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1. Introduction

In an already classical paper . Birkhoff and J. von Neumann [1]
‘defined the observation space of a mechanical system § relating to the
mechanical quantity F as one-dimensional real Euclidean space E,. Any
experimental predicate relating to the mechanical quantity F can be associated
either with an element of the set of all subsets ¢, of the observation space E,
or with an element of the set of all subsets ¢,, of the phase space E,,, where
n is the number of degrees of freedom of the system §. Each of two sets 2F
and £,, defined on the observation and the phase space respectively, consisting
of elements ono-to-one associated with experimental predicates is called the
logic of classical mechanics. In generally accepted interpretation, the logic of
classical mechanics is a Boolean c-algebra [2]. In this case, mechanical quantities
(observables) are defined as c-homomorphisms of the c-algebra LT into the
o-algebra £,,. These s-homomorphisms preserve set-theoretical complement and
inclusion (which are the analogues of logical negation and implication) and are
isomorphic to the equivalence classes of real measurable functions defined on
the phase space  E,,[3.](The equivalence class consists of all functions distin-
guishable only on a set which belongs to the ¢-ideal I,,Ce, of sets of zero
Lebesgue measure). The purpose of this paper i$ to show that:

it is possible to find in' the observation and phase space two Boolean
complete algebras 27 ‘and £,, such that the set of all s-homomorphisms of
the 27 into the £,, is isomorphic to the previously mentioned equivalence
classes of real measurable functions defined on the phase space. Thus, we
can assume that the logic of classical mechanics is a Boolean complete algebra
and still retains the definition of mechanical quantities as s-homomorphisms which
can be, in this case too, identified with generally accepted definition of
mechanical quantities as real measurable functions defined on the phase space.

2. Complete algebras 27 and Z,,.

Let E,, be a 2 n-dimensional real Euclidean space, c,, the set of all subsets
of the space E,,, o/, C ¢,, Lebesgue o-algebra, L,, (complete) Lebesgue measure
defined on the o-algebra 4,,, 1,,C A, o-ideal of sets of zero Lebesgue
measure and P,, a probability defined on c-algebra 4, equivalent to the
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Lebesgue measure L,,. (This means that there is no physxcai experiment in
classical mechanics with ideal precision because of zero prebabihty of any set
consisting of only one point of the phase space). The ¢-ideal I,, is, obviously,
at the same time the o-ideal of the zero probability sets. Since two elements
of -the o-algebra #,, are mutually equivalent if their symmetric difference
belongs to the c-ideal I,, and the probabilities of equivalent elements are
equal, the equation

PZn {Azn fon ™ P’rz AZn ’
defines on the factor-algebra Logn=Apul Ly, which is a Boolean complete algeb~

ra [4], a stnctly positive probability P,,- ([4,,]r,, is the class of equivalence
to which belongs the element 4,,). In this way we have defined the Boolean

complete algebra £,, with a strictly positive probabihty Pz,, 1t is now neces-
sary to define a Boolean complete algebra ﬁ; = A1, and to show that

the s-homomorphisms of the complete algebra 21 into the complete a]gebra Ly,
are isomorphic to the previously mentioned classes of real measurable functxons

" defined on the phase space. If such a o-ideal I existed, the definition of
this ¢-ideal could not be based on the Lebesgue measure as we would find.
the experimental propositions relatmg to ““yes-no” experiments in the class of
contradictions. As we are going to show, this c-ideal can be defined by
probabilities which are equivalent to the Lebesgue measure.

Any real valued func’uon F defined on. the space E,, defines by the
equatlon : ‘
FI(Al) {em; 1- eznéEzm 2- F(ezn)CA 3-4iEe}

a real (complete) homomorphtsm of the set of all subsets ¢, into the set of

all subsets &,,. For example, I, - {1}=4,, (14,, is the indicator function of the
set 4,,). If the function F is a-measurable function, then the homomorphism F-1
maps the c-algebra /4, into the c-algebra Aan By the equatlon

. P 1 A =P, ZrzF (A )
-we shall define the probability on the measurable space (E,, déél) If 4,={1}
and F=1lg4,, where 4,, is a non-zero probability set (such sets do exist) then
the probablhty of the set 4, is different from zero although the set 4, has -

zero Lebesgue measure. Therefore the probability PY is not eqmvalent to
Lebesgue measure L,. If fc b 18 the o-ideal of the sets of zero probability
with reSpect to the proba.bi}ity P{, then the homomorphisms F-! maps the

o-ideal I} into the c-ideal I,,. Since the probabilities of the elements  which
belong to the same eqmvaience class are equal. by the equation

P {Ad le’t A

- we shali define on. the factor-algebra ﬁj Cf&/I; a strictly positive probabi-
lity PY. Therefore, every real measurable function F defines a Boolean complete
algebra L7 with a strictly positive probabihiy Pl atis evident that Pi [AX] =
= P,, [F~1(4, )]12,, and since the probability P,, is equivalent to Lebesgue

measure L,,, there exists such a class of measurable functlons [G],m [5], so
that for any funcmon G from the class ‘

Py A= [ GdL,,.
A
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In Statistical Mechanics we have G~|grad H{~! or G~e *7. Since the homo-
morphism F~! maps the c-ideal I{ into the o-ideal 1,,, by the equation

HF {Az} F {FMI(A )}Izn

we shall deﬁne a real cs-»homomorphxsm of the Boolean complete algebra LY
“into the Boolean complete algebra £,,. As the Buclidean space is a complete
- metric space, the inverse theorem is valid too [6]. Namely, each real c-homo-
morpism defines a class of equivalent real measurable functions. By these
s-homomorphisms we shall define mechanical quantities. If we define the

operations with o-homomorphisms in the usual manner [7], then the concept

of the real s-homomorphism has the same mathematical content as the concept
of the real measurable function and these two mathematical objects can be
1dent1fied ' ‘

3. Concluding remarks -

In the present paper we postulate that the logic of the classical mechanics
is a Boolean complete algebra. We postulate that there exists one-to one
correspondence between the experimental predicates concerning a mechanical
quantity F (and mechanical system S§) and the elements of the complete
algebra £1 as well as the elements of the compiete algebra £,,. We define
the mechanical quantities (observables) as o-homomorphisms of the complete
algebra- £2{ into the complete algebra £,,. These o-homomorphisms are -iso-
morphic to real measurable functions defined on the phase space of the
mechanical system, We restrict ourselves to the probabilities equwalent to the
- Lebesgue measure in order to agree with idea that there is no physxcal

expeﬂmem with ideal precision.

4. Abstract

‘Tt is shown that in the observation as well as in the phase space of a
‘mechanical system two Boolean complete algebras can be found such that the
-set of all s-homomorphisms of the one algebra into the other one is isomorphic
to the set of all real measurable functions defined on the phase space with
values in the observation space. The mechamcal quantities are defined by
these o-homomorphisms and two Boolean complete. algebras are interpreted’
as the logic of the classical mechanics.
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