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1. Modular spaces of strongly summable sequences were investigated in
papers of J. Musielak and W. Orlicz [11], J. Musielak [9], and W. Orlicz [16].
These investigations were limited essentially to the case of strong summability
to zero by means of the method of first arithmetic means. Generalizing the
definition of strong summability of J. Musielak and W. Orlicz, I carried out
in papers [20] and [21] some investigations under more general assumption on
the methods of strong summability, defining and studying Orlicz spaces of
sequences strongly (4, ¢)-summable to zero. Expanding these considerations and
applying important and numerous suggestions of Professor W. Orlicz and valuable
remarks of Docent J. Musielak, I extended in [22] the problematic to the case
of summability to zero of functions. The problem of strong summability of
functions differs essentially from that of sequences, although the ideas of some
proofs and also the results are in many cases analogous, comparing papers [20]
and [22]. Namely, in connection with strong summability of functions there
arises a number of new technical problems in proofs, here, quite important are
the assumptions on the kernel of the integral transformation,

In the present paper, I am replacing particular measures by a general
family R of nonnegative measures, when defining the strong (IR, @)-summability.
The assumptions on the family I% are enough general in order to cover the
special cases of purely atomic measures or atomless measures considered in [20]
and [22]. In this sense, the results which follow can be considered as generali-
zations of those of J. Musf’élak and W. Orlicz, and also of those obtained
in [20] and [22]. i

I am very indebted to Docent J. Musielak for his valuable suggestions
and remarks in course of preparation of this paper.

1.1. We shall apply the following notation. Let T be a locally compact
Hausdorff topological space, and let 7, ¢~ T. Let us denote To=TU{r,}. Compact
sets in T will be denoted by symbols Z, Z,, Z,, ... . By a neighbourhood U
of the point 7, in T, we shall mean the complement in T, of any compact set
in T, ie. U=Z". In the following we shall write 7,= co.

Now, by & we shall denote a o-algebra of subsets of an abstract set E
and we take a fixed o-ring &,C&. Sets from §, will be denoted by Q, K, K, K, ...

1.2. In the sequel MM ={u.}, & T, will denote a family of nonnegative
measures, defined on the c-algebra § of subsets the set E. Sets belonging to §
and functions on E measurable with respect to §, will be called IR-measurable.
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A set B will be called an I-zero set, if and only if, g, B=0 for every v & T.
Let 9. be the o-ring of sets in E of p.-measure zero, then = N N, is the
g-ring of M-zero sets. et

1.3. The following notations will be used for spaces of functions defined
on E. By X we shall denote the space whose elements are classes of $-measur-
able real-valued functions, where two functions belong to the same class if and
only if they differ on a set belonging to the o-ring 9. We shall say briefly,
that X is the real space of all JR-measurable elements defined on E. ¥q will
denote the space of such elements belonging to the space X whose support
Q& &y, and X, will mean the spaces of all bounded functions in X. Moreover,
Xa will denote the space of simple functions belonging to Xa.

Elements of X will be denoted by x(t) y (), z(1), ... Often we shall
write X, y, z, ... in place of x(¢), y(£), z(¢), ..., supx in place of supx(¢).
Po1ntw1se convergence and uniform convergence in E of x,(¢) to x(f) as n—o0
will be denoted by x,->x and x,=3x, respectively. If x, y € X, the symbol
x<y will mean that x(¢f)<y(¢r) with the exception of a set belonging to the
o-ring R. The relation < defines a partial order in X, and X is a linear lattice
with respect to this relation, which is order-complete, ie. each non-empty set
of elements of X which is bounded from above possesses a last upper bound
belonging to X. The supremum or infimum of two elements x, y € X will be
denoted by xVVy or x Ay, respectively; the symbols x;Vx,V - - - Vx,, Vx,, etc.,
have analogous meaning.

1.4. By a ¢-function we understand (as in paper [23]) a continuous, non-
decreasing function ¢ (#) defined for u>0 and such that ¢(0)=0, @) >0 for
u>0 and @ (u) >o as u—oo. ¢-functions will be denoted by letters o, ¢, ...,
and their inverses, by ¢_;, Y_;, ...

A o-function ¢ is said to satisfy the condition (Az) for large u, if for
some constants k>>1, u,>0 there is satisfied the inequality

A e QRuy<ko@) for u>u,.

A function ¢ is called nonweaker than ¢ for large u, if for some constants

¢, b, I, k, uy>0 there is satisfied the inequality c{ () <be¢ (ku) for u>u,, we
!

denote this relation writing ¢ <.

A function ¢ is called equivalent to ¢ for large u, if there are constants
a, b, ¢, ky, k,, I, uy> 0 such that a¢ (k,u) < cd (lw) <bo (k,u) for u>u, we denote

i ! ! !

it writing ¢ ~ ¢. Obviously, ¢~ ¢ if and only if ¢ <{¢ and ¢<4, simultaneously.

A convex ¢-function ¢ is said to satisfy the conditions (0;) or (e0,), if
(B) (P(u)—>0 as u—0+, (0) (P()—>oo as u—oo,

" ,

respectively.

The function ¢* conjugate to a convex ¢-function satisfying the conditions
(0,) and (o0,), is defined by the equality ¢* (v) = sup (uv —¢ (4)). The function ¢*
=0

is again a convex ¢-function satisfying the conditions (0,) and (e,). Moreover,
it satisfies the following Young inequality uwv <o (u)+9* (v), (see e.g. [4], [5],
[6], [13] and also [23]).

The symbol ¢ (|x|) means in the following the function ¢ (|x(¢)|) defined
for t £ E.
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1.5. Let a family 9% ={u.} of measures and a ¢-function ¢ be given. We
denote for any x € X

O (T’ x)=f<p(|x[) d“"r

We say that the integral transformation o, (7, x) tends to zero as t-—»>o
and we write o,(r, x) >0 as t—oo, if for any number £>0 there exists a
set Z compact in T such that © - Z implies o, (t, x)<e. We introduce now
the following notation:

oy ={xE X0, (r, x)< o0 for 1€ T; g,(7, x) >0 as T—>},
X,={x € X:xx & X, for arbitrary A>0},
I;:{xEX:)\xE X,, for some A>0}.

Since the family of measures is fixed in our further considerations, we do
not point out the dependence of the above spaces on this family.

The elements of the space y, are called strongly (IR, ¢)-summable to zero.

1.6. In order to derive a theory of these spaces, the following special
assumptions on the family of measures & will be used in some of our further
considerations:

1° For every set K & &, o, (7, x3g) is a continuous function of the vari-
able © & T, where y, means the characteristic function of the set K.

2° For every M-measurable function x for which o, (r, x) is finite for all
v+ T and o,(s, x) >0 as 7—co, the integral remainders are uniformly small
on set Z compact in T, i.e. for each £>0 there exists a set K & &, and a set Z

compact in T, there holds fcp(\xl) dp.<e for all 1 & Z.
P2

3° For an arbitrary set K & &, and for any >0 there exists a set Z
compact in T such that t ¢ Z implies p.K<e; to be brief we shall denote it
writing @w.K—0 as 7-—>o0.

4° The family of measures I is uniformly bounded, i.e. there exists a
constant C>0 such that p. E<C for all v& T.

5° Let K& §,, and let us denote 4(K)=sup u. K.
T T

(a) For an arbitrary set K< &, there exsts a set Z compact in T
such that 4 (K)=sup u. K.
tcZ

(b) There exist constants 3, ¢ (8>>0, 0<<c< 1) such that for every num-
ber = satisfying the inequalities 0<<x <& there exists a set K E &,
such that cn<A4(K) <.

2.1. The characteristic function y, of a set B& § belongs to .'f;, if and
only if, u,B< o for t&€T and @w.B—>0 as t—oo. In particular, conditions
3° and 4° are sufficient in order that characteristic functions of all sets from &,
belong to X;-

It is easily verified that the inclusion ¥ CX; holds, if and only if,
Q< oo for t&T and . Q2—0 as t—oc0. Moreover, the same two conditions
are necessary and sufficient in order that Zfbﬁffgcff;. In particular, the con-
ditions 3° and 4° on the family of measures I are sufficient in order that all
simple functions constant on sets from &, belong to ys.
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2.2. If the family of measures % possesses the properties 1° and 2° then
o, (T, x) is a continuous function of the variable 7 for all T< T.

To prove this statement, let us take any £>0, and let K & §,. According
to 1° o, (T, Xxg) is a continuous function of the variable t. Hence |, (T, x ;) —

-6, (-ro,xxK)|<? for + sufficiently near to t,. On the other hand, by 2°,

for each >0 there exist a set K& §, and a set Z compact in T such that
the inequality

‘f@(lxl)d(uf—um) <=
J

holds for <, vy & Z. Thus we obtain finally
|G¢(T,x)*%(‘fo,x)|<]%(T,XXK)—%(TOsXXK)H}f@(lxl)d(ur—uvo) <t

2.3. X, is a linear space and ¥,, is a convex set in y, (in particular
if Ayx € X, for some 1,>0, then Ax & X,, for all 0<Ai<A,). With the order

relation defined in ¥, X, is a linear lattice and a sublattice of X. The lattice X,
is o-order complete, and even order-complete. The proof runs the same hnes

as in [20] and [22].
2.4, If the family of measures IR possesses the property 4°, then there

holds ¥, N%,—%,N%, for any two e-functions e and ¢.
If the family of measures IR possesses the property 4°, then there holds

X,N%,=%,NX, for arbitrary -function ®.

The proofs of these facts are performed in the same manner as in [20],
applying the inequality (+) from [16], p. 333.

2.5. Let the family of measures IR possess the property 4°. If q;<<p,
then X,C¥, and X 0 C Xy

To prove this statement, let us take x & }:c,,, i.e. Ayx € X, for some 2,>0.
Let us denote E,={t< E:)\ k—1|x(t)} >uy}, where k' and u, are taken From
the definition of the relation < Then ¢ Ak [x ) <bp(Xy|x]) in the set E,.
We define an element x; as follows: X =X in ENE,, Xy = 0 in E,. Obv1ously,
x, € X, and, by 2.4, xlefq,ﬂ&'b—%q,ﬂ%b, ie. x,€X;. But Xy =X— xléh,
because

Tk | x)dua<b [ (0| x]) diss.
E E

Finally x=x, +x, €X%;. The inclusion X,C %y is proved in the same manner.

3.1. In the sequel we shall suppose always that the family of measures It
possesses the properties 1° and 2°. By 2.2, o, (7, x) is a continuous function
of v for t&T. From the condition o,(t,x)—>0 as t—  follows that
sup o, (1, X)<< oo for x € X, .
1T

We define in ¥, the following functional:

supfcp(]x]) du. for xEX,,

tcTE

Po (x) = .
0 for x & yxe\Xo,-
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By assumptions 1° and 2° on the family of measures X, the functional g, (x)

is a modular in foq, in the sense of the definition assumed by Orlicz in [15],
[17], i.e. it satisfies the following conditions

A. p,(x)=0 if and only if x=0,

B. pp(x)<pe(x) if [x]<]| xz‘lr

C. pp (VX)) <pg(x) +pg(xy) If x>0, x,>0,
D. p,(Ax)—>0 if A—>0+.

Simple proofs of these properties will be omitted (see [22]).

Let us remark that condition C implies the inequality p, (axx, +Bx,) <
< pg (X)) +pg (x,) for «, >0, a«+B=1; moreover, in case when ¢ is an s-convex
g-function, the modular may be defined assuming the conditions 4, B and
replacing C by

Cs. pelax; +Bx,) <xp, (xy) + By (x,), Where «, B> 05+ 85=1; O<s< 1.

3.2. From 3.1 follows that ¥, is a modular space, partially ordered in
the sense of the definition in [17]. Hence a nonnegative, finite-valued functio-
nal ||-||, may by defined in ¥, by means of the formula

* Il =int e>0z¢, (%) <e].
€
It is easily verified that the functional (*) is an F-norm (see [10], [15], [17]).

If ¢ is an s-convex g-function, then an s-homogeneous norm may be defined
in X, by means of the formula

) Il =int {e>0:04 ()< 1},
(see [6], [11]). It is known ([7], [11], [14]), that both norms (**) and (*) are
equivalent. Let us remark that 3.1. B implies monotonicity of the norm (|-,

1mmed1ate1y If ¢ is a convex g-function, then besides the norm (**) one can
define in X, a norm by means of the modular

oe (¥) = sup [ (x)dy. for x € X,.
TETE .

It is easily verified that p?, (x) satisfies the conditions 3.1. 4, B, D and C;;
hence we can define a norm

quzzinf{s>o:pz(§)< 1}.

Let us remark that ||x]|o <||x|;,; moreover, ||x||$=||x||;, for x € X,, since for
such x there holds p‘; X)) =p, (%).

3.3. The space y, is a linear subspace of the space X;, closed with respect
to the norm (*) (see the proof in [20], and also in [22]).

In our further considerations, under %,, %;, ... we shall understand always
the respective spaces of elements provided with norm (*) or any norm equivalent to (*).

3.4. Let us suppose that the family of measures I possesses properties
3° and 4°, and let us denote 4(Q)= supu.QQ. Let ¢ be an s-convex ¢-function.
1T
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Then ¢ is strictly increasing, and the s-homogeneous norm of the characteristic
function of a set Q & §, is easily determined. Obviously, yq & .'f:,, and

[ 2alle= (cp_l (Z(IE)))_S-

3.5. Let us yet note that if ¢ is a convex o¢-function satisfying the con-
ditions (0;) and (o)), and if ¢* is complementary to ¢, and the family of
measures I possesses the property 3° (besides 1° and 2°), then the following
norm may be introduced in X,:

b

|x]is =sup sup| [ xydu.
y T g

where the supremum is taken over the set of all y & X« satisfying the inequality
per (¥) < 1. It is easily verified that HH; is a monotone B-norm in X,.

4.1. The space y; is complete with respect to the norm ||-|,.

In the proof we shall apply the following theorem from [17): If axiom C.1I
is satisfied in a modular space X (p), then this space is complete with respect
to any norm generated by p. Hence, it is sufficient to show that C. II

holds in I;, ie. that the conditions x, & 36:,, x,>0 for n=1, 2,...,
Po (X1) +pg (x;) + + - - < oo imply existence of x,=Vx, © X,.

First let us remark that we may limit ourselves in the proof to non-
negative elements. Let {z,} be a sequence of elements of a partially ordered

space, and let z,<z, n=1,2,... We consider the sequence x,=z,, X,—
=51VZys ooy =2,V Z,V - - - VZ,, ... It is seen that x; <x,< - .- <x,< - - -
and x, <z for n=1,2, ... Hence 0<x,—x; <Xx;—X; < -+ - <X,—X, < - - -3 thus

the sequence {x,—x,} is nonnegative and O<x,—x,<z—x, for n=1, 2, ...
If V(x,—x,)=u exists, then Vx,=u-x, also exists. We show yet that the least
upper bounds of the sequences {x,} and {z,} are the same. We know that
Z,<X%=2:VZ,V - :Vz, Let z,<z for n=1,2,..., then also x,<z for
n=1,2,..., ie. Vx,<z. On the other hand, Vx,>x.>z, for k=1,2,...,
Le. Vx, is the least upper bound of the sequence {z,}; thus ¥z, exists and is
equal to Vx,.

Now, let x, €& :f;, x,>0 for n=1,2,... We consider a sequence

V=X VX Ve v - V. Since ¢ () <@ (x) +9 () + - - - +9(x,), we get
[eGodu<[ot)dpt -+ [o(x) du
E E E

and we obtain for a given

k ® )
(+) %o (5 7)< 2, 05(1, ) < 3 06(5, K) < 3 o, (x) <00,

j=1 j=1 j=1

But y, is an increasing sequence, hence we have y, (t) - x,(¢) for all ¢, where
Xy =Vx,. We show that x, & %;. From the above it follows that lim o, (7, y,) =
k—

=0, (T, xg)<o for vach v T. By (+), we have

0o (%, %) < 3 0, (T, X)).
j=1
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Hence there holds for each 1 & T

65 (7, X)) <0, (7, X))+« =+ +64 (T, Xi_y) + 0o (¥ + 0o Kpy) + - -

By the assumption, given ¢>0 we have
2, e (X)) <e
j=k

for sufficiently large k, i.e. o, (7, X)) <0, (7, X)) + - + - +06, (7, X,_;) +¢ for each
v C T and for sufficiently large k. Since o, (7, x;) >0 as 7—oo, for any >0
there exists a set Z compact in T such that

6, (7, X)) +o, (7, X))+ - -+ + o, (v, X <e

for all T Z. Thus we obtained finally thet o, (v, x,)<<2¢ for every v Z,
ie. 6,(%,x) >0 as 7>,

Let us yet remark that since the space X, is closed with respect to the
norm ||-||, (see 3.3), it is complete with respect to the same norm.

From the above proof it follows also that p, (x,) < py (1) +pe (X5) + -+ -

42.1. We shall say that the family of measures I ={u.}, * & T, is sepa-
rable, if it satisfies the following condition: there exists a sequence of
sets K, & &y, n=1,2, ..., such that for an arbitrary set B belonging to the

c-algebra & there exists a subsequence K, for which (K, = B)— 0 urifor-
mly in T.

4.2.2. If the family of measures I is separable and possesses the proper-
ties 3° and 4°, then the space X, is separable with respect to the norm ||-||.

To prove this theorem let us first remark that there exists a sequence of
sets K, = &, such that for every B < & one can extract a subsequence K, for
which p, (A (XKni_XB))_’O for an arbitrary A>0. Indeed, we have

oo (i, — 28)) = SUp [ @ (| sty — | diie =0 ) sup [ dppr=
tcT g T&T

Kn;=~B

=9 O\) SUp Ly (Kni';B);
T

but w. (K — B)— 0 uniformly in T, by definition. Hence o, (A (xxy, —75)—0.
We shall show that the set of simple functions of the form

x(0=S w0,
i=1

‘where w, are rational numbers, is a countable, dense set in X, . First, we choose

an arbitrary simple function y(t)=> ¢ x5(t), where B, & and ¢ are real

j=1
numbers. Then it is easily seen that

po (M=) = sup 2 2. ¢ (| W=D (KN B) <
T 1 J
< Sup zcpo\iwz_ci')““r(Kime)_!'sup ZCP(MW,'_C,'DHx(KiﬂBj)-
TET i T & Ti#j

Obviously, the difference | w,—c¢;| may be arbitrarily small. Moreover, because
s (K;N B)) <pir (K;=B) < sup pe (K;—B)), it follows form the assumption that
T
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the sets K, may be chosen in such a manner that p. (K;N B)) are also arbitra-
rily small for every = & T. Finally, we obtain that for an arbitrary >0 there
exists an x such that p, (A (x —y))<e, where A>0.

It is yet to be proved that the set of simple functions is dense in X,.

First we show that if x ¥, and BE §, then the integrals [ o(|x|)dp, are
B

uniformly absolutely continuous with respect to 7, i.e. the following condition
is satisfied: for every €>0 there exists a number 8>0 such that for every set

B¢ 8, the inequality sup i, B<8 implies the inequality sup [o(|x|) du.<e.
Te€T TcTB
This is obtained applying absolute continuity of the integral for each t separa-

tely and the definition of supremum, because given any >0 there is a 7. €T
for which

sup [ o (| x])dp.<[ @ (A x]) dpte, +5,
TET B B

and the first term at the right-hand side of this inequality is less than e for

sup w.B<3, where §>>0 depends on .
7T

Now, let us suppose that x& X,, x>0, and let us define
k=1 por 5=l cx<®, k=1,2,3,...,mn
x, ()= 2¢ 2" 2"
n for x(t)>n.

Denoting B, ={t:x(t)>n}, we get
sup [@(|x,—x|)dp.<sup [o|x,~x])ductsup [ o@|x,—x])dy..
tcT E T By TETE\B’,
But the following inequalities hold for every T & T:
Jy.=sup [e@|x)ydu> [ o |x])duc> [ o) du. = (An) poB,;
T E By By
hence sup w.B<J,(p(An))-'. If we choose n so large that J, (e (An))-1<3,
T

then for such #» we have
supfcp()\lx—nl)dy.r< sup fcp(llx[)dp.1<s.
‘IETBn .\ T By

On the other hand we know that the family of measures i~ uniformly bounded.
Hence ¢ (A2-") u. (EN\B,)<¢e for sufficiently large n. Finally we obtain

sup fcp(k[x,,—x!)dp.r<2€
TETE

for sufficiently large n.
If x& X, is arbitrary, the proof is obtained splitting x into positive and
negative part.

4.3.1. If X,C¥,, then | x;||,— O implies || x,]|, — O for arbitrary x, € X,
The proof is obtained applying the closed graph theorem to the injection

map of ¥, in ¥;, because convergence of a sequence {x;} of elements of X,
in any of the norms ||-||, or ||-||, implies convergence in measure . for
all & T.
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43.2. If X,CX,, then | x|, >0 implies | x,||,— 0 for arbitrary x, & X,,.

The proof is analogous to that of 4.3.1, taking into consideration the
fact that spaces X, and X, are complete with respect to norms ||-||, and |||y,
respectively.

4.4. Let the family of measures IR possess all properties 1°—5° If
1
| x; lle = O implies || x;[|, — O for arbitrary x, €%, then ¢ <¢.

The proof will be performed indirectly. Let us suppose, ¢ <o does not
hold, ie. for every system of constants k, b, v,>0 there exists v>v, for which
$ (kv) > bo (v). Now, we apply the properties of the family of measures. Let ¢
and 3 be the constants from the property 5° (b), and let >0 be given. We
take m=c¢(p (1)L, where # is chosen so large that

0 c(o () =7 <5,
By property 5° there exists a set K € §, such that
(ii) en<AK) <.

The number u may be chosen in such a manner that e<3¢p (¥) and
1
(i) b(cu)>—o (u).
ce
Applying the inequalities (i)— (iii) we obtain
1
Py () =t (cu) A(K) > ¢ (su) e > ;<P(u)cn=1-

By the definition of the norm (#), we have | cuyg|ly>1. To calculate || euyy ||,
we apply (i) and (ii). First, we notice that

p¢(i‘il£)=<p(u)A(K)<¢(u)n=;
g

Hence, again by the definition of the norm (*), we obtain | euy,|l,<e. Since
€ is arbitrary, one may define a sequence x; € X¥o such that [|x,||, — 0. But
||x;|lp>1, and we get a contradiction.

4.5. From 2.5, 4.3 and 4.4 the following theorems are obtained, immediately:
4.5.1. If the family of measures IR possesses the properties 1°—5°, then
the following conditions are mutually equivalent:
1
@ <o @ ECE, @) ZCX,

(®) ||xle =0 implies |x,|l,—0 for an arbitrary sequence of elements
x; € Xa.

4.5.2. If the family of measures possesses the properties 1°—5°, then the
following conditions are mutually equivalent:

I
(@) ¢~ ® X, =%, ) % =%,

(3) the norms ||-||, and ||-||, are equivalent in the space Xq.
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4.6. Let us suppose that the family of measures I is separable and pos-
sesses the properties 1°—5°, with property 5°(b) replaced by the following one:
there exist constants 3, ¢(3>0, 0<<ec< 1) such that for any sequence of
numbers 7, satisfying the inequalities 0 <%,<8 for i=1.2,... and convergent
to 0, one can choose a sequence of pairwise disjoint sets K, & §,, i=1, 2, ...
such that cv;<A(K)<m, for i=1,2,... Then the following conditions are
mutually equivalent:

(*) ¢ satisfies the condition (A,) for large u,
® % =%,

(Y) the space X, is separable with respect to the norm | -||,.

The proof of the implication (x) = (B) is easy and runs the same lines
as in [20] and [22]. (B) = (y) follows from 4.2, immediately (compare [7], [9],
and also [20], [22]). (y) = («) is proved in the same manner as the respective
implication in theorem 3.8 in [22] (see also [16], [21]). The sequence of func-
tions X;="V;tk, occuring in the proof is defined in such a manner that the sets

K, &8, i=1,2,..., are chosen as in the proof of theorem 4.4,

5. Various authors defined and investigated Orlicz spaces, and also more
general modular spaces. For example, in papers [9], [10], [11], [16] and [19]
the authors investigated properties of Orlicz spaces and modular spaces defined
by means of families of measures. In my previous papers [20], [22] and [24]
I considered spaces of strongly summable functions and sequences. In definition
of these spaces there were applied two special cases of the family of measures
M ={u.}, namely, the case of the family of finite, atomless measures in [221,
and the case of the family of finite, purely atomic measures in [20] and [24].

5.1. In [22], the set E was equal to the interval (0, «), and the topological
space T, to the interval {v*, «), where t* is a positive number fixed for a
given family of measures. The space X was denoted in [22] by X, and its
elements were classes of finite, measurable, real-valued functions equivalent with
respect to the relation of equality almost everywhere. The family of measures
M ={p:}, © € {7*, ), was defined on the c-algebra § of all Lebesgue measurable
subsets of E= {0, o), and the measures p, M were supposed to be absolutely
continuous with respect to the Lebesgue measure. Thus, by the Radon-Nikodym
theorem, there exists a function a(#, v) defined on the product (0, o) X (7*, )
measurable with respect to the variable 7 for every v C (7*, »), a(t, 1)>0
for all ¢t & {0, »), T € {t*, o), satisfying the condition

(+) ped=[a(t,7)de
. A

for every Lebesgue measurable set AC E. Then the integral transformation is
of the form

(++) oo (v, X)= [ a(t, Do (|x(t)|)dt,
0

and the space of functions strongly summable to O defined and denoted by X,
in [22], is a special case of the space %; of strongly (IR, ¢)-summable elements
defined in the present paper. In order that the integral transformation (+ +)
possesses the same properties as the integral transformation defined in the present
paper, it is sufficient that the family of measures possesses the properties 1°— 5°
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defined in 1.6. Therefore the kernel a(z, v) has to satisfy the conditions given
in [22], p. 116 and 129. Examples of kernels satisfying these conditions are
given in Part 4, of [22]. Thus the theorems obtained in [22] are special cases
of those in the present paper.

5.2. The case of purely atomic measures I investigated in [24] and [20]. As
set E and topological space T we take the set of natural numbers, and the
symbol 7 is replaced by n. Measures ., n €T, are defined on the c-algebra §
of all subsets of E, thus, there exist a nonnegative matrix A=(a,,), n,v=
=1,2,..., such that

(+++) W B= > a,, for B={v}c g, u,0=0.

If the matrix 4 possesses the properties 3. (¢)—(d) given in [20], p. 243, then
the family of measures (+ + +) possesses the properties 1°—5° of 1.6. Examples
of matrices possessing the above properties are given in Part 3, of [20]. The
family of measures (+ + +) was applied in [20] to define the space T, of
strong (4, p)-summable sequences. A sequence x — {t,} is called strongly
(4, ¢)-summable to 0 if the transformations 0y (1, X)= 0% (x) defined by the
formula

st (@)= 3 ae([8])
v=1

possess for some A>0 the following two properties e?(Ax)< o forn=1,2,...,
and o® (Ax) >0 as n—oo. The space T, is a special case of the space ,

defined in the present paper, and theorems given in [20] are special cases of
those in this paper.

5.3. Let us yet remark that there exists a connection between. property 5° (b)

of the family of measures given in 1.6, and the condition of equisplittability
of the family of measures given in [12], p. 261 and 262.

It is easily seen that in case of purely atomic measures the property 5°
corresponds to the condition (9,) given in [20], p. 241. Also, after formula-
ting the property 5° in the language of [18], this property corresponds to the
condition () defined in [18], p. 169.

In case of a family of atomless measures, under assumptions on kernel
given in [22], the function A, defined in [22], p- 129, is continuous with
respect to y. Theorefore in proofs of theorems in [22], one is applying the

property (+) given in [22], p. 129, in place of the inequality from the
property 5° (b).
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