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1. Let I denote the incenter of the triangle A=ABC and let AI, BI, CI
cut the circumcircle of ABC in A4’, B, C’, respectively. If the angles of ABC
are «, B, v, it is easily verified that the angles of A'=A'B'C’ are

1 1 1
90°— —a, 90°——B, 90°——~.
2 2 P 2 v
We may call A’ the first derived triangle of ABC. Then if A’ is the first deri-
ved triangle of A’, it follows that the angles of A” are

1 I 1
45° 4+ —a, 45°+ — B, 45°4 -—~.
4 4B 4 T

We may define the n-th derived triangle A® of ABC recursively as the
first derived triangle of A®=D. If a®, B®, y® are the angles of A® we have
n__(___ 3 —_ u
o o E=E g <1y
3.201 2n
with similar formulas for 8™, y®. This is easily proved by induction. Indeed,
assuming (1), we get

n__(__ 1y ]+l
o) — 900 _1 o) — < 1 _g_(, 1) 90° + iAl) o
2 3.2%) 241
ntl___ ¢ 1\n+l __ 1n+l
= %_7(, __ll¥ 90° + L,,lf),‘_ o
3.2n on+l

It follows from (1) that A® is equilateral for any fixed » if and only if A is
equilateral.

All the triangles A®™ evidently have a common circumcircle, namely the
circumcircle of A.
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It is evident from (1) that as n becomes large the n-th triangle A® be-
comes more nearly equllateral Thus if R is the radius of the circumscribed
circle of A and r® is the radius of the inscribed circle of A®, we have

) : lim r® = % R.

n=o0

Moreover, by Euler’s theorem,
1
3) r("‘ng r=12,3,...).

We shall now show that
4 r<r

with equality if and only if A is equilateral. As an immediate corollary of (4)
we have

5 r@ < pntl) n=1,2,3,..)

with equality if and only if A is equilateral.
To prove (4) we recall that [1, p. 192]

1 1 1
6 r=4 Rsin — a sin — B sin — .
(6) 5 5 e 5y

Since the angles of A’ are

——(B"'Y), Y'l'“)a —(OH'ﬁ),
it follows that

@) r'=4R sini(ﬁ+y) sini(y+oc) sin—l—(oH—B).
4 4 4
Thus (4) is equivalent to
®) sin L ocsini B sini <sini(ﬁ+ ) sini( + o) sini(oc +B)
2 2 o PN TR 4 '
Using the formulas for sin 2x and sin (x+y) this reduces to

1 1 1
9 8 tan— o tan — {3 tan —
&) 2 1 e A ¢

g(taniﬁ+taniy)(taniy+tanioc) (’[a,nl o+ tan —1- {3)
4 4 4 4 4 B

For brevity put

x= tanioc y=tan— Bz tani
4 4 "
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Then we must show that
8xyz<(y+2) (z+x)(x+y)
or, what is the same thing,
(10) 6xyz_<_2x2y.
Since

2. X235y = 2y +3xpz,
(10) may be replaced by

(11) 9 xpz < D X D Xp.

This inequality is valid for all non-negative x, y, z with equality only when
x=y=z.
This evidently completes the proof of (4).

2. We can prove (4) more rapidly by making use of the following result
[1, p. 200]. If H is the orthocenter of 4BC then

(12) HI?—4R? (8 sinzé o sinzé B sinz—;—y—cos o cos B cos Y) .

It is easily verified that 7 is the orthocenter of A4'B'C’. Hence, applying
(12) to the triangle A'B'C’, we get

I_I'2=4R2{8sinzi—(B—ky)sinz%(Y-i-a)SinZ%(“'l'ﬁ)
——sin—l—ocsiniﬁsinL }
2 2 2 ')

where I’ denotes the incenter of 4'B’C’. Making use of (6) and (7), this reduces to
II'*=2r"—Rr.

Since
II'?= R*—2Rr,
we have
(13) 2r'?=R?>—Rr=R(—r)

and therefore
2r2>Rr>2r2

with equality only when R=2r.
Another application of (12) may be noted. If 0 is the circumcenter of
ABC and 0, 0,, 0, the mid points of the sides of 4BC, then

00, =R cos «, 00, =R cos B, 00,=Rcosy.
1t follows at once from (12) that
(14) 00, - 00, - 003_<_—;— Rr2

with equality only when ABC is equilateral.

3. Let K denote the area of A and K’ the area of A’. Also let s denote
the semiperimeter of A and s’ the semiperimeter of A’. We shall show that

(15) K<K'
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and
(16) <.
Moreover in each case there is equality if and only if ABC is equilateral.

Since
K=2R?sin « sin B sin v,

it is clear that (16) is equivalent to
. . . . .1 .

sin o sin @ sin y<C sin % (B+v)sin Py (Y +B)sin —;— (x+B).

This is the same as
81 sini occosi a<]] (siniﬂcosi-ﬁ—cos L B sin iy)
2 2 2 2 2 2

which is equivalent to
a7n 8Htan%a§ﬂ(tan—§-ﬁ+tan%y).

If we put

x—tanioc y—taniﬁ z—tanL
2 27 2 ¥

(17) becomes
Bxyz <(r+2) (z+x)(x+)),

which we have already encountered above.
It may be of interest to mention the following result. Since

A'B' —2Rsin (90°——;—oc) =2Rcos-;—oc,
it follows that
B'C'-C'A-A'B' =8 R? cos—;— o cos%ﬁcos%yz(a+b+c)R2.

Combining this with

g BC C4 4B
4R
we get
(18) , K'=~;—Rs.

To prove (16) we use
§=R(sin &+ sin  +sin ).
Then (16) is equivalent to
. .1
(19) Zsmoc<251n7(ﬁ+y).
Since

ZSin a=4Hcos%a

(19) may be replaced by
1 1
I 1cos —2—och cos T B+v).
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This in turn may be replaced by

1 1 1 1 1 1
cos2—a—sin? — a |< coSs — —y —sin — B sin —
H( Z Z ) H( 4 Beos Y 7P 47)

or
(20) 11 (l—tanz%a>_<_n(l—tan%gtan%«{).
If we put

x—tanioc y—taniﬁ Z*tani
2 > 4 s 4Y’

(20) becomes

21) [Ta—»»<I]1—y2),
with 0<x<1, 0<y<1, 0<z<1.

Now ‘
(22) (1—y») (1—2)< (1 —yz)?

since this is equivalent to
2yz<y?+ 2%
moreover equality occurs only when y=z. Clearly (21) is an immediate corollary
of (22).
If K™ denotes the area of A® and s® the semiperimeter of A® it follows
at once from (15) and (16) that

23) KWOLK®D  (n=1,2,3,..)
and
249 5 <L st w=1,2,3,..)

with equality only when ABC is equilateral.

4. Let r,, ry, r, denote the radii of the escribed circles of ABC and r/,
ry', r./ the radii of the escribed circles of A'B’C’. We shall show that

25) AN
provided «<<{60°. Since [1, p. 193]

.1 1 1
r,=4 Rsin —acos — B cos — v,
2 2 P 2 v
it follows that
.1 1
ra’:4Rsm~4—(B+y) cos%(y-koc) 00s—4—(oc+ﬁ).

Thus (25) is equivalent to

1 1 1 | 1 1
2 sin— a cos — [ cos? — B —sin? — cos? — y—sin? —
45y ( PR B)( 4 YTy Y)
<(sini{3cosl —Fcos—l—{Ssini (cosl cos I « sin—l— sinla)
- 4 4 T 4 4 Y) 4 Y 4 4 ! 4

1 1 N
-(cos—acos—{3—~s1n—ocs1n—{3),
4 4 4 4
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or what is the same thing

1 1 1
2tan— o | 1—tan? — 1—tan? —
4( 4ﬁﬂ 47)

1 1 1 1 1 1
<(tan— B +tan — 1— tan—ytan—a|{l1— tan—atan—B}.
( +° 4YM 47T ﬂ 4 4@

If we put
x—tania y—taniﬁ z—*tani
4 4" 47

the last inequality becomes

(26) 2x(1—=y) (1—2)<(y +2) (1 —zx) (1—xp).
Now
1 1—cos 30°
tan 4 60" =\Tcos 30° 2~ V3.

Hence if a<<60° it follows that x£2—\/§ Also it is easily verified that
x2—4x+1>0

when x<<2—+/3. It follows that

2x(1+x)<(1—x)(1—x?).
Since
1— +z
=t @+ =25
1+x 1—yz
the last inequality may be replaced by

2x(1—y2)<(y +2) (1—27).
This in turn implies

2x(1=y2)(1=y) (1 =)< +2) (1= (1—p*) (1 —y2)

<O +2)(1—yz) (1—zx) (1—xy),
by (21). Therefore

2x(1—y) (1 =2 <+ 2) (1 —xp) (1 —x2)
which is identical with (26).
5. It is not difficult to show that

(27) A’I+B,I+C’ISA”I' +BIlIi +C"I’-
Indeed since
A'T=2Rsin —;— o
and
1 1
sin—oa=1+4 sin [ 45°——a],

3.sin— [Tsin (45— =)

(27) is equivalent to

(28) I1sin (45°—% o )gn sin (45"—%(3 +Y)> )
The proof of (28) is similar to the proof of (8).
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It would be of interest to know whether
(29) AI+BI +CI< AT +B'I' +C'T.
Since
1 1
AIl=4 Rsin — B sin — v,
2 P 2 ¥

(29) is equivalent to

. . .1 .
(30) ZSan—Bsm iYngm—(m-{-B) slni(a +v).
2 2 4 4
We remark that
€2)) AI-BI-CI=4Rr?
and
32) AT-B'I-C'I=2R?.
6. Summary. The following inequalities are proved.
)] r<r,
(15) K<K',
(16) s<s',
(25) r<r’  (x<60%.

For each of the first three inequalities there is equality if and only if the
t iangle is equilateral.

Added in proof
Replaciag o, B, y by 180°—2a«, 180°—2 B, 180°—2 v, (30) reduces to

1 o1
33 cosBcosy < >Ssin—fB sin — .
33) 2. cosBeosy <y 5 Bsin—-y

Since (A. Bager, A family of goniometric inequalites, Publications de la Faculté
d’¢lectrotechique de I'Université 4 Belgrade, Série: Math. et phys. no 339 (1971),
pp. 5—25)
> cosf cosy~r2+s2—4R2
4R2

we may replace (33) by
(34) r2+s2—-4R2gRZA L

Thus (29) is equivalent to (34).
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