SOME INEQUALITIES RELATED TO EULER'S THEOREM R>2r

L. Carlitz

(Received November 5, 1971)

1. Let *I* denote the incenter of the triangle $\Delta = ABC$ and let *AI*, *BI*, *CI* cut the circumcircle of *ABC* in *A'*, *B'*, *C'*, respectively. If the angles of *ABC* are α , β , γ , it is easily verified that the angles of $\Delta' = A'B'C'$ are

$$90^{\circ} - \frac{1}{2} \alpha$$
, $90^{\circ} - \frac{1}{2} \beta$, $90^{\circ} - \frac{1}{2} \gamma$.

We may call Δ' the first derived triangle of ABC. Then if Δ' is the first derived triangle of Δ' , it follows that the angles of Δ'' are

$$45^{\circ} + \frac{1}{4} \alpha$$
, $45^{\circ} + \frac{1}{4} \beta$, $45^{\circ} + \frac{1}{4} \gamma$.

We may define the *n*-th derived triangle $\Delta^{(n)}$ of *ABC* recursively as the first derived triangle of $\Delta^{(n-1)}$. If $\alpha^{(n)}$, $\beta^{(n)}$, $\gamma^{(n)}$ are the angles of $\Delta^{(n)}$ we have

(1)
$$\alpha^{(n)} = \frac{2^n - (-1)^n}{3 \cdot 2^{n-1}} \quad 90^\circ + \frac{(-1)^n}{2^n} \alpha$$

with similar formulas for $\beta^{(n)}$, $\gamma^{(n)}$. This is easily proved by induction. Indeed, assuming (1), we get

$$\alpha^{(n+1)} = 90^{0} - \frac{1}{2} \alpha^{(n)} = \left(1 - \frac{2^{n} - (-1)^{n}}{3 \cdot 2^{n}}\right) 90^{\circ} + \frac{(-1)^{n+1}}{2^{n+1}} \alpha$$
$$= \frac{2^{n+1} - (-1)^{n+1}}{3 \cdot 2^{n}} 90^{\circ} + \frac{(-1)^{n+1}}{2^{n+1}} \alpha.$$

It follows from (1) that $\Delta^{(n)}$ is equilateral for any fixed n if and only if Δ is equilateral.

All the triangles $\Delta^{(n)}$ evidently have a common circumcircle, namely the circumcircle of Δ .

12 L. Carlitz

It is evident from (1) that as n becomes large the n-th triangle $\Delta^{(n)}$ becomes more nearly equilateral. Thus if R is the radius of the circumscribed circle of Δ and $r^{(n)}$ is the radius of the inscribed circle of $\Delta^{(n)}$, we have

$$\lim_{n=\infty} r^{(n)} = \frac{1}{2} R.$$

Moreover, by Euler's theorem,

(3)
$$r^{(n)} \leq \frac{1}{2} R$$
 $(r = 1, 2, 3, ...).$

We shall now show that

$$(4) r \leq r'$$

with equality if and only if Δ is equilateral. As an immediate corollary of (4) we have

(5)
$$r^{(n)} \leq r^{(n+1)}$$
 $(n=1, 2, 3, \ldots)$

with equality if and only if Δ is equilateral.

To prove (4) we recall that [1, p. 192]

(6)
$$r = 4R \sin \frac{1}{2} \alpha \sin \frac{1}{2} \beta \sin \frac{1}{2} \gamma.$$

Since the angles of Δ' are

$$\frac{1}{2}(\beta+\gamma), \frac{1}{2}(\gamma+\alpha), \frac{1}{2}(\alpha+\beta),$$

it follows that

(7)
$$r' = 4R \sin \frac{1}{4} (\beta + \gamma) \sin \frac{1}{4} (\gamma + \alpha) \sin \frac{1}{4} (\alpha + \beta).$$

Thus (4) is equivalent to

(8)
$$\sin \frac{1}{2} \alpha \sin \frac{1}{2} \beta \sin \frac{1}{2} \gamma \leq \sin \frac{1}{4} (\beta + \gamma) \sin \frac{1}{4} (\gamma + \alpha) \sin \frac{1}{4} (\alpha + \beta).$$

Using the formulas for $\sin 2x$ and $\sin (x+y)$ this reduces to

(9)
$$8 \tan \frac{1}{4} \alpha \tan \frac{1}{4} \beta \tan \frac{1}{4} \beta$$
$$\leq \left(\tan \frac{1}{4} \beta + \tan \frac{1}{4} \gamma \right) \left(\tan \frac{1}{4} \gamma + \tan \frac{1}{4} \alpha \right) \left(\tan \frac{1}{4} \alpha + \tan \frac{1}{\beta} \beta \right).$$

For brevity put

$$x = \tan \frac{1}{4} \alpha$$
, $y = \tan \frac{1}{4} \beta$, $z = \tan \frac{1}{4} \gamma$.

Then we must show that

$$8xyz \leq (y+z)(z+x)(x+y)$$

or, what is the same thing,

(10)

Since

$$6xyz \leq \sum x^2y.$$

$$\sum x \sum xy = \sum x^2 y + 3 xyz,$$

(10) may be replaced by

(10) may be replaced by (11)
$$9 xyz \le \sum x \sum xy.$$

This inequality is valid for all non-negative x, y, z with equality only when x = y = z.

This evidently completes the proof of (4).

2. We can prove (4) more rapidly by making use of the following result [1, p. 200]. If H is the orthocenter of ABC then

(12)
$$\overline{HI^2} = 4R^2 \left(8 \sin^2 \frac{1}{2} \alpha \sin^2 \frac{1}{2} \beta \sin^2 \frac{1}{2} \gamma - \cos \alpha \cos \beta \cos \gamma \right).$$

It is easily verified that I is the orthocenter of A'B'C'. Hence, applying (12) to the triangle A'B'C', we get

$$\overline{II}'^{2} = 4 R^{2} \left\{ 8 \sin^{2} \frac{1}{4} (\beta + \gamma) \sin^{2} \frac{1}{4} (\gamma + \alpha) \sin^{2} \frac{1}{4} (\alpha + \beta) - \sin \frac{1}{2} \alpha \sin \frac{1}{2} \beta \sin \frac{1}{2} \gamma \right\},$$

where I' denotes the incenter of A'B'C'. Making use of (6) and (7), this reduces to

$$\overline{II}^{\prime 2} = 2r^{\prime 2} - Rr$$

Since

$$\overline{II}^{\prime 2} = R^2 - 2 Rr,$$

we have

(13)
$$2r'^2 = R^2 - Rr = R(-r)$$

and therefore

$$2r'^2 > Rr > 2r^2$$

with equality only when R = 2r.

Another application of (12) may be noted. If 0 is the circumcenter of ABC and 0_1 , 0_2 , 0_3 the mid points of the sides of ABC, then

$$00_1 = R \cos \alpha$$
, $00_2 = R \cos \beta$, $00_3 = R \cos \gamma$.

It follows at once from (12) that

$$00_1 \cdot 00_2 \cdot 00_3 \le \frac{1}{2} Rr^2$$

with equality only when ABC is equilateral.

3. Let K denote the area of Δ and K' the area of Δ' . Also let s denote the semiperimeter of Δ and s' the semiperimeter of Δ '. We shall show that

$$(15) K \leq K'$$

and

$$(16) s \leq s'.$$

Moreover in each case there is equality if and only if ABC is equilateral. Since

$$K = 2R^2 \sin \alpha \sin \beta \sin \gamma$$
,

it is clear that (16) is equivalent to

$$\sin \alpha \sin \beta \sin \gamma \le \sin \frac{1}{2} (\beta + \gamma) \sin \frac{1}{2} (\gamma + \beta) \sin \frac{1}{2} (\alpha + \beta).$$

This is the same as

$$8\prod\sin\frac{1}{2}\alpha\cos\frac{1}{2}\alpha\leq\prod\left(\sin\frac{1}{2}\beta\cos\frac{1}{2}\gamma+\cos\frac{1}{2}\beta\sin\frac{1}{2}y\right)$$

which is equivalent to

(17)
$$8 \prod \tan \frac{1}{2} \alpha \leq \prod \left(\tan \frac{1}{2} \beta + \tan \frac{1}{2} \gamma \right).$$

If we put

$$x = \tan \frac{1}{2} \alpha$$
, $y = \tan \frac{1}{2} \beta$, $z = \tan \frac{1}{2} \gamma$,

(17) becomes

$$8 xyz \leq (y+z)(z+x)(x+y),$$

which we have already encountered above.

It may be of interest to mention the following result. Since

$$A'B' = 2R \sin \left(90^{\circ} - \frac{1}{2} \alpha\right) = 2R \cos \frac{1}{2} \alpha$$

it follows that

$$B'C' \cdot C'A' \cdot A'B' = 8 R^3 \cos \frac{1}{2} \alpha \cos \frac{1}{2} \beta \cos \frac{1}{2} \gamma = (a+b+c) R^2.$$

Combining this with

$$K' = \frac{B'C' \cdot C'A' \cdot A'B'}{4 R},$$

we get

$$K' = \frac{1}{2} Rs.$$

To prove (16) we use

$$s = R (\sin \alpha + \sin \beta + \sin \gamma).$$

Then (16) is equivalent to

(19)
$$\sum \sin \alpha < \sum \sin \frac{1}{2} (\beta + \gamma).$$

Since

$$\sum \sin \alpha = 4 \prod \cos \frac{1}{2} \alpha$$

(19) may be replaced by

$$\prod \cos \frac{1}{2} \alpha \leq \prod \cos \frac{1}{4} (\beta + \gamma).$$

This in turn may be replaced by

$$\prod \left(\cos^2\frac{1}{4}\alpha - \sin^2\frac{1}{4}\alpha\right) \leq \prod \left(\cos\frac{1}{4}\beta\cos\frac{1}{4}\gamma - \sin\frac{1}{4}\beta\sin\frac{1}{4}\gamma\right)$$

or

(20)
$$\prod \left(1-\tan^2\frac{1}{4}\alpha\right) \leq \prod \left(1-\tan\frac{1}{4}\beta\tan\frac{1}{4}\gamma\right).$$

If we put

$$x = \tan \frac{1}{2} \alpha$$
, $y = \tan \frac{1}{4} \beta$, $z = \tan \frac{1}{4} \gamma$,

(20) becomes

$$(21) \qquad \qquad \prod (1-x^2) \leq \prod (1-yz),$$

with $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$.

Now

$$(22) (1-y^2)(1-z^2) \le (1-yz)^2$$

since this is equivalent to

$$2yz \le y^2 + z^2$$
;

moreover equality occurs only when y = z. Clearly (21) is an immediate corollary of (22).

If $K^{(n)}$ denotes the area of $\Delta^{(n)}$ and $s^{(n)}$ the semiperimeter of $\Delta^{(n)}$ it follows at once from (15) and (16) that

(23)
$$K^{(n)} \leq K^{(n+1)}$$
 $(n=1, 2, 3, ...)$

and

(24)
$$s^{(n)} \leq s^{(n+1)}$$
 $(n=1, 2, 3, ...)$

with equality only when ABC is equilateral.

4. Let r_a , r_b , r_c denote the radii of the escribed circles of ABC and r_a' , r_b' , r_c' the radii of the escribed circles of A'B'C'. We shall show that

$$(25) r_a \le r_a$$

provided $\alpha \leq 60^{\circ}$. Since [1, p. 193]

$$r_a = 4 R \sin \frac{1}{2} \alpha \cos \frac{1}{2} \beta \cos \frac{1}{2} \gamma$$

it follows that

$$r_a' = 4R\sin\frac{1}{4}(\beta+\gamma)\cos\frac{1}{4}(\gamma+\alpha)\cos\frac{1}{4}(\alpha+\beta).$$

Thus (25) is equivalent to

$$2 \sin \frac{1}{4} \alpha \cos \frac{1}{4} \left(\cos^2 \frac{1}{4} \beta - \sin^2 \frac{1}{4} \beta\right) \left(\cos^2 \frac{1}{4} \gamma - \sin^2 \frac{1}{4} \gamma\right)$$

$$\leq \left(\sin \frac{1}{4} \beta \cos \frac{1}{4} \gamma + \cos \frac{1}{4} \beta \sin \frac{1}{4} \gamma\right) \left(\cos \frac{1}{4} \gamma \cos \frac{1}{4} \alpha - \sin \frac{1}{4} \gamma \sin \frac{1}{4} \alpha\right)$$

$$\cdot \left(\cos \frac{1}{4} \alpha \cos \frac{1}{4} \beta - \sin \frac{1}{4} \alpha \sin \frac{1}{4} \beta\right),$$

or what is the same thing

$$\begin{aligned} &2\tan\frac{1}{4}\alpha\left(1-\tan^2\frac{1}{4}\beta\right)\!\left(1-\tan^2\frac{1}{4}\gamma\right)\\ \leq &\left(\tan\frac{1}{4}\beta+\tan\frac{1}{4}\gamma\right)\!\left(1-\tan\frac{1}{4}\gamma\tan\frac{1}{4}\alpha\right)\!\left(1-\tan\frac{1}{4}\alpha\tan\frac{1}{4}\beta\right).\end{aligned}$$

If we put

$$x = \tan \frac{1}{4} \alpha$$
, $y = \tan \frac{1}{4} \beta$, $z = \tan \frac{1}{4} \gamma$

the last inequality becomes

(26)
$$2x(1-y^2)(1-z^2) \le (y+z)(1-zx)(1-xy).$$

Now

$$\tan\frac{1}{4} 60^{\circ} = \sqrt{\frac{1-\cos 30^{\circ}}{1+\cos 30^{\circ}}} = 2 - \sqrt{3}.$$

Hence if $\alpha \le 60^{\circ}$ it follows that $x \le 2 - \sqrt{3}$ Also it is easily verified that

$$x^2 - 4x + 1 \ge 0$$

when $x \le 2 - \sqrt{3}$. It follows that

$$2x(1+x) \leq (1-x)(1-x^2)$$
.

Since

$$\frac{1-x}{1+x} = \tan\frac{1}{4} (\beta + \gamma) = \frac{y+z}{1-yz}$$

the last inequality may be replaced by

$$2x(1-yz) \le (y+z)(1-x^2)$$
.

This in turn implies

$$2x(1-yz)(1-y^2)(1-z^2) \le (y+z)(1-y^2)(1-y^2)(1-yz) \le (y+z)(1-yz)(1-zx)(1-xy),$$

by (21). Therefore

$$2x(1-y^2)(1-z)^2 \le (y+z)(1-xy)(1-xz)$$

which is identical with (26).

5. It is not difficult to show that

(27)
$$A'I + B'I + C'I \le A''I' + B''I' + C''I'.$$

Indeed since

$$A'I = 2R\sin\frac{1}{2}\alpha$$

and

$$\sum \sin \frac{1}{2} \alpha = 1 + 4 \prod \sin \left(45^{\circ} - \frac{1}{4} \alpha \right),$$

(27) is equivalent to

(28)
$$\prod \sin \left(45^{\circ} - \frac{1}{4} \alpha\right) \leq \prod \sin \left(45^{\circ} - \frac{1}{8} (\beta + \gamma)\right).$$

The proof of (28) is similar to the proof of (8).

It would be of interest to know whether

$$(29) AI + BI + CI \leq A'I' + B'I' + C'I'.$$

Since

$$AI = 4R \sin \frac{1}{2} \beta \sin \frac{1}{2} \gamma$$

(29) is equivalent to

(30)
$$\sum \sin \frac{1}{2} \beta \sin \frac{1}{2} \gamma \leq \sum \sin \frac{1}{4} (\alpha + \beta) \sin \frac{1}{4} (\alpha + \gamma).$$

We remark that

$$(31) AI \cdot BI \cdot CI = 4 Rr^2$$

and

$$(32) A'I \cdot B'I \cdot C'I = 2 R^2 r.$$

6. Summary. The following inequalities are proved.

$$(4) r \leq r',$$

$$(15) K \leq K',$$

$$(16) s \leq s',$$

$$(25) r_a \leq r_a' (\alpha \leq 60^\circ).$$

For each of the first three inequalities there is equality if and only if the t iangle is equilateral.

Added in proof

Replacing α , β , γ by $180^{\circ}-2\alpha$, $180^{\circ}-2\beta$, $180^{\circ}-2\gamma$, (30) reduces to

(33)
$$\sum \cos \beta \cos \gamma \leq \sum \sin \frac{1}{2} \beta \sin \frac{1}{2} \gamma.$$

Since (A. Bager, A family of goniometric inequalites, Publications de la Faculté d'électrotechique de l'Université à Belgrade, Série: Math. et phys. no 339 (1971), pp. 5-25)

$$\sum \cos \beta \cos \gamma = \frac{r^2 + s^2 - 4 R^2}{4 R^2},$$

we may replace (33) by

(34)
$$r^2 + s^2 - 4 R^2 \le R \sum A I.$$

Thus (29) is equivalent to (34).

REFERENCE

[1] E. W. Hobson, A Treatise on Plane and Advanced Trigonometry, Dover, New York, 1957.

L. Carlitz, Dept. of Math., Duke University, Durham, N. C. 27706