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1. Let (X, ) and (Y, o) be two arbitrary groups. Let us consider the
mult’-valued mapping of X into ¥, i.e. the correspondence between elements
of X and non-void subsets of Y. In this paper we study such multi-valued
mapping f of the group X into the group Y which satisfy the relation:

) S =) o f(y)
where f(x) o f(y)={aob:a & f(x), b C f()}.

Notice that this multiplication of subsets of a group is associative, that
is (Ao B)oC=Ao0(Bo(C) for any non-void 4, B, CCY.

A multi-valued mapping f satisfying the relation (1) will be called a
multihomomorphism.

A reason for studying mappings of the form (1) is a problem raised by
J. Aczél (see [1], p. 380).

2. Suppose that f be a multihomomorphism of the group X into the
group Y. Then from (1) we obtain the following useful consequences:

(2.1) S@)=f(x) o f(e)=1(e) o f(x)
(2.2) F@=f®) o fx)=f(x) o f(x)
2.3) f@=f(e) o fle) (e =identity element of X).

The relation (2.3) means that the image of the identity element of the
group X is a subset of ¥ closed under the operation ,,0¢, and consequently is a
semi-group.

If fis a homomorphism of a group X into a quotient group ¥/4 of the
group Y (where 4 is a normal subgroup of Y), then the multi-valued mapping f
of X into Y defined by f(x)=f(x)CY is a multihomomorphism.

At this point we shall prove that under some conditions the converse is
also true, i.e. that to every multihomomorphism f of a group X into a group ¥

we can correspond a single-valued homgmorphism fof Xinto f(X)/4 (4 is a
normal subgroup of f(X)) such that f(x)=f(x).
First of all we shall make the following

Supposition 1. f(e) is a subgroup of Y.
Under the supposition 1. we have the following lemmas.
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Lemma 1. Let f be a multihomomorphism of the group X into the
group Y. If for some x € X, f(x)Nf(e)# D, then f(x)=f(e)=f(xY).

Proof. Let f(x)Nf(e) # @. Then there exists a < f(x) Nf(e). From (2.1)
we have

249 S =ao fle)U(f()\{a}) o f(e).
Since f(e) is a subgroup of ¥ and a & f(e) so that a o f(e)=f (e), (2.4) implies
(2.5) F@x)Df(e).

On the other hand, using (2.2), (2.5) and (2.1), we obtain
F@=f®) o fxDNDSf(e) o f(x Y =f(xY,
which together with (2.5) gives
(2.6) S CTfle) T fx).

From (2.6) it follows that f(x~)\f(e) # @ and exchanging the rolls of x
and x~! we have the converse inclusion

2.7 fE®CrE@Cf ).

From (2.6) and (2.7) it follows the above assertion.

Lemma 2. Let f be a multihomomorphism of a group X into a group Y.
If a € f(x), then a' € f(x™").

Proof. Let a be an arbitrary element of f(x), and b some fixed element
of f(x-1). Then
ach=c € f(x) o f(x") =1 ().
Since f(e) is a group ¢! & f(e). But
a'=boc! € f(x1) o f (&) = (xY)
and lemma is proved.

Lemma 3. Let f be a multihomorphism of a group X into a group Y.

If FGONS() #9, then f(x)=f(p).

Proof. If f(x)Nf(y) # 9, then there exist some a & f(x)N (). Since
ac f(x) and a & f(y), according to lemma 2. it follows that a-! € f Y.
Then (denoting by e, the identity element of Y) we have

aoat=e € f(x)of (y)=1(xY.
Since e, € f(e) it follows that f(xy—")( f(e) # @, and according to lemma 1.
, SerYy=r(@),
ie.
(2.8) FX) eSO =f(e)
From (2.1) and (2.8) it follows
SO =@ oS =f®) o f(r) o f () =f(x) o f(e) =f (%)

Lemma is proved.
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Lemma 4. (on representation). If f(e) is a subgroup of Y, then for
every x © X, the subset f(x) of Y is of the form

(2.9) fx)=aof(e)=f(oca
where a is an arbitrary element of f(x).
Proof. From a&f(x), it follows {a} C f(x). Then, using (2.1) we obtain
(2.10) f)=f&)of(e) Daof(e)
(instead of {a} o f(e) we write a o f(e)).

To prove the converse inclusion, let us take an arbitrary element b of
f(x). Since Y is a group, there exist some element ¢ of ¥ such that

(2.11) b=aot.
We aim to prove that t & f(e).
Since a & f(x), according to lemma 2. a~! & f(x71!), and hence from (2.11)

it follows
t—atob e f(xY) o f(X) =1 (@)
So, every element b of f(x) is of the form (2.11) and we have
(2.12) fx) Caof(e.
From (2.10) and (2.12) we obtain f(x)=a o f(e).

The relation f(x)=f(e) o a is provable in the same way.

Proposition 2.1. The set f(X)=U{f(x):x € X} is a subgroup of Y,
provided that f(e) is a subgroup of Y.

Proof. Let a,b & f(X). Then there exist x, ¥y € X such that a & f(x),

bE f(y), so that ao b & f(x) o f(¥)=f(xy) Cf(X). If a& f(x), from lemma 2.
we conclude that a1 & f(x~1), hence a! & f(X).

Proposition 2.2. If f(e) is a subgroup of Y, that f(e) is a normal
subgroup of f(X) C Y.

Proof It follows from lemma 4.

Theorem 1. Let f:X — Y be a multihomomorphism of a group X into
group Y and f(e) a subgroup of Y. Then f(e) is a normal subgroup of f(X)
and there exists a single-valued homomorphism f of X into the quotient group

F(X) f(e) such that f(x) =f(x) for every xE X.

In other words the following diagram commutes:

X——>Y

f=pf (a~b & aob'c f(e)).
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Proof follows from lemma 3. and proposition 2.1. and 2.2.

The following example shows that the supposition 1. is essential for the
conclusion of Theorem 1.

Example 2.1. Let X=Y =R the additive group of reals and f:R— R
is defined by:
f(©)=R*"U{0} (the set of reals x>0)

J (%) =ax+£(0),

where a is some real number. The multi-valued mapping f so defined is a mul-
tihomomorphism of R into R, but the conclusion of Theorem 1. is not true.
Notice that f(0) is not a subgroup of R.

and

Theorem 2. Let f be a multihomomorphism of a group X into a group
Y and let f(X) be a periodic subgroup of Y. Then the conclusion of Theorem 1.
is valid. ‘

Proof. Only to be proved is that under above hypothesis f(e) is a sub-
group of Y. But, since, f(e) a subsemi-group of f(X), this fact is directly seen.

Corollary: To every multihomomorphism f of a group X into a finite

group Y, one can correspond a single-valued homomorphism f of X into some
quotient group of f(X) (more precisely to f(X)/f(e)) such that for every

xCX f(x)=1(x).

So multihomomorphism of a group X into some finite group Y are
always reduced (in some sense) to single-valued homomorphisms.

3. The representation lemma 4. suggests the following.

Proposition 3.1. Let h:X—Y be a homomorphism of a group X
into a group Y and A a normal subgroup of h(X). Then the multi-valued map-
ping f of X into Y defined for every x & X by

3.1 fx)=h(x)o 4
is a multihomomorphism.

Proof. We have, since 4 is a normal subgroup of A(X) and the ope-
ration ,,o¢ is associative,

f@) o f ()= (x) o 4)o(h(y) o 4)
=h(x)oh(y)o A=h(xy) o A=f(xp).

The converse of the proposition 3.1. is not true in general, as the following
example shows.

Example 3.1. Let X={e, a} be the cyclic group of order two and Y
the additive group of integers. Then multi-valued mapping of X into Y defined
by

f(e)=2E (=the set of even integers and 0) and

f(@=2E+1 (=the set of all odd integers).
Then f is a multihomomorphism, but there is not homomorphism A of X
into Y such that f be of the form (3.1).

This means that the fact that f(e) is a subgroup of X does not guarantee
that every multihomomorphism of X into Y is of the form (3.1).
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Problem. Under which conditions imposed on the groups X, Y, f(e)
the converse of the proposition 3.1. is valid?

Let / be a multihomomorphism of a group X into a group Y. If there
exists a single-valued homomorphism % of X into Y satisfying the relation (3.1)
we shall call it a selective homomorphism of the multihomomorphism f.

In the following we suppose that for cosidered multihomomorphism f
there exists a selective homomorphism 4. In a special case the converse of
proposition 3.1. is also true.

Theorem 3. Let the group Y be the direct product of two subgroups S
and T, then every multihomomorphism of X into Y satisfying the Supposition 1. that

is f(e)=T is of the form
FX)=hx)of(e)

where h:X —7Y is a single-valued homomorphism. In other words, under the
above conditions, every wmultihomomorphism admits a selective homomorphism.

Proof. Since f(e) is a subgroup of Y, according to Lemma 4. we have
the following representation f(x)=a, of(e). Y being the direct product of §
and T=1(e) (SNT={e}), we conclude that a, © S or f(x)=f(e). If f(x)=Ff(e)
we put a,.=e,.

Since f is a multihomomorphism from (1) we have

3.2) a,of(e=a, of(e)oa, o f(e).
f(e) being a normal subgroup of ¥, we obtain
3.3) a, of(e)=a,ca,of(e).

Let us prove that (3.3) under above conditions implies
(34 a,=a,0a,

Suppose that @ o f(e)=b of(e), then there exist m, n € f(e) such that

(3.5) aom=bon.
From (3.5) follows
(3.6) bloac SNT.

Since SN T={e,}, we obtain b—'oa=e or a=b, which proves the assertion,
and (3.4) is also proved. ‘

So mapping h:X — Y defined by h(x)=a, is a single-valued homomor-
phism of X into Y more precisely of X into Y.

Theorem is proved.

Remarque. Conditions of Theorem 3. guarantee the existence of a
selective homomorphism for every multihomomorphism of X into Y, but those
conditions are not only ones, under which a selective homomorphism exists, as
it is easily seen from examples. Thus the above problem is not answered
completely.
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