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1. Let 4 and B be any non- empty sets and ga glven permutanon of
the set 4. The problem to find all mappings f: 4 — B which satisfy the equa-

tion f(x)=f(g(x)) is already known.. The general solution of the precedmg
equation was found by S. Pregié in [1] Our aim is to show that it is possible
to applicate the idea, used by Presié, - in solving the following problem:

Let K be a given category and 4, B two objects of this category and
let g€ Aut(4). Then determine all f&Mor (4, B) such’ that -

(1) f=re :

Before beginning our-study let us agree with some terminology (which)
is, for example, given in[3]). The action of groupoid G on set § (from right)
is mapping §x G— S, which is denoted by =, if fulfilled:

(i) s&8S and x,yC© G implies s (xp)=(s*X)#y. = - L

~ (ii) If e is the neutral element of the groupoid G, then sxe=s.

‘In: this case we call S the. G-set. For s&S,- the set s G= {s*x/xEG}
is. called the orbit_of. .the element s. The mapping F 58 (S and §" are
G—sets) is cal}ed G mapplng if for s&S and x&G is fulfﬂled

- F(sxx)y=F(9)*x

Example 1. The mappmg Mor (4, B) x Aut (4) — . Mor (4, B), denoted by o, -
is an action if we define fo h=fh for f&Mor (4, B) and hcCAut (A) Rea]ly as

0] folhhy)=f(hh)=(f5s k:\) oh,

(ii Foiy=fiy=f | \,
we see that o is an action. That means Mor (4, B) is Aut(4)—set. The orbit
of the morphism f will be fo Aut(4)~{fh/hc Aut(4)}.

We note that we shall use the following fact:

@ If G is group, then, for all s,,s,&S, ;%G “and sz*G are elther
:disjunct or coincident. That means that the orbits determine a. decomposmon
of the set S. : ’

II. In this section we shall find the general solution of equatlon .

Let g be glven permutatlon in (1). In our consideration G is a cyclic group
- ‘generated by g, i.e. G={g"/nc D}, where D denotes the set of integers. We
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shall denote the set of all solution of the equation (1) by %, ie. %Y, ={flf=fg
J&Mor (4, B)}. Then, we introduce the action, denoted by o, in the same way
as in example 1., i.e. fo h=fh for f&Mor (4, B) and A G. Further, we shall
write fh instead ‘of foh Let us denote the set of the orbits of morphisms f
by ?,. That means /2,={fG/fcMor (4, B)}. According to (2) 7, determines
the relation of equwalence ¢ within the set Mor (4, B) (f, f'&Mor (A B) implies
(,fY€p if and only if f and f’ have the same orbits). Then it is

ev1dently ?,=Mor (4, B)/p. Notice that for the class of equivalence f there
is f=fG= { fg"/nED} Further on, let us introduce the action #,xG—(#, as
follows: for fe@ and h&G let fxh= -{ fg" h/n D}. Mapping * is an action for

() Fx () ={fe" (b h)[nE D} = {(feg"hy) hyfnE D} = (F5 ) 5 hy.
(i) (fei)={fg"i/nED}={fe"/n=D}=f.

~ Furthermore, for all A& G there is f *h= ﬁ because A= g™ for some mc D, so

Feh= -{ fgmm[nc D} ={ fg*lk & D} = F. According to the preceding Mor(A B)
and f}’ are G-sets.

The special roll in the future consideration will have th§ G-mapping:
M Py — Mor (4, B) |
which satisfies the following conditions:
() If {f}G then S {SH=1
@iy For heG, AM( Frhy=_M( f )h (the. characteristic of G-mappmg)
~ Let Im /[ be the value set of the mapping ,//-
Lemma 1. %, =1Im//f.

Proof. If f&Im /I, then there is he&®, such that =/l (B). Further,

fg= ojZ(k)g JZ(k*g) JZ(}@) f ie. f=fg. Conversely, let f satisfy the
equation (1). Then fg"=f for all n& D, and F={f}. According to the charac-

teristic (i) of the mapping ./, there is (=M ([ =1 ie. fEIm /.

Remark. If ,f/ and [’ are two mappings which satisfy the condition
(3), then Im f/=Im Jj['.

Let p: Mor (4, B)—~>®, be cannonical mapping and Q=,//p i.e. that
the followmg diagram 1s commutative:

2, —F _Mor(4,B)
4 AN /
G ‘ /AN e
Mor (4, B)

3

Lemma 2. QQ=0Q.

i roof We see that, for the orbit f= { fg"/néD} .the followmg is true:
PdZ(f) ~p M (S nEDY = A (F) = G={M(]) g"InEDy={ (fxgnine D}~
={ M f)} because. n& D, implies Frgi=Ff.- Consequently, QO f) (WP %

x (AP F) =M (P DS =M P ()= e/fZ({o/ff(f)}) AGE JZP(f%
=Q(f) te. QOQ=Q.
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Lemma 3. fe%, & Q(f)=,

Proof. Let f=fg. Then p(f)={f}, and consequently we get Q(f)=
=Mp (N =MD =1

On the other hand let Q (f)=f. Then [ (p (f)) g=rz i-e. S (2 (f)2)~fz.
Further, /[ (p (f))=fz then follows f=fg.

According to lemma 2. the equation Q(f)=f is reproductive and accor-
ding to theorem 1. in [2] every solution is of the form Q (x), ucMor (4, B)
that means we have next the consequence:

€%, & Qu) (f=Q@u) AucMor (4, B))
Y ={Q (w) |ucMor (4, B)}

Let us call the mapping €, which has the preceding propertles _
o/fly — reproductive.

Example 2. Let R be the set of real numbers and 4=B=R and let g2=1i,.

Then @g={{h, hg}/R~*~R}. For Z:{h, hg} let us intrduce JZ(Z)H%
Obviously - it is easy to check that ./ is of the form (3). Consequently

Q(h)=—hi2ll—g—. Then every solution of the equation (1) within category of:

(i) sets (then automorphisms are bijections),
(ii) topological spaces (in this case automorphisms are homeomorphisms),

(iii) the only object of category is R, and morphisms are polynomes

(all automorphisms are polynomes in the form of g(x)=a—x and i, (%) =x)

h+hg

which have the form , where A is the morphism of the corresponding

category.

Observe that in all three preceding cases the form of the solution is
the same. Reason of that is in ‘the fact that the functor between two catego-
ries transfers the equation (1).

IIL. In this section, we shall prove that if Y, 7o then exists /[, repro-
ductive mapping. We can ask the question whether for equation (I) every
idempotent mapping, which induces the corresponding reproductive equation,
is o/ff, reproductive. We shall give answer to that question, too.

Let %, #@. Thus from the theorem 2. [2] there exists the idempotent
mapping @ : Mor (4, B) - Mor (4, B) such that the reproductive equation
@ (f)=f is equivalent to the equation (1), i )

@o)(e0-0A (f=fg & f=o())

Notice that ®(f)g= ®(f) for all f&Mor(4, B). Let S be a set of
representants from every class f (we use axiom of choice). As f—{f} if and
only if f is the solution of equation (1), S involves all solutions of equation
(1). Let p":?,— S, so that p’ (f) h where thﬂS Further; let us denote
by j the embeddlng of the set S into Mor (4, B), i.e. j(f)=f for f&S.
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Let us introduce the mapping  f/=®jp’ and Q=_/]p. Then:the follo-
wing diagrams commutate:

s —J Mor4, B) @g P Mor(4, B)
r }\ l @ 0/72\\ //Q
P, —ijl» Mor (4, B) Mor (4, B)

Then we have off (f)g=(®p (/) e=D (/) g=D(f) =M (f), where
f'ESﬂf As f*g f there is JZ(f*g) e]Z(f) Consequently we have:

a (Fx2)=oMl(F) g ie.  is a G-mapping.
i) If f= {f}, then fES and f satisfy the equation (1) and therefore
® (f)=f. That implies of{ ({/})=® (/)=

According to the preceding, ./ is of the form (3). Then using lemmas
2. and 3. we have that Q is ./, reproductive. Then the following comes out:

Theorem 1. % +#0 = 3Q) (Q is ng reproductive)
- Lemma 4. (i) Q[S=®|S
@) (V) @S (S ENQN =@ ()

Proof. Really, if f&S then Q(f)=JZ(f)=<I>(f’) where f'cS and
(f, f)Ep. But, as f&S there is f=f' that implies (i). Then (ii) is a direct
consequence of (i).

Theorem 2. (i) @ is ,/f, reproductive if and only if pCKerd)
) If ®=,f[p and ©=/['p then =

Proof Let ® be /[, reproductive. If (f, f)Cp then f= f Thus
JZ(f) JZ(f) ie. ® ()= (f'). Consequently p C Ker @.

Inversely, let p CKer ®. Then exists the unigue mapping &:? . —>Mor (4, B)
such that ®=®p. If F={ f} then f is a solution of the equation (1) and
®(f)=@ (f)=f. Further, ®(f)g=P(/)g=@(f)=D (/) =D (f+g) and &
is of the form (3). That exactly means that ® is ,//, reproducuve That is
the proof for (i). If ®=_/]p, then, according to preceding, /f/= @, and (ii)
is proved.

Let us show that in general case ® may not be ./, reproductive. In
that meaning, let us suppose that the equation (1) has at least two different
solutions f and f’ and there is morphism % such that hAs£hg. Let H map
Mor (4, B)\Y, in %,, which satisfies H(h)=f ana H(hg)=f'. Now, we intro-
duce the mapping ®:

_[u uE%Y,
(D(")*{H(u), uEY,

Then the equation ® (f)=f is, according to theorem 2.[2], reproductive
and equivalent to the equation (1). Further, &% G =hg = G that implies (h, hg)Ep.
On the other hand ® (h)=f and @ (hg)=f', i.e. ®(h)~P (hg). Hence, with
regard to theorem 2. ® can not be ,/f, — reproductive.
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Example 3. Let 4=B={0, 1} and g:(? {1)) In category of sets

Mor (b B)={fy fir fo S where Si=(0 o) A= (0 1): 'f3=(° )

0 01 10
([ ) Then F- U Amfimth £ S U wd 50 B0 U
{fi‘zs f:’;}}'

On the other hand it is easy to find that Y, ={f;» fi}- Because of the
property (i) and lemma 1. all ,// mappings are: « ;
TASRIA R TN TASREARR AL
O/ZZ =__({ 1 45 ), =( 1 ‘ ] )
I VA A M VA A
Hence, all ./, mappings are:

ocls £ 14 aclih D)

According to theorem 2.[2] the following idempotent mappings also solve
the equation (1), but are not ,/ff, — reproductive:

_(fi f £ S @2:(; A f)

‘”(ﬂﬁﬁﬂ)’ fLi i i B
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