EXPONENTIALLY COMPLETE SPACES II

M. M. Marjanović

1. Introduction. Let $\mathcal{K} = \{K, M\}$ be the category whose objects K are all compact Hausdorff spaces and morphisms M all continuous mappings of these spaces. For $X \subseteq K$, let $\exp(X)$ denote the set of all non-empty closed subsets of X taken with the finite topology and for $f: X \to Y$ in M, let $\exp(f) : \exp(X) \to \exp(Y)$ be the mapping defined by $\exp(f)(F) = f(F)$. Then $\exp(\mathcal{K}) \to \mathcal{K}$ becomes a covariant functor.

Let $\{X, \pi, A\}$ be an inverse system over the directed set A. Since exp is covariant, $\{\exp(X), \exp(\pi), A\}$ will also be an inverse system.

The fact that two spaces $\lim \{\exp(X), \exp(\pi)\}$ and $\exp(\lim \{X, \pi\})$ are homeomorphic was proved by S. Sirota [3]. Let $\{Y, \rho, B\}$ be another inverse system in \mathcal{K} over the directed set B. If $\Phi: \{X, \pi\} \to \{Y, \rho\}$ is a mapping of these two systems, then it obviously defines a mapping $\exp(\Phi): \{\exp(X), \exp(\pi)\} \to \{\exp(Y), \exp(\rho)\}$. So we have two induced mappings $\exp(\lim \Phi)$ and $\lim \exp(\Phi)$ and we will prove here that they are the same up to the composition with homeomorphisms (see 2.3). This completes the above mentioned result of S. Sirota.

For $X \in K$, denote $\exp(X)$ by $X^{(1)}$, and for n = 2, 3, ..., let

$$X^{(n)} = \exp(X^{(n-1)}).$$

For $F^{(1)} \in X^{(2)}$, let

$$u(F^{(1)}) = \bigcup \{x : x \in F \in F^{(1)}\},$$

so we have a continuous mapping $u: X^{(2)} \to X^{(1)}$. Let

$$u^{(n)} = \exp(u^{(n-1)}): X^{(n+1)} \to X^{(n)}, \qquad n=2, 3, \ldots,$$

where $u^{(1)} = u$. For $f: X \to Y$, let

$$f^{(n)} = \exp(f^{(n-1)}), \qquad n = 2, 3, \ldots, f^{(1)} = \exp(f).$$

So we get

$$Y^{(n)} \leftarrow X^{(n+1)} \leftarrow X^{(n+1)} \leftarrow X^{(\omega)} = \lim_{\leftarrow} \{X^{(n)}, u^{(n)}\}$$

$$\downarrow f^{(n)} \qquad \downarrow f^{(\omega)} = \lim_{\leftarrow} \{f^{(n)}, u^{(n)}\}$$

$$\downarrow f^{(\omega)} = \lim_{\leftarrow} \{Y^{(n)}, u^{(n)}\}$$

$$\downarrow f^{(\omega)} = \lim_{\leftarrow} \{Y^{(n)}, u^{(n)}\}$$

A topological space is called exponentially complete if $x \approx \exp(X)$. In [2], we have shown that $X^{(w)}$ is exponentially complete. Here we will prove that $f^{(\omega)}$ is also exponentially complete in the sense that $f^{(\omega)}$ is equal to $\exp(f^{(\omega)})$ up to the composition with homeomorphisms.

2. If E is any subset of X, then we write

$$E = \{x \in X \{X_{\alpha} : \alpha \in A\} : x(\alpha) \in E\}.$$

Now we will state a result in a form which is convenient to us and we will give a proof. We suppose that all spaces and all mappings that we consider in this paper belong to K.

2.1. Let $X_{\infty} = \lim_{\longleftarrow} \{X, \pi\}$. Then, a non-empty closed set $F \subseteq X_{\infty}$ can be written as $F = \bigcap \{ \rangle \pi_{\alpha}(F) \langle \} \bigcap X_{\infty}$, where all $\pi_{\alpha}(F)$ are closed and for $\alpha > \alpha'$, $\pi_{\alpha\alpha'}(\pi_{\alpha}(F)) = \pi_{\alpha'}(F)$. If $F = \bigcap \{ \rangle T_{\alpha} \langle \} \cap X_{\infty}$, where all T_{α} are closed and such that $\pi_{\alpha\alpha'}(T_{\alpha}) = T_{\alpha'}$, then $\pi_{\alpha}(F) = T_{\alpha}$.

Proof. It is easily seen that $\pi_{\alpha}(F)$ are closed, $\pi_{\alpha\alpha'}(\pi_{\alpha}(F)) = \pi_{\alpha'}(F)$ and $F \subseteq \bigcap \{ \rangle \pi_{\alpha}(F) \langle \} \cap X_{\infty}$. So suppose $x \in \bigcap \{ \rangle \pi_{\alpha}(F) \langle \} \cap X_{\infty}$ and let $\rangle U_{\alpha_i} \langle \bigcap \cdots \bigcap \rangle U_{\alpha_n} \langle$ be a typical basic neighborhood of x. Take $\alpha > \alpha_i$, $i = 1, \ldots, n$. Choose $y \in F$ such that $y(\alpha) = x(\alpha)$. Then $y(\alpha_i) = x(\alpha_i)$ and $y \in \bigcup U_{\alpha_i} \langle \bigcap \cdots \bigcap \bigcup U_{\alpha_n} \langle \bigcap \text{Therefore}, x \in \overline{F} = F$.

To prove the second part, let us note that $T_{\infty} = \lim \{T_{\alpha} : \pi \mid T_{\alpha}\} \subseteq X_{\infty}$ and $\pi_{\alpha}(T_{\infty}) = T_{\alpha}([1])$. Obviously

$$\pi_{\alpha}(F) \supseteq \pi_{\alpha}((\cap \{ T_{\alpha}(\}) \cap T_{\infty}) = \pi_{\alpha}(T_{\infty}) = T_{\alpha}(T_{\infty}) = T_{\alpha}(T$$

and this together with $\pi_{\alpha}(F) \subseteq T_{\alpha}$ concludes the proof.

Now let Π_{α} be the natural projection of $X\{\exp(X_{\alpha}): \alpha \in A\}$ onto $\exp(X_{\alpha})$. Consider the mapping

H is obviously continuous and by the fist part of 2.1 H is 1-1 and by the second onto. So H is a homeomorphism and we have

2.2. $H: \exp(\lim X, \pi) \approx \lim \{\exp(X), \exp(\pi)\}$ ([3]).

Now we can prove.

2.3. Given a mapping of inverse systems.

$$\Phi: \{X, \pi, A\} \rightarrow \{Y, \rho, B\}$$

Then, there exist two homeomorphisms H and K such that the diagram

$$\exp(\lim \{X, \pi\}) \xrightarrow{H} \lim \{\exp(X), \exp(\pi)\}$$

$$\exp(\lim \Phi) \downarrow \qquad \qquad \qquad \lim_{\leftarrow} \exp(\Phi)$$

$$\exp(\lim \{Y, \rho\}) \xrightarrow{K} \lim \{\exp(Y), \exp(\rho)\}$$

commutes.

Proof. Let H and K be homeomorphisms from 2.2, related to $\{X, \pi\}$ and $\{Y, \rho\}$ respectively and $\Pi_{\alpha} \circ H(F) = \pi_{\alpha}(F)$, $\alpha \in A$, for $F \in \exp(\lim_{n \to \infty} \{X, \pi\})$. So, we have, according to the definition of a limit mapping,

$$P_{\beta} \circ \lim \exp (\Phi) (H(F)) = \varphi_{\beta} (\pi_{\varphi(\beta)}(F)), \quad \beta \in B,$$

where P_{β} is the natural projection of $X\{\exp(Y_{\beta}):\beta\in B\}$ onto $\exp(Y_{\beta})$. On the other hand, let us prove first that

$$\rho_{\beta} \circ \exp\left(\lim_{\leftarrow} \Phi\right)(F) = \varphi_{\beta}\left(\left(\pi_{\varphi(\beta)}(F)\right),\right)$$

where ρ_{β} is the natural projection of $X\{Y_{\beta}:\beta\in B\}$ onto Y_{β} . Indeed,

$$P_{\beta} \circ \exp\left(\lim_{\leftarrow} \Phi\right) (F) = \rho_{\beta} \left(\bigcup \left\{\lim_{\leftarrow} \Phi(x) : x \in F\right\} \right)$$

$$= \bigcup \left\{\rho_{\beta} \circ \lim_{\leftarrow} \Phi(x) : x \in F\right\} = \bigcup \left\{\varphi_{\beta} \circ \pi_{\varphi(\beta)}(x) : x \in F\right\}$$

$$= \varphi_{\beta} \left(\bigcup \left\{\pi_{\varphi(\beta)}(x) : x \in F\right\} = \varphi_{\beta} \left(\pi_{\varphi(\beta)}(F)\right).$$

Hence

$$P_{\beta} \circ K \circ \exp\left(\lim \Phi\right) \ (F) = \rho_{\beta} \left(\exp\left(\lim \Phi\right) \ (F)\right) = \varphi_{\beta} \left(\pi_{\varphi(\beta)} \left(F\right)\right).$$

Thus the commutativity of the diagram has been proved.

Note that 2.2 and 2.3, when taken together, mean that two functors exp and inverse limit commute.

2.4. For any $f: X \to Y$ in \mathcal{K} , the mapping $f^{(\omega)}: X^{(\omega)} \to Y^{(\omega)}$ is exponentially complete.

Proof. Applying 2.3 to the mapping of the inverse systems $\{f^{(n)}\}: \{X^{(n)}, u^{(n)}\} \rightarrow \{Y^{(n)}, u^{(n)}\}$ we get

$$\exp(X^{(\omega)}) \xrightarrow{H} \lim_{\leftarrow} \{X^{(n+1)}, u^{(n+1)}\} \xrightarrow{h} X^{(\omega)}$$

$$\exp(f^{(\omega)}) \downarrow \qquad \qquad \lim_{\leftarrow} \{f^{(n+1)}\} \qquad \downarrow f^{(\omega)}$$

$$\exp(Y^{(\omega)}) \xrightarrow{K} \lim_{\leftarrow} \{Y^{(n+1)}, u^{(n+1)}\} \xrightarrow{k} Y^{(\omega)}$$

h and k being the obvious homeomorphisms. Since the rectangles are commutative we obtain

$$\exp(f^{(\omega)}) = (k \circ K)^{-1} \circ f^{(\omega)} \circ (h \circ H).$$

REFERENCES:

[1] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton, 1952.

[2] M. M. Marjanović. Exponentially complete spaces I, Glasnik Matematički 6 (26) (1971), 143—147.

[3] С. Сирота, О спектральном предствении пространств замкнутых подмножеств бикомпактов, Доклады АН СССР, сер. мат., физ., т. 181, 1069—1072, Москва, 1968.