ d(u, T^{(r-1)n(u)+s}y); \frac{1}{2}d(T^{(r-1)n(u)+s}y, T^{n}y); d(u, T^{n}y); d(T^{(r-1)n(u)+s}y, u) \right\}.$$

Since $d(u, T^n y) \le q \cdot d(u, T^n y)$ is impossible, we have

$$d(u, T^{rn(u)+s}y) \leq q \cdot d(u, T^{(r-1)n(u)+s}y),$$

or

$$d(u, T^{rn(u)+s}y) \leq \frac{q}{2-q}d(u, T^{(r-1)n(u)+s}y) \leq q \cdot d(u, T^{(r-1)n(u)+s}y).$$

Therefore,

$$d(u, T^{rn(u)+s}y) \leq q \cdot d(u, T^{(r-1)n(u)+s}y).$$

Repeating this argument r times, we get

$$d(u, T^{rn(u)+s}y) \leq q^r \cdot d(u, T^s y) \leq q^r \cdot b(y).$$

But $n \to \infty$ implies $r \to \infty$, so $\lim_n d(u, T^n y) = 0$, and the proof is complete. The proof of the following lemma is essentially the same as the proof of lemma in [4]:

Lemma. If $T: M \to M$ is any mapping satisfying the condition (5), then for each $x \in B$, $r(x) = \sup_{n} d(x, T^{n}x)$ is finite.

Proof. Let $x \in B$ and let $b(x) = \max \{d(x, T^k x) : k = 1, 2, ..., n(x)\}$. For a given positive integer n, let $r \ge 0$ and $0 \le s \le n(x) - 1$ be such that n = rn(x) + s. Then from

$$d(x, T^{rn(x)+s}x) \le d(x, T^{n(x)}x) + d(T^{n(x)}x, T^{n(x)}T^{(r-1)n(x)+s}x) \le d(x, T^{n(x)}x) + q \cdot c(x, T^{(r-1)n(x)+s}x),$$

with
$$c = c(x, T^{(r-1)n(x)+s}x) = \max \left\{ d(x, T^{(r-1)n(x)+s}x); \frac{1}{2} (d(x, T^{n(x)}x) + d(T^{(r-1)n(x)+s}x, T^{n}x)); d(x, T^{n}x); d(T^{(r-1)n(x)+s}x, T^{n(x)}x) \right\},$$
 it follows

(i)
$$d(x, T^{rn(x)+s}x) \le d(x, T^{n(x)}x) + q \cdot d(x, T^{(r-1)n(x)+s}x)$$

if $c = d(x, T^{(r-1)n(x)+s}x)$, or

(ii)
$$d(x, T^{rn(x)+s}x) \leq \frac{2+q}{2-q} (d(x, Tx) + \frac{q}{2-q} d(x, T^{(r-1)n(x)+s}x)$$

if
$$c = \frac{1}{2} (d(x, T^{n(x)}x) + d(T^{(r-1)n(x)+s}x, T^nx))$$
, or

(iii)
$$d(x, T^{rn(x)+s}x) < \frac{1}{1-q}d(x, T^{n(x)}x)$$

if $c = d(x, T^n x)$, or

(iiii)
$$d(x, T^{rn(x)+s}x) \leq (1+q) d(x, T^{n(x)}x) + q \cdot d(x, T^{(r-1)n(x)+s}x)$$

if
$$c = d(T^{(r-1)n(x)+s}x, T^{n(x)}x)$$
. Since $\max\left\{1, \frac{2+q}{2-q}, \frac{1}{1-q}, (1+q)\right\} = \frac{1}{1-q}$ and

 $\max \left\{ q, \frac{q}{2-q}, 0 \right\} = q$, in any case of (i), (ii), (iii), (iiii) we have

$$d(x, T^{rn(x)+s}x) \leq \frac{1}{1-q}d(x, T^{n(x)}x) + q \cdot d(x, T^{(r-1)n(x)+s}x).$$

Repeating this argument r-times we get

$$d(x, T^{rn(x)+s}x) \le \frac{1}{1-q} d(x, T^{n(x)}x) + q \frac{1}{1-q} d(x, T^{n(x)}x) + \dots + q^{r-1} \frac{1}{1-q} d(x, T^{n(x)}x) + q^r d(x, T^s x) \le$$

$$(1+q+\dots+q^{r-1}) \frac{1}{1-q} b(x) + q^r \frac{1}{1-q} b(x) \le \left(\frac{1}{1-q}\right)^2 \cdot b(x).$$

Since n = rn(x) + s was arbitrary, we proved that

$$d(x, T^n x) < \left(\frac{1}{1-a}\right)^2 \cdot \max \{d(x, T^k x) : k = 1, 2, ..., n(x)\}$$

Hence $r(x) = \sup_{n} d(x, T^{n}x)$ is finite.

Now we can prove the following result:

Theorem 5. Let $T: M \to M$ be a mapping of a T-orbitally complete metric space M into itself. Suppose there exists $x_0 \in M$ with $\overline{0}(x_0) = cl\{T^n x_0: n \in N\}$ such that for some q < 1 and each $x \in \overline{0}(x_0)$ there is a positive integer n(x) such that T satisfies the condition (6) for all $y \in \overline{0}(x_0)$. Then $\lim_n T^n x_0 = u$ and Tu = u. Furthermore, if T satisfies (7) at u, then u is the unique fixed point in M and $\lim_n T^n x = u$ for each $x \in M$.

Proof. It is clear that if T satisfies (6), then T also satisfies (5) on $\overline{0}(x_0)$. Therefore $r(x_0) = \sup_n d(x_0, T^n x_0)$ is finite. Consider the sequence

$$x_0, x_1 = T^{n(x_0)} x_0, x_2 = T^{n(x_1)} x_1, \dots, x_{i+1} = T^{n(x_i)} x_i, \dots$$

For an arbitrary positive integer s we have

$$\begin{split} d\left(x_{i}, \ T^{s} \ x_{i}\right) &= d\left(T^{n(x_{i-1})} \ x_{i-1}, \ T^{n(x_{i-1})} \ T^{s} \ x_{i-1}\right) \leqslant \\ q \cdot \max \left\{ d\left(x_{i-1}, \ T^{s} \ x_{i-1}\right); \quad \frac{1}{3} \left(d\left(x_{i-1}, \ T^{n(x_{i-1})} \ x_{i-1}\right) + d\left(T^{s} \ x_{i-1}, \ T^{s} \ x_{i}\right)\right); \\ \frac{1}{3} \left(d\left(x_{i-1}, \ T^{s} \ x_{i}\right) + d\left(T^{s} \ x_{i-1}, \ x_{i}\right)\right) \right\}. \end{split}$$

Hence

$$d(x_i, T^s x_i) \leq q \cdot d(x_{i-1}, T^s x_{i-1}),$$

or

$$\begin{split} d(x_i, \ T^s \, x_i) \leqslant q \cdot \max \big\{ d(x_{i-1}, \ T^{n(x_{i-1})} \, x_{i-1}); \quad d(x_{i-1}, \ T^s \, x_{i-1}); \\ d(x_{i-1} \, T^{s+n(x_{i-1})} \, x_{i-1}) \big\}, \end{split}$$

or

$$d(x_i, T^s x_i) \leq q \cdot \max \{d(x_{i-1}, T^s x_i); d(x_{i-1}, T^s x_{i-1}); d(x_{i-1}, T^{n(x_{i-1})} x_{i-1})\}.$$
 Therefore,

$$\begin{split} d\left(x_{i},\ T^{s}\,x_{i}\right) \leqslant q \cdot \max \big\{ d\left(x_{i-1},\ T^{s}\,x_{i-1}\right); \quad d\left(x_{i-1},\ T^{n(x_{i-1})}\,x_{i-1}\right); \\ d\left(x_{i-1},\ T^{s+n(x_{i-1})}\,x_{i-1}\right) \big\}. \end{split}$$

Repeating this argument, one has

$$\begin{split} d\left(x_{i},\ T^{s}\,x_{i}\right) \leqslant q^{2} \cdot \max \, \{d\,x_{i-2},\ T^{s}\,x_{i-2}); \quad d\left(x_{i-2}\,T^{n(x_{i-2})}\,x_{i-2}\right); \\ d\left(x_{i-2},\ T^{s+n(x_{i-2})}\,x_{i-2}\right); \quad d\left(x_{i-2},\ T^{n(x_{i-1})}\,x_{i-2}\right); \quad d\left(x_{i-2},\ T^{n(x_{i-1})+n(x_{i-2})}\,x_{i-2}\right); \\ d\left(x_{i-2},\ T^{s+n(x_{i-1})}\,x_{i-2}\right); \quad d\left(x_{i-2},\ T^{s+n(x_{i-1})+n(x_{i-2})}\,x_{i-2}\right) \leqslant \cdot \cdot \cdot \leqslant q^{i}\,r\left(x_{0}\right). \end{split}$$

Hence, it follows that the sequence $\{T^n x_0 : n \in N\}$ is Cauchy. Since M is T-orbitally complete, there is $u \in \overline{0}(x_0)$ such that

$$u = \lim_{n} T^{n} x_{0}$$
.

Since the condition (6) implies the condition (5), we have Tu = u by the theorem 4. The last assertion of the theorem follows directly from the theorem 1. This completes the proof.

REFERENCES

- [1] Lj. Ćirić, Generalized contractions and fixed-point theorems, Publications Inst. Math., Nouv. série, tome 12 (26), 1971, 19-26.
 - [2] Lj. Ćirić, On contraction type mappings, Mathematica Balkanica 1 (1971), 52-57.
 - [3] Lj. Ćirić, An extension of Banach's theorem on contraction mappings, (to appear).
- [4] L. Guseman, Fixed point theorems for mappings with a contractive iterate at a point, Proc. Amer. Math. Soc. 26 (1970), 615—618.
- [5] V. Sehgal, A fixed point theorem for mappings with a contractive iterate, Proc. Amer. Math. Soc. 23 (1969), 631—634.